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Abstract—To combine different types of uncertain information
from different sources under different frameworks, we need
transformations between different frameworks. For the trans-
formation of a fuzzy membership function (FMF) into a basic
belief assignment (BBA), several approaches have been proposed.
Among these approaches, the uncertainty optimization based
transformations can provide BBAs without predefining focal
elements. However, these two transformations, which respectively
use the uncertainty maximization and minimization criteria,
emphasize the extreme cases of uncertainty. We expect to obtain
a BBA, which is the trade-off between the two BBAs obtained
by solving the uncertainty maximization and minimization, to
avoid extreme attitudinal bias. In this paper, we propose two
transformations of an FMF into a BBA by using a user-specified
weighting factor to obtain such a trade-off (or balanced) BBA.
Some examples and related analyses are provided to show the
rationality and effectiveness of the proposed transformations.

Index Terms—evidence theory, basic belief assignment, fuzzy
membership function, optimization, transformation

I. INTRODUCTION

In the information fusion, we need to deal with a large
amount of uncertain information. Various types of uncertainty
theories have been proposed to deal with different types of
uncertainty, e.g., the probability theory, fuzzy set theory [1],
possibility theory [2], rough set theory [3] and Dempster-
Shafer evidence theory (DST) [4] etc. When we fuse the
information from different sources under different theoretical
frameworks, we need the transformation between different
frameworks.

For the information represented by the FMF and BBA, we
can transform an FMF into a BBA. Then, we can combine
the BBAs to implement the information fusion. There have
been proposed many transformations of an FMF into a BBA
[5]–[9]. In [5], Bi et al. proposed a transformation that
normalizes a given FMF to generate a BBA with singleton
focal elements only. By using the α-cut approach, Florea et
al. [6] transformed an FMF into a BBA with focal elements
nested in order. However, these two approaches above have to
predefine the focal elements, which lack of intuitiveness and
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objectiveness. Han et al. [7] proposed two approaches without
predefining focal elements. These two approaches can provide
BBAs by solving constrained uncertainty maximization and
minimization.

For the two transformations of Han et al. [7], both two
objective functions are the ambiguity measure (AM ) and their
constraints are mainly constructed based on the given FMF.
Their rationality and effectiveness are both justified in [7].
During the process of solving optimization problems, these
two transformations emphasize on the minimum and maximal
uncertainties of the BBA, respectively. We think that the
BBA being the trade-off (or balanced) between the two BBAs
obtained by solving the uncertainty maximization and mini-
mization is more preferred, which might avoid being “one-
sided” on the uncertainty degree. In this paper, we propose
two approaches by using a user-specified weighting factor to
determine BBAs. One transformation is the weighted average
by using the user-specified weighting factor with the two
BBAs obtained by optimization based transformations [7]. The
other transformation brings out a trade-off BBA by solving
a constrained minimization problem. The objective function
is based on the user-specified weighting factor, the distance
of evidence and the two BBAs obtained by uncertainty opti-
mization. The constraints are mainly based on the given FMF.
That is, each of our proposed transformations can transform
an FMF into a BBA, which can be considered as the trade-off
between the two BBAs obtained with uncertainty optimization.
Some examples and related analyses are provided to justify the
proposed transformations.

II. PRELIMINARY

A. Basics of the Theory of Belief Functions

The theory of belief functions [4], introduced historically
by Shafer in DST, is a powerful framework for uncertainty
modeling and reasoning. Let Θ = {θ1, θ2, ..., θn} be the frame
of discernment (FOD). Under the closed world assumption,
the FOD is mutually exclusive and exhaustive. The BBA (also
called a mass function) is defined on the power set of Θ, which
can be denoted by a function m : 2Θ → [0, 1] satisfying∑

A⊆Θ

m(A) = 1,m(∅) = 0 (1)



where ∅ denotes the empty set. ∀A, if m(A) > 0, then A is
called a focal element. m(A) denotes the evidence support to
the proposition A.

The belief function Bel for all A ⊆ Θ, as:

Bel(A) =
∑
B⊆A

m(B) (2)

The plausibility function Pl for all A ⊆ Θ, as:

Pl(A) =
∑

A∩B 6=∅

m(B) (3)

Suppose there are two independent BBAs m1 and m2 on the
same FOD. Historically Shafer proposed Dempster’s rule to
combine two (or more) BBAs. Dempster’s rule of combination
is

m(A) =


0, A = ∅∑
B∩C=A

m1(B)m2(C)

1−K
, A 6= ∅

(4)

where K =
∑
B∩C=∅m1(B)m2(C) represents the conflict

coefficient between two BBAs. There exist other alternative
combination rules [10], [11].

B. Uncertainty Measure of a BBA

The uncertainty of a BBA includes two types: the dis-
cord and the non-specificity. Different measures of uncer-
tainty [12]–[16] have been proposed, e.g., the non-specificity
measure [14], the ambiguity measure (AM ) [15] and the
aggregated uncertainty (AU ) [16]. The definition of AM is
as follows:

AM(m) = −
∑
θ∈Θ

BetPm(θ) log2(BetPm(θ)) (5)

where BetPm(θ) =
∑
θ∈A⊆Θm(A)/ |A| is the pignistic

probability [17]. |A| denotes the cardinality of the set A.

