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Abstract—In this paper we present a simple formulation of
the Generalized Bayes’ Theorem (GBT) which extends Bayes’
theorem in the framework of belief functions. We also present
the condition under which this new formulation is valid. We
illustrate our theoretical results with simple examples.
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I. INTRODUCTION

Based on Dempster’s works [1], [2], Shafer did introduce
Belief Functions (BF) in 1976 to model the epistemic uncer-
tainty1 and to reason under uncertainty [3] which is referred
as Dempster-Shafer Theory (DST) in the literature. Belief
functions are mathematically well defined and they are very
appealing from the theoretical standpoint because of their
good ability to model uncertainty interpreted as imprecise
probability measures in Dempster’s original works.

From the end of 1970’s the DST has however been cast in
doubts because Dempster’s rule of combination of Basic Belief
Assignments (BBAs) yields counter intuitive results not only
in high conflicting situations but also in low conflicting cases
as well [4]–[6], and Shafer’s conditioning formulas based on
Dempster’s rule are not consistent with conditional probability
calculus [7], [8]. Discussions on the validity of DST can be
found, for instance, in [4], [5], [9]–[13]. These two major
concerns make DST quite risky for applications involving
randomness and epistemic uncertainties and it should be
replaced by better techniques to reason under uncertainty with
belief functions.

In 2018 we did establish in [8], [14] two new important gen-
eral results for reasoning with belief functions: the Total Belief
Theorem (TBT), and the Generalized Bayes’ Theorem (GBT).
TBT and GBT generalize the well-known Total Probability
Theorem (TPT) and Bayes’ Theorem (BT) of the Probability
Theory (PT). Thanks to these new theorems we have now in
hands a generalized Bayesian inference mechanism for work-
ing with imprecise probability measures in the belief functions
framework. Similarly to the probability theory requiring a
good estimation of pdf (or pmf) involved in Bayes’ formula to
make a good inference, the major difficulty for applying GBT
is the knowledge (or good estimation) of all2 BBAs required in

1Also called sometimes the cognitive uncertainty by some authors.
2possibly joint BBAs if we work on Cartesian product spaces [8].

GBT. For a given size of frame of discernment, GBT requires
more computations than Bayes formula (if we would prefer to
work with probabilities) because we need to work with BBAs
defined on the powerset of the frame of discernment.

The general formulation of GBT presented in details in
[8] is not easy to apply and that is why we present in this
paper a simpler and more convenient formulation of GBT
providing elegant and useful mathematical expressions. The
obtention of these new formulas of GBT are established from
a dichotomous partitioning of the frame of discernment.

This paper is organized as follows. After a short reminder of
basics of belief functions in Section II and their constructions
based on Dempster’s multi-valued mapping, we present briefly
the Total Belief Theorem and Fagin-Halpern conditioning in
Section III, and the Generalized Bayes Theorem in Section IV.
In section V we establish the Simplified GBT (SGBT) drawn
from GBT for working with a dichotomous partitioning of the
frame of discernment. Section VI presents and discusses two
examples of SGBT results. Section VII concludes this paper.

II. BASICS OF BELIEF FUNCTIONS

A. Basic belief assignment

We consider a finite discrete frame of discernement (FoD)
Θ = {θ1, θ2, . . . , θn}, with n > 1, and where all exhaustive
and exclusive elements of Θ represent the set of the potential
solutions of the problem under concern. The set of all subsets
of Θ (including the empty set ∅, and Θ) is the power-set of Θ
denoted by 2Θ. The number of elements (i.e. the cardinality)
of 2Θ is 2|Θ|. A Basic Belief Assignment (BBA) associated
with a given source of evidence is defined as the mapping
m(·) : 2Θ → [0, 1] satisfying the conditions m(∅) = 0 and∑

A∈2Θ m(A) = 1. The quantity m(A) is the mass of belief
for subset A committed by the Source of Evidence (SoE).