III. TRANSFORMATION OF FMF INTO BBA

A. Concept of Fuzzy Set

Fuzzy sets [1] were proposed by Zadeh to describe the
concepts without precise definitions. Let Θ be the universe
of discourse (equivalent to FOD in the belief functions). A
fuzzy membership function is denoted by u = µ(θ), θ ∈ Θ.
For µ : Θ → [0, 1], µ(θ) ∈ [0, 1] is called the degree of
membership for θ.

B. Traditional Transformations of FMF into BBA

a) Transformations with the predefinition of focal ele-
ments: For a given FMF, two available types of transforma-
tions below can provide a BBA, which have to predefine the
focal elements. Suppose that the FOD is Θ = {θ1, θ2, ..., θn}
and the given FMF is µ = [µ(θ1), µ(θ2), ..., µ(θn)]. The
obtained BBA is represented by m.

In the work of Bi et al. [5], the BBA is determined as
follows:

m({θi}) = µ(θi)

/
n∑
j=1

µ(θj) (6)

This approach predefines all focal elements as singletons, and
it is the result of normalization for the given FMF.

Another transformation with the predefinition of focal el-
ements is the work of Florea et al. [6] by using the α-cut
approach. Suppose that µ(θ1), µ(θ2), ..., µ(θn) are sorted into
ascending order as 0 = α0 < α1 < α2 < ... < αM ≤ 1, where
M ≤ |Θ|. The BBA is determined by using the transformation
[6] as follows:

m(Aj) =
αj − αj−1

αM
(7)

where Aj = {θi ∈ Θ|µ(θi) ≥ αj}, i = 1, 2, ..., n, j =
1, 2, ...,M . This transformation predefines the focal elements
nested in order for the given FMF.

Both two approaches can transform an FMF into a BBA.
However, the transformations with the predefinition of focal
elements lack of intuitiveness and objectiveness. For a given
FMF, the optimization based transformations can obtain a BBA
without predefining the focal elements.

b) Transformations based on the uncertainty optimiza-
tion: In the work of Han et al. [7], the two transformations
that have no predefinition of focal elements are obtained
by solving the uncertainty maximization and minimization.
Suppose that the FOD is Θ = {θ1, θ2, ..., θn} and the given
FMF is µ = [µ(θ1), µ(θ2), ..., µ(θn)]. The obtained BBA is
represented by m.

There exists a relationship [18] between the FMF and the
belief function or plausibility function. When

∑n
i=1 µ(θi) ≥ 1,

the FMF is equivalent to a singleton plausibility function,
which is denoted by

Pl({θi}) =
∑

{θi}∩A6=∅

m(A) = µ(θi),∀ {θi} ⊆ Θ (8)

It is the necessary and sufficient condition for the FMF to be
a singleton plausibility function.

When
∑n
i=1 µ(θi) ≤ 1, the FMF is equivalent to a singleton

belief function, which is denoted by

Bel({θi}) =
∑

A⊆{θi}

m(A) = µ(θi),∀ {θi} ⊆ Θ (9)

Similarly, it is the necessary and sufficient condition for the
FMF to be a singleton belief function.

The detailed proof of the above relationships are given in
[18].

There is a BBA transformed from a given FMF, and the
FMF and BBA satisfy Eq. (8) or Eq. (9). Then, n linear
equations for the corresponding relations can be obtained. In
addition, one has

∑
A⊆Θm(A) = 1. There exist n+ 1 linear

equations. However, except for m(∅) = 0, in the worst case
there are 2n−1 focal elements to assign the belief. The n+ 1
linear equations with respect to 2n−1 undetermined variables,
which is an under-determined problem, i.e., it usually has
multiple solutions.

Therefore, to obtain a unique BBA, Han et al. [7] established
two uncertainty optimization based transformations for the
given FMF. Both two objective functions are AM and the
constraints are mainly based on the given FMF.



The objective function of the uncertainty maximization
problem and the corresponding constraints are as follows:
When

∑n
i=1 µ(θi) ≥ 1,

max
m

{
−

n∑
i=1

[BetPm(θi) log2(BetPm(θi))]

}

s.t.


∑

{θi}∩A6=∅
m(A) = µ(θi),∀ {θi} ⊆ Θ∑

A⊆Θ

m(A) = 1

0 ≤ m(A) ≤ 1

(10)

When
∑n
i=1 µ(θi) ≤ 1,

max
m

{
−

n∑
i=1

[BetPm(θi) log2(BetPm(θi))]

}

s.t.


∑

A⊆{θi}
m(A) = µ(θi),∀ {θi} ⊆ Θ∑

A⊆Θ

m(A) = 1

0 ≤ m(A) ≤ 1

(11)

In the sequel, this transformation is represented by “Tmax”
for convenience.

The objective function of the uncertainty minimization
problem and the corresponding constraints are as follows:
When

∑n
i=1 µ(θi) ≥ 1,

min
m

{
−

n∑
i=1

[BetPm(θi) log2(BetPm(θi))]

}

s.t.


∑

{θi}∩A 6=∅
m(A) = µ(θi),∀ {θi} ⊆ Θ∑

A⊆Θ

m(A) = 1

0 ≤ m(A) ≤ 1

(12)

When
∑n
i=1 µ(θi) ≤ 1,

min
m

{
−

n∑
i=1

[BetPm(θi) log2(BetPm(θi))]

}

s.t.


∑

A⊆{θi}
m(A) = µ(θi),∀ {θi} ⊆ Θ∑

A⊆Θ

m(A) = 1

0 ≤ m(A) ≤ 1

(13)

In the sequel, this transformation is represented by “Tmin” for
convenience.

The unique BBA can be determined without predefining
focal elements by using “Tmax” or “Tmin”. The obtained BBA
is the optimal solution of the uncertainty maximization or
minimization. During the process of transforming an FMF into
a BBA, “Tmax” and “Tmin” emphasize on the maximal and
minimum uncertainty cases of the obtained BBA, respectively.
We think that the BBA being the trade-off between the
two BBAs obtained by using “Tmax” and “Tmin” is more
preferred, which might avoid bias in terms of uncertainty
degree.

IV. TRANSFORMATIONS WITH USER-SPECIFIED
WEIGHTING FACTOR

As aforementioned, we can obtain two BBAs by using
“Tmax” and “Tmin”, respectively. Based on these two BBAs,

we aim to construct a transformation to determine a trade-
off BBA. The trade-off BBA which satisfies the relationship
between the FMF and the singleton plausibility or singleton
belief. We use a user-specified weighting factor to influence
how close the trade-off BBA is to each of the two BBAs above.
Suppose that the user-specified weighting factor is represented
by α and 0 ≤ α ≤ 1. When α→ 0, the trade-off BBA is close
to the BBA obtained by using “Tmin”. When α → 1, the
trade-off BBA is close to the BBA obtained by using “Tmax”.
To meet the requirements above, we propose two different
approaches to determine the trade-off BBAs.

A. Weighted Average based Transformation

Let Θ = {θ1, θ2, ..., θn} be the FOD. The given FMF is
represented by µ = [µ(θ1), µ(θ2), ..., µ(θn)]. Suppose that the
BBA obtained by using “Tmin” is denoted by mmin, and the
BBA obtained by using “Tmax” is denoted by mmax. The
user-specified weighting factor is denoted by α (0 ≤ α ≤ 1).
The trade-off BBA is denoted by m. The Weighted Average
of mmin and mmax can bring out a trade-off BBA as follows:

m(A) = (1− α) ·mmin(A) + α ·mmax(A) (14)

where A ⊆ Θ. In the sequel, the transformation based on the
weighted average (WA) is denoted by “TWA” for convenience.

The BBA obtained in (14) is an admissible BBA and it
satisfies the constraints established based on FMF.

According to Eq. (14), the following conditions can be
satisfied: ∑

A⊆Θ

m(A) = 1, 0 ≤ m(A) ≤ 1 (15)

For the transformation of an FMF into a BBA, it is necessary
that the obtained BBA satisfies the relationship between the
FMF and the singleton plausibility or singleton belief. Al-
though “TWA” is a simple and direct transformation of an
FMF into a trade-off BBA, it also satisfies the relationship.
The proof is provided below.

When
∑n
i=1 µ(θi) ≥ 1, mmin and mmax satisfy Eq. (6),

respectively, i.e., Plmin ({θi}) = Plmax ({θi}) = µ(θi), i =
1, 2, ..., n. According to Eq. (14),

Pl({θi}) =
∑

{θi}∩A 6=∅

m(A)

=
∑

{θi}∩A 6=∅

[(1−α)·mmin(A)+α·mmax(A)]

=(1−α)·
∑
{θi}∩A6=∅

mmin(A)+α·
∑
{θi}∩A6=∅

mmax(A)

= (1− α)·Plmin ({θi}) + α·Plmax ({θi})
= (1− α) · µ(θi) + α · µ(θi)

= µ(θi)

(16)

Similarly, when
∑n
i=1 µ(θi) ≤ 1, mmin and mmax satisfy

Eq. (7), respectively, i.e., Belmin ({θi}) = Belmax ({θi}) =



µ(θi), i = 1, 2, ..., n. According to Eq. (14),

Bel ({θi}) =
∑

A⊆{θi}

m(A)

=
∑
A⊆{θi}

[(1−α)·mmin(A) + α·mmax(A)]

=(1−α)·
∑
A⊆{θi}

mmin(A)+α·
∑
A⊆{θi}

mmax(A)

= (1− α)·Belmin ({θi})+α·Belmax ({θi})
= (1− α) · µ(θi) + α · µ(θi)

= µ(θi)

(17)

For the trade-off BBA, when
∑n
i=1 µ(θi) ≥ 1, the given

FMF is equivalent to the corresponding singleton plausibility.
When

∑n
i=1 µ(θi) ≤ 1, the given FMF is equivalent to the

corresponding singleton belief. That is, “TWA” can transform
the given FMF into the trade-off BBA, which satisfies the
relationship between the FMF and the BBA.

B. User-specified Optimization based Transformation

Let the FOD be Θ = {θ1, θ2, ..., θn}. The given FMF is
denoted by µ = [µ(θ1), µ(θ2), ..., µ(θn)]. Suppose that mmin

and mmax denote the BBAs obtained by “Tmin” and “Tmax”,
respectively. The user-specified weighting factor is denoted by
α (0 ≤ α ≤ 1). The trade-off BBA is represented by m.