B. Focal elements
A focal element X of a BBA m(·) is an element of 2Θ

such that m(X) > 0. Note that the empty set ∅ is not a
focal element of a BBA because m(∅) = 0 (closed-world
assumption of Shafer’s model for the FoD). The set of all
focal elements of m(·) is denoted

FΘ(m) , {X ⊆ Θ|m(X) > 0} = {X ∈ 2Θ|m(X) > 0} (1)



The set of focal elements of m(·) included in A ⊆ Θ is
denoted, where , means equal by definition, by

FA(m) , {X ∈ FΘ(m)|X ∩A = X} (2)

FΘ(m) can be partitioned as {FA(m),FĀ(m),FA∗(m)} with

FA∗(m) , FΘ(m)−FA(m)−FĀ(m) (3)

which represents the set of focal elements of m(·) which are
not subsets of A, and not subsets of the complement of A in
Θ which is Ā , Θ − {A}. The minus symbol in Θ − {A}
denotes the set difference operator.

C. Belief, plausibility and uncertainty

Belief and plausibility functions are defined as3

Bel(A) ,
∑

X∈2Θ

X⊆A

m(X) =
∑

X∈FΘ(m)
X⊆A

m(X) =
∑

X∈FA(m)

m(X)

(4)

Pl(A) ,
∑

X∈2Θ

X∩A̸=∅

m(X) (5)

=
∑

X∈FΘ(m)
X∩A̸=∅

m(X) = 1−
∑

X∈FĀ(m)

m(X) (6)

= 1− Bel(Ā). (7)

The length of the belief interval [Bel(A), P l(A)] is usually
called by abuse of terminology the uncertainty on A com-
mitted by the SoE. In fact it represents the imprecision on
the (possibly subjective) probability of A granted by the SoE
which provides the BBA m(·). We denote it U(A∗), and it is
defined as

U(A∗) , Pl(A)−Bel(A) =
∑

X∈FA∗ (m)

m(X) (8)

If all the elements of FΘ(m) are singletons, m(·) is called
a Bayesian BBA [3], and its corresponding Bel(·) and Pl(·)
functions are homogeneous to a same (subjective) probability
measure P (·). In this case FA∗(m) = FĀ∗(m) = ∅. Shafer
did prove in [3] (p.39) that m(·), Bel(·) and Pl(·) are one-
to-one, and for any A ⊆ Θ, m(·) is obtained from Bel(·) by
Möbius inverse formula

m(A) =
∑

B⊆A⊆Θ

(−1)
|A−B|

Bel(B) (9)

D. Interpretation and construction of belief functions

In original Dempster’s works [1] belief Bel(A) and plausi-
bility Pl(A) are interpreted as lower and upper bounds of an
unknown probability P (A), and so Bel(A) ≤ P (A) ≤ Pl(A).
The construction of m(A), Bel(A) and Pl(A) are mathemat-
ically well defined from an underlying random variable with a
known probability measure and a given multi-valued mapping
as follows:

3By convention, a sum of non existing terms (if it occurs in formulas
depending on the given BBA) is always set to zero.

• Consider a random variable x with its set of possible
values in X = {x1, . . . , xm} with known probabilities
pj = P (x = xj), j = 1, . . . ,m;

• Consider a FoD Θ = {θ1, . . . , θn} for the variable θ
under concern;

• Consider/learn a multi-valued mapping Γ : X 7→ 2Θ such
that if x = xi then θ ∈ A, so that A = Γ(xi) ∈ 2Θ;

• The belief (lower proba) and plausibility (upper proba)
that θ ∈ A are given by [1]

P∗(A) = Bel(A) = Bel(θ ∈ A)

= P ({x ∈ X |Γ(x) ̸= ∅,Γ(x) ⊆ A}) (10)
P ∗(A) = Pl(A) = Pl(θ ∈ A)

= P ({x ∈ X |Γ(x) ∩A ̸= ∅}) (11)