The user-specified weighting factor is used to influence the
similarity between the trade-off BBA and mmin (or mmax).
The degree of similarity between two BBAs is represented by
the distance of evidence. We can use the Jousselme’s distance
[19], which is a strict metric defined as

dJ(ma,mb) =

√
1

2
(ma −mb)D(ma −mb) (18)

where D(A,B) = |A ∩B| / |A ∪B|, A ⊆ Θ, B ⊆ Θ.
According to Eq. (18), the obtained BBA is more similar to
mmin, if dJ(m,mmin) is smaller. If dJ(m,mmax) is smaller,
the obtained BBA is more similar to mmax.

To obtain the trade-off BBA between mmin and mmax, a
relationship between the user-specified weighting factor and
the distance of evidence can be constructed. When α is given
from 0 to 1, with the decreasing of dJ(m,mmin), the value
of dJ(m,mmax) is increasing. Then we can establish the
following equation:

dJ(m,mmin)

dJ(m,mmax)
=

α

1− α
(19)

The BBA satisfies Eq. (19) may not always exist. If the fol-
lowing function (equivalent to Eq. (19)) achieves the minimum
value, then the trade-off BBA is obtained.

obj(m) = [(1− α)·dJ(m,mmin)− α·dJ(m,mmax)]
2 (20)

When α is given, we can establish a constrained minimiza-
tion problem to transform an FMF into a BBA. The objective
function is Eq. (20) and the constraints are mainly based on

Eq. (6) or Eq. (7). The transformation of an FMF into a trade-
off BBA is obtained by solving the user-specified optimization
problem as follows:
When

∑n
i=1 µ(θi) ≥ 1,

min
m

{
[(1− α)·dJ(m,mmin)− α·dJ(m,mmax)]

2
}

s.t.


∑

{θi}∩A 6=∅
m(A) = µ(θi),∀ {θi} ⊆ Θ∑

A⊆Θ

m(A) = 1

0 ≤ m(A) ≤ 1

(21)

When
∑n
i=1 µ(θi) ≤ 1,

min
m

{
[(1− α)·dJ(m,mmin)− α·dJ(m,mmax)]

2
}

s.t.


∑

A⊆{θi}
m(A) = µ(θi),∀ {θi} ⊆ Θ∑

A⊆Θ

m(A) = 1

0 ≤ m(A) ≤ 1

(22)

In the sequel, the transformation based on the user-specified
optimization (USO) is denoted by “TUSO” for convenience.

For a given FMF, the trade-off BBA can be obtained by
using “TUSO”, which is a user-specified optimization based
transformation.

V. EXPERIMENTS

In this section, we provide some examples to illustrate how
to transform an FMF into a trade-off BBA using our approach-
es. Here, we use the optimization toolbox in the MatlabTM to
solve the optimization problems under constraints.

A. Example 1

Let the FOD be Θ = {θ1, θ2, θ3}. The given FMF is
µ(θ1) = 0.9, µ(θ2) = 0.7, µ(θ3) = 0.3. Suppose that
mmin and mmax are the BBAs obtained by using “Tmin” and
“Tmax”, respectively. We just list the corresponding BBAs for
α = 0, 0.3, 0.7 and 1.

This FMF satisfies
∑3
i=1 µ(θi) = 1.9 > 1. Therefore, the

given FMF is equivalent to the singleton plausibility. The
BBAs obtained by using “TWA” and “TUSO” are listed in
the Table I and Table II, respectively.

By using “TWA” and “TUSO”, when α = 0, the obtained
BBAs are identical to mmin, and the values of AM are the
minimum uncertainty. When α → 0, the obtained BBA is
similar to mmin, and its uncertainty is close to the minimum
uncertainty.

Similarly, when α = 1, the obtained BBAs are identical to
mmax, and the values of AM are the maximal uncertainty.
When α → 1, the obtained BBA is similar to mmax, and its
uncertainty is close to the maximal uncertainty.

B. Example 2

Let the FOD be Θ = {θ1, θ2, θ3, θ4}. The given FMF is
µ(θ1) = 1, µ(θ2) = 0.2, µ(θ3) = 0.3, µ(θ4) = 0.3. Suppose
that mmin and mmax are the BBAs obtained by using “Tmin”
and “Tmax”, respectively. We just list the corresponding BBAs
for α = 0, 0.2, 0.8 and 1.



TABLE I
USING “TWA” TO OBTAIN BBAS IN EXAMPLE 1.

α BBA AM

α = 0
m({θ1}) = 0.3, m({θ1, θ2}) = 0.3

1.3367
m({θ2}) = 0.1, m(Θ) = 0.3

α = 0.3

m({θ1}) = 0.21, m({θ1, θ2}) = 0.42

1.4003m({θ2}) = 0.07, m({θ1, θ3}) = 0.06

m({θ3}) = 0.03, m(Θ) = 0.21

α = 0.7

m({θ1}) = 0.09, m({θ1, θ2}) = 0.58

1.4730m({θ2}) = 0.03, m({θ1, θ3}) = 0.14

m({θ3}) = 0.07, m(Θ) = 0.09

α = 1
m({θ1, θ2}) = 0.7, m({θ3}) = 0.1

1.5129
m({θ1, θ3}) = 0.2

TABLE II
USING “TUSO” TO OBTAIN BBAS IN EXAMPLE 1.

α BBA AM

α = 0
m({θ1}) = 0.3, m({θ1, θ2}) = 0.3

1.3367
m({θ2}) = 0.1, m(Θ) = 0.3

α = 0.3

m({θ1}) = 0.2027, m({θ1, θ2}) = 0.4145

1.3969m({θ2}) = 0.0828, m({θ1, θ3}) = 0.0802

m({θ3}) = 0.0172, m(Θ) = 0.2026

α = 0.7

m({θ1}) = 0.1037, m({θ1, θ2}) = 0.5962

1.4828m({θ2}) = 0.0001, m({θ1, θ3}) = 0.0965

m({θ3}) = 0.0999, m(Θ) = 0.1036

α = 1
m({θ1, θ2}) = 0.7, m({θ3}) = 0.1

1.5129
m({θ1, θ3}) = 0.2

According to
∑4
i=1 µ(θi) = 1.8 > 1, the FMF is equivalent

to the singleton plausibility. In the Table III and Table IV,
the BBAs obtained by using “TWA” and “TUSO” are listed,
respectively.

When α = 0, the obtained BBAs are identical to mmin, and
the values of AM are the minimum uncertainty. When α = 1,
the obtained BBAs are identical to mmax, and the values of
AM are the maximal uncertainty.

In the Table III and Table IV, when α → 0, the obtained
BBA is similar to mmin, and its uncertainty is close to the
minimum uncertainty. When α → 1, the obtained BBA is
similar to mmax, and its uncertainty is close to the maximal
uncertainty.

TABLE III
USING “TWA” TO OBTAIN BBAS IN EXAMPLE 2.

α BBA AM

α = 0
m({θ1}) = 0.7, m(Θ) = 0.2

1.0896
m({θ1, θ3, θ4}) = 0.1

α = 0.2

m({θ1}) = 0.60, m({θ1, θ2}) = 0.04

1.2099m({θ1, θ3}) = 0.06, m({θ1, θ4}) = 0.06

m({θ1, θ3, θ4}) = 0.08, m(Θ) = 0.16

α = 0.8

m({θ1}) = 0.3, m({θ1, θ2}) = 0.16

1.5122m({θ1, θ3}) = 0.24, m({θ1, θ4}) = 0.24

m({θ1, θ3, θ4}) = 0.02, m(Θ) = 0.04

α = 1
m({θ1}) = 0.2, m({θ1, θ2}) = 0.2

1.5955
m({θ1, θ3}) = 0.3, m({θ1, θ4}) = 0.3

TABLE IV
USING “TUSO” TO OBTAIN BBAS IN EXAMPLE 2.

α BBA AM

α = 0
m({θ1}) = 0.7, m(Θ) = 0.2

1.0896
m({θ1, θ3, θ4}) = 0.1

α = 0.2

m({θ1}) = 0.6008, m({θ1, θ2}) = 0.0471

1.2133

m({θ1, θ3}) = 0.0484

m({θ1, θ2, θ3}) = 0.0037

m({θ1, θ4}) = 0.0515

m({θ1, θ2, θ4}) = 0.0006

m({θ1, θ3, θ4}) = 0.0993, m(Θ) = 0.1486

α = 0.8

m({θ1}) = 0.2990, m({θ1, θ2}) = 0.1665

1.5227
m({θ1, θ3}) = 0.2345, m({θ1, θ4}) = 0.2010

m({θ1, θ2, θ4}) = 0.0335

m({θ1, θ3, θ4}) = 0.0655

α = 1
m({θ1}) = 0.2, m({θ1, θ2}) = 0.2

1.5955
m({θ1, θ3}) = 0.3, m({θ1, θ4}) = 0.3

C. Example 3

Let the FOD be Θ = {θ1, θ2, θ3, θ4}. The given FMF is
µ(θ1) = 0.6, µ(θ2) = 0.1, µ(θ3) = 0.2, µ(θ4) = 0.1. We just
list the corresponding BBAs for α = 0, 0.4, 0.9 and 1.

This FMF satisfies
∑4
i=1 µ(θi) = 1. The FMF is equivalent

to the singleton plausibility or singleton belief. In the Table
V and Table VI, the BBAs obtained by using “TWA” and
“TUSO” are listed, respectively.

In the Table V and Table VI, the BBAs obtained when α = 0
are identical to the BBAs obtained when α = 1, i.e., the two
BBAs obtained by using “Tmin” and “Tmax” are the same.
Therefore, ∀α ∈ [0, 1], the obtained BBAs are without the
influence of α. When α is given from 0 to 1, all the obtained
BBAs are Bayesian belief functions and are identical.

TABLE V
USING “TWA” TO OBTAIN BBAS IN EXAMPLE 3.

α BBA AM

α = 0
m({θ1}) = 0.6, m({θ2}) = 0.1

1.5710
m({θ3}) = 0.2, m({θ4}) = 0.1

α = 0.4
m({θ1}) = 0.6, m({θ2}) = 0.1

1.5710
m({θ3}) = 0.2, m({θ4}) = 0.1

α = 0.9
m({θ1}) = 0.6, m({θ2}) = 0.1

1.5710
m({θ3}) = 0.2, m({θ4}) = 0.1

α = 1
m({θ1}) = 0.6, m({θ2}) = 0.1

1.5710
m({θ3}) = 0.2, m({θ4}) = 0.1

D. Example 4

Let the FOD be Θ = {θ1, θ2, θ3}. The given FMF is
µ(θ1) = 0.6, µ(θ2) = 0.2, µ(θ3) = 0.1. Suppose that
mmin and mmax are the BBAs obtained by using “Tmin” and
“Tmax”, respectively. We just list the corresponding BBAs for
α = 0, 0.3, 0.8 and 1.