The mass of belief that θ belongs to A is given by

m(A) = P ({x ∈ X |Γ(x) ̸= ∅,Γ(x) = A}) (12)

Example for multi-valued mapping: Paul has been killed
and Police asks a witness W : Who did you see killing Paul?
Witness answer is Mary. To estimate the confidence of this
testimony report one has to consider if this witness W is more
or less precise when he is reliable, or if he is not reliable.
So the state of W can belong to X = {x1, x2, x3} where
x1 means W is precise, x2 means W is approximate, and
x3 means W is not reliable. We suppose that the a priori
probabilities of the state of W are P (x1) = 0.3, P (x2) = 0.1
and P (x3) = 0.6. As FoD Θ, we consider a set of three
suspects that includes the unknown killer

Θ = {θ1 = Mary, θ2 = Peter, θ3 = John}

If we define the multivalued mapping Γ(.) as follows

Γ(x1 = W is precise) = θ1

Γ(x2 = W is approximate) = {θ1, θ2}
Γ(x3 = W is not reliable) = {θ1, θ2, θ3} = Θ

Γ(x1 = W is precise) = θ1 means that if W is precise then
Mary has killed Paul. Γ(x2 = W is approximate) = {θ1, θ2}
means that if W is less precise then Mary or Peter have killed
Paul. Γ(x3 = W is not reliable) = Θ means that if W is not
reliable then we have no useful information about the killer.

Applying formulas (10) and (11), one gets

Bel(∅) = P ({x|Γ(x) ⊆ ∅}) = P (∅) = 0 = 1− Pl(Θ)

Bel(θ1) = P ({x|Γ(x) ⊆ θ1})
= P (x1) = 0.3 = 1− Pl(θ2 ∪ θ3)

Bel(θ2) = P ({x|Γ(x) ⊆ θ2})
= 0 = 1− Pl(θ1 ∪ θ3)

Bel(θ3) = P ({x|Γ(x) ⊆ θ3})
= 0 = 1− Pl(θ1 ∪ θ2)

Bel(θ1 ∪ θ2) = P ({x|Γ(x) ⊆ θ1 ∪ θ2}) = P ({x1, x2})
= P (x1) + P (x2) = 0.4 = 1− Pl(θ3)



Bel(θ1 ∪ θ3) = P ({x|Γ(x) ⊆ θ1 ∪ θ3})
= P (x1) = 0.3 = 1− Pl(θ2)

Bel(θ2 ∪ θ3) = P ({x|Γ(x) ⊆ θ2 ∪ θ3})
= 0 = 1− Pl(θ1)

Bel(Θ) = P ({x|Γ(x) ⊆ Θ}) = P ({x1, x2, x3})
= P (x1) + P (x2) + P (x3) = 1 = 1− Pl(∅)

Pl(∅) = P ({x|Γ(x) ∩ ∅ ̸= ∅}) = P (∅) = 0 = 1−Bel(Θ)

Pl(θ1) = P (x|Γ(x) ∩ θ1 ̸= ∅}) = P ({x1, x2, x3})
= P (x1) + P (x2) + P (x3) = 1 = 1−Bel(θ2 ∪ θ3)

Pl(θ2) = P ({x|Γ(x) ∩ θ2 ̸= ∅}) = P ({x2, x3}
= P (x2) + P (x3) = 0.7 = 1−Bel(θ1 ∪ θ3)

Pl(θ3) = P ({x|Γ(x) ∩ θ3 ̸= ∅})
= P (x3) = 0.6 = 1−Bel(θ1 ∪ θ2)

Pl(θ1 ∪ θ2) = P ({x|Γ(x) ∩ (θ1 ∪ θ2) ̸= ∅}) = P ({x1, x2, x3})
= P (x1) + P (x2) + P (x3) = 1 = 1−Bel(θ3)

Pl(θ1 ∪ θ3) = P ({x|Γ(x) ∩ (θ1 ∪ θ3) ̸= ∅}) = P ({x1, x2, x3})
= P (x1) + P (x2) + P (x3) = 1 = 1−Bel(θ2)