This FMF satisfies
∑3
i=1 µ(θi) = 0.9 < 1. The FMF is

equivalent to the singleton belief. The BBAs obtained by using
“TWA” and “TUSO” are listed in the Table VII and Table VIII,
respectively.



TABLE VI
USING “TUSO” TO OBTAIN BBAS IN EXAMPLE 3.

α BBA AM

α = 0
m({θ1}) = 0.6, m({θ2}) = 0.1

1.5710
m({θ3}) = 0.2, m({θ4}) = 0.1

α = 0.4
m({θ1}) = 0.6, m({θ2}) = 0.1

1.5710
m({θ3}) = 0.2, m({θ4}) = 0.1

α = 0.9
m({θ1}) = 0.6, m({θ2}) = 0.1

1.5710
m({θ3}) = 0.2, m({θ4}) = 0.1

α = 1
m({θ1}) = 0.6, m({θ2}) = 0.1

1.5710
m({θ3}) = 0.2, m({θ4}) = 0.1

In the Table VII and Table VIII, when α = 0, the obtained
BBAs are identical to mmin, and the values of AM are the
minimum uncertainty. When α = 1, the obtained BBAs are
identical to mmax, and the values of AM are the maximal
uncertainty. When α → 0, the obtained BBA is similar to
mmin, and its uncertainty is close to the minimum uncertainty.
When α → 1, the obtained BBA is similar to mmax, and its
uncertainty is close to the maximal uncertainty.

TABLE VII
USING “TWA” TO OBTAIN BBAS IN EXAMPLE 4.

α BBA AM

α = 0
m({θ1}) = 0.6, m({θ3}) = 0.1

1.2362
m({θ2}) = 0.2, m({θ1, θ2}) = 0.1

α = 0.3

m({θ1}) = 0.6, m({θ1, θ2}) = 0.07

1.2749m({θ2}) = 0.2, m({θ2, θ3}) = 0.03

m({θ3}) = 0.1

α = 0.8

m({θ1}) = 0.6, m({θ1, θ2}) = 0.02

1.3321m({θ2}) = 0.2, m({θ2, θ3}) = 0.08

m({θ3}) = 0.1

α = 1
m({θ1}) = 0.6, m({θ2}) = 0.2

1.3527
m({θ3}) = 0.1, m({θ2, θ3}) = 0.1

TABLE VIII
USING “TUSO” TO OBTAIN BBAS IN EXAMPLE 4.

α BBA AM

α = 0
m({θ1}) = 0.6, m({θ3}) = 0.1

1.2362
m({θ2}) = 0.2, m({θ1, θ2}) = 0.1

α = 0.3

m({θ1}) = 0.6, m({θ1, θ2}) = 0.0697

1.2748m({θ2}) = 0.2, m({θ1, θ3}) = 0.0006

m({θ3}) = 0.1, m({θ2, θ3}) = 0.0297

α = 0.8

m({θ1}) = 0.6, m({θ1, θ2}) = 0.02

1.3321m({θ2}) = 0.2, m({θ2, θ3}) = 0.08

m({θ3}) = 0.1

α = 1
m({θ1}) = 0.6, m({θ2}) = 0.2

1.3527
m({θ3}) = 0.1, m({θ2, θ3}) = 0.1

E. Example 5

Suppose that a system of classification with three sensors,
including displacement sensor S1, pressure sensor S2 and
image sensor S3. Let the FOD be Θ = {θ1, θ2, θ3}. Three
sensors are used for measuring the size, weight and state of the
sample, respectively. The measurements of sensors are used to

obtain two FMFs and a BBA. According to the parameters and
the measurements of the sensor, the FMF is defined as

µ(θj) =


x−mini
avei −mini

, x ∈ [mini, avei]

x−maxi
avei −maxi

, x ∈ (avei,maxi]

0, others

(23)

where i = 1, 2. mini and maxi are the minimum and maximal
values of the class θj (j = 1, 2, 3), respectively. avei is the
average value of the class θj .

TABLE IX
THE PARAMETERS AND THE MEASUREMENTS OF SENSORS.

Class S1 S2

min1 max1 ave1 min2 max2 ave2
θ1 43.3 58.4 50.8 2.9 4.1 3.4
θ2 50.9 70.1 59.5 2.0 3.4 2.8
θ3 49.4 79.3 65.7 2.2 3.8 2.9

Sample 56 3.2

In the Table IX, the parameters of S1 and S2 and the
measurements of a sample are listed. The class of this sample
is θ2. According to (23), two FMFs are as follows:
S1 : µ(θ1) = 0.3158, µ(θ2) = 0.5930, µ(θ3) = 0.4049;
S2 : µ(θ1) = 0.6, µ(θ2) = 0.6667, µ(θ3) = 0.3333.

According to the image of S3, the expert determined the
BBA directly as follows:
mS3

({θ3})=0.51, mS3
({θ2, θ3})=0.38, mS3

(Θ)=0.11.

TABLE X
USING “TWA” TO OBTAIN BBAS IN EXAMPLE 5.

α mS1 mS2

α = 0

mS1 ({θ1}) = 0.0021 mS2 ({θ1}) = 0.2667

mS1 ({θ2}) = 0.5930 mS2 ({θ2}) = 0.4

mS1
({θ3}) = 0.0912 mS2

({θ1, θ3}) = 0.0666

mS1
({θ1, θ3}) = 0.3137 mS2

({Θ}) = 0.2667

α = 0.3

mS1
({θ1}) = 0.0759 mS2

({θ1}) = 0.1967

mS1
({θ2}) = 0.4989 mS2

({θ2}) = 0.3

mS1 ({θ1, θ2}) = 0.0203 mS2 ({θ1, θ2}) = 0.17

mS1
({θ3}) = 0.1115 mS2

({θ3}) = 0.09

mS1
({θ1, θ3}) = 0.2196 mS2

({θ1, θ3}) = 0.0466

mS1
({θ2, θ3}) = 0.0738 mS2

({θ2, θ3}) = 0.01

mS2 ({Θ}) = 0.1867

α = 0.8

mS1
({θ1}) = 0.1989 mS2

({θ1}) = 0.08

mS1 ({θ2}) = 0.3420 mS2 ({θ2}) = 0.1334

mS1
({θ1, θ2}) = 0.0542 mS2

({θ1, θ2}) = 0.4534

mS1
({θ3}) = 0.1454 mS2

({θ3}) = 0.24

mS1
({θ1, θ3}) = 0.0627 mS2

({θ1, θ3}) = 0.0133

mS1 ({θ2, θ3}) = 0.1968 mS2 ({θ2, θ3}) = 0.0266

mS2
({Θ}) = 0.0533

α = 1

mS1 ({θ1}) = 0.2480 mS2 ({θ1}) = 0.0333

mS1
({θ2}) = 0.2793 mS2

({θ2}) = 0.0667

mS1
({θ1, θ2}) = 0.0687 mS2

({θ1, θ2}) = 0.5667

mS1 ({θ3}) = 0.1590 mS2 ({θ3}) = 0.3

mS1
({θ2, θ3}) = 0.2459 mS2

({θ2, θ3}) = 0.0333

Suppose that mS1
and mS2

denote the obtained BBAs
transformed from the two FMFs of S1 and S2, respectively.



TABLE XI
USING “TUSO” TO OBTAIN BBAS IN EXAMPLE 5.

α mS1 mS2

α = 0

mS1 ({θ1}) = 0.0021 mS2 ({θ1}) = 0.2667

mS1
({θ2}) = 0.5930 mS2

({θ2}) = 0.4

mS1
({θ3}) = 0.0912 mS2

({θ1, θ3}) = 0.0666

mS1 ({θ1, θ3}) = 0.3137 mS2 ({Θ}) = 0.2667

α = 0.3

mS1
({θ1}) = 0.0354 mS2

({θ1}) = 0.1902

mS1 ({θ2}) = 0.4927 mS2 ({θ2}) = 0.2641

mS1 ({θ1, θ2}) = 0.0670 mS2 ({θ1, θ2}) = 0.2124

mS1
({θ3}) = 0.1654 mS2

({θ3}) = 0.0291

mS1
({θ1, θ3}) = 0.2062 mS2

({θ1, θ3}) = 0.1140

mS1 ({θ2, θ3}) = 0.0260 mS2 ({θ2, θ3}) = 0.1068

mS1
({Θ}) = 0.0073 mS2

({Θ}) = 0.0834

α = 0.8

mS1 ({θ1}) = 0.1918 mS2 ({θ1}) = 0.0942

mS1
({θ2}) = 0.3190 mS2

({θ2}) = 0.1193

mS1
({θ1, θ2}) = 0.0844 mS2

({θ1, θ2}) = 0.4532

mS1
({θ3}) = 0.2152 mS2

({θ3}) = 0.2379

mS1 ({θ2, θ3}) = 0.15 mS2 ({θ1, θ3}) = 0.0012

mS1
({Θ}) = 0.0396 mS2

({θ2, θ3}) = 0.0428

mS2
({Θ}) = 0.0514

α = 1

mS1
({θ1}) = 0.2480 mS2

({θ1}) = 0.0333

mS1
({θ2}) = 0.2793 mS2

({θ2}) = 0.0667

mS1
({θ1, θ2}) = 0.0687 mS2

({θ1, θ2}) = 0.5667

mS1 ({θ3}) = 0.1590 mS2 ({θ3}) = 0.3

mS1
({θ2, θ3}) = 0.2459 mS2

({θ2, θ3}) = 0.0333

TABLE XII
THE COMBINED BBAS IN EXAMPLE 5.

α “TWA” “TUSO”

α = 0

m({θ1}) = 0.0276 m({θ1}) = 0.0276

m({θ2}) = 0.5731 m({θ2}) = 0.5731

m({θ3}) = 0.3652 m({θ3}) = 0.3652

m({θ1, θ3}) = 0.0340 m({θ1, θ3}) = 0.0340

α = 0.3

m({θ1}) = 0.0429 m({θ1}) = 0.0408

m({θ2}) = 0.5531 m({θ2}) = 0.5547

m({θ1, θ2}) = 0.0024 m({θ1, θ2}) = 0.0069

m({θ3}) = 0.3637 m({θ3}) = 0.375

m({θ1, θ3}) = 0.0168 m({θ1, θ3}) = 0.0135

m({θ2, θ3}) = 0.0212 m({θ2, θ3}) = 0.0089

m({Θ}) = 0.0002

α = 0.8

m({θ1}) = 0.0513 m({θ1}) = 0.0418

m({θ2}) = 0.5409 m({θ2}) = 0.5341

m({θ1, θ2}) = 0.0089 m({θ1, θ2}) = 0.0199

m({θ3}) = 0.3747 m({θ3}) = 0.3780

m({θ1, θ3}) = 0.0014 m({θ2, θ3}) = 0.0255

m({θ2, θ3}) = 0.0228 m({Θ}) = 0.0007

α = 1

m({θ1}) = 0.0487 m({θ1}) = 0.0487

m({θ2}) = 0.5435 m({θ2}) = 0.5435

m({θ1, θ2}) = 0.0124 m({θ1, θ2}) = 0.0124

m({θ3}) = 0.3837 m({θ3}) = 0.3837

m({θ2, θ3}) = 0.0118 m({θ2, θ3}) = 0.0118

TABLE XIII
THE PIGNISTIC PROBABILITIES IN EXAMPLE 5.

α “TWA” “TUSO”

α = 0

BetP ({θ1}) = 0.0446 BetP ({θ1}) = 0.0446

BetP ({θ2}) = 0.5731 BetP ({θ2}) = 0.5731

BetP ({θ3}) = 0.3822 BetP ({θ3}) = 0.3822

α = 0.3

BetP ({θ1}) = 0.0525 BetP ({θ1}) = 0.0511

BetP ({θ2}) = 0.5648 BetP ({θ2}) = 0.5627

BetP ({θ3}) = 0.3827 BetP ({θ3}) = 0.3863

α = 0.8

BetP ({θ1}) = 0.0565 BetP ({θ1}) = 0.0520

BetP ({θ2}) = 0.5567 BetP ({θ2}) = 0.5570

BetP ({θ3}) = 0.3868 BetP ({θ3}) = 0.3910

α = 1

BetP ({θ1}) = 0.0549 BetP ({θ1}) = 0.0549

BetP ({θ2}) = 0.5556 BetP ({θ2}) = 0.5556

BetP ({θ3}) = 0.3895 BetP ({θ3}) = 0.3895

The BBAs obtained by using “TWA” and “TUSO” are listed
in the Table X and Table XI, respectively. Then, we combine
these three BBAs (i.e., mS1 , mS2 and mS3 ). The combined
BBA is represented by m. The combined BBAs and the
pignistic probabilities are listed in the Table XII and Table
XIII, respectively. We just list the corresponding BBAs for
α = 0, 0.3, 0.8 and 1.

In the Table XIII, all the classification results are θ2 and
are correct. When α is given from 0 to 1, mS1

({θ2}) and
mS2

({θ2}) are decreasing in the Table X and Table XI. With
the increasing value of α, mS1

and mS2
are more close to

mmax (i.e., the BBA obtained by using “Tmax” or the BBA
obtained when α = 1), which is the reason of the decreasing
value of BetP ({θ2}) in the Table XIII.

VI. CONCLUSIONS

In this paper, we have proposed two approaches with a
user-specified weighting factor to transform a given FMF into
a trade-off BBA. These two approaches are both effective
approaches for obtaining a trade-off BBA. The users can
transform a given FMF into a BBA by their preferred ap-
proach. With the cardinality of FOD increasing, the computa-
tional complexity of the optimization will become exponential
growth. The reason for this is the structure of the belief
functions. By using the user-specified weighting factor to
influence how close the trade-off BBA is to each of the two
BBAs obtained by solving the uncertainty maximization and
minimization. The example of using our transformations in
the practical application is provided. The numerical examples
indicate that the uncertainty of the obtained BBA is between
the minimum and maximal uncertainties. In a future work, we
will try to use and compare different types of the distance
of evidence as objective function to expect a better trade-off
BBA.
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techniques for the transformation of fuzzy sets into random sets,” Fuzzy
Sets and Systems, vol. 159, pp. 270-288, February 2008.

[7] D. Han, C. Han and Y. Deng, “Novel Approaches for the Transformation
of Fuzzy Membership Function into Basic Probability Assignment based
on Uncertainty Optimization,” International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, vol. 21, pp. 289-322, 2013.

[8] Y. Yang, X. R. Li and D. Han, “An improved α-cut approach to
transforming fuzzy membership function into basic belief assignment,”
Chinese Journal of Aeronautics, vol. 29, pp.1042-1051, August 2016.

[9] T. Ma, F. Xiao,“An Improved Method to Transform Triangular Fuzzy
Number Into Basic Belief Assignment in Evidence Theory,” IEEE
Access, vol 7, pp. 25308-25322, February 2019.

[10] R. Ilin, E. Blasch, “Information Fusion with Belief Functions: a Com-
parison of Proportional Conflict Redistribution PCR5 and PCR6 Rules
for Networked Sensors,” International Conference on Information Fusion
IEEE: Washington, DC, USA 2015: 2084-2091.

[11] F. Smarandache, J. Dezert, “On the consistency of PCR6 with the
averaging rule and its application to probability estimation,” Proceedings
of the 16th International Conference on Information Fusion IEEE:
Istanbul, Turkey, 2013: 1119-1126.
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