Pl(θ2 ∪ θ3) = P ({x|Γ(x) ∩ (θ2 ∪ θ3) ̸= ∅}) = P ({x2, x3})
= P (x2) + P (x3) = 0.7 = 1−Bel(θ1)

Pl(Θ) = P ({x|Γ(x) ∩ (θ1 ∪ θ2 ∪ θ3) ̸= ∅}) = P ({x1, x2, x3})
= P (x1) + P (x2) + P (x3) = 1 = 1−Bel(∅)

In applying formula (12), one gets finally the BBA

m(∅) = P ({x|Γ(x) = ∅}) = P (∅) = 0

m(θ1) = P ({x|Γ(x) = θ1}) = P (x1) = 0.3

m(θ2) = P ({x|Γ(x) = θ2}) = 0

m(θ3) = P ({x|Γ(x) = θ3}) = 0

m(θ1 ∪ θ2) = P ({x|Γ(x) = θ1 ∪ θ2}) = P (x2) = 0.1

m(θ1 ∪ θ3) = P ({x|Γ(x) = θ1 ∪ θ3}) = 0

m(θ2 ∪ θ3) = P ({x|Γ(x) = θ2 ∪ θ3}) = 0

m(Θ) = P ({x|Γ(x) = Θ}) = P (x3) = 0.6

Some authors have proposed different interpretations of belief
functions to escape the probabilistic framework introduced by
Dempster to save DST of its inherent contradiction mainly
due to the choice of Dempster’s rule of combination and
Shafer’s conditioning approach based on Dempster’s rule. The
most important attempt has been done in 1990’s by Smets in
[15] with his axiomatic Transferable Belief Model (TBM).
It however remains disputable because of the ambiguous (or
inconsistent/double) interpretation of the empty set.

In this paper we adopt the original Dempster’s interpretation
and construction of belief functions because it is mathemati-
cally well defined, clear and consistent.

III. TBT AND FAGIN-HALPERN CONDITIONING

A. Total Belief Theorem

In [8], we have generalized the Total Probability Theorem
(TPT) [16] for working with belief functions and we proved
the following simple and important theorem.

Total Belief Theorem (TBT): Let’s consider a FoD Θ with
|Θ| ≥ 2 elements and a BBA m(·) defined on 2Θ with
the set of focal elements FΘ(m). For any chosen partition
{A1, . . . , Ak} of Θ and for any B ⊆ Θ, one has

Bel(B) =
∑

i=1,...,k

Bel(Ai ∩B) + U(A∗ ∩B) (13)

where

U(A∗ ∩B) ,
∑

X∈FA∗ (m)|X∈FB(m)

m(X) (14)

and FA∗(m) , FΘ(m)−FA1
(m)− . . .−FAk

(m).

Proof of TBT: see [8], with example.

From (14), one sees that U(A∗ ∩B) ∈ [0, 1]. If one applies
TBT with B = Θ, we get

∑
i=1,...,k Bel(Ai) + U(A∗) = 1

where U(A∗) ,
∑

X∈FA∗ (m) m(X). This equality corre-
sponds to TPT if U(A∗) = 0 (i.e. there is no imprecision
on the value of probabilities of Ai, i = 1, . . . , k).

In spite of its apparent simplicity the TBT is very important
because it provides a strong theoretical justification of Fagin-
Halpern (FH) belief and plausibility conditioning formulas
[7], [17] proposed in 1990’s as a very serious alternative to
Shafer’s conditioning formulas. Indeed, it can be easily proved
with a simple counter-example (e.g. Ellsberg’s urn example
- see [8]) that conditioning formulas established by Shafer
from Dempster’s rule of combination are not consistent with
bounds of the conditional probabilities. The main advantage
of FH conditioning formulas is that they provide exact bounds
of imprecise conditional probability and they coincide exactly
with the conditional probability when the belief functions
involved in FH formulas are Bayesian.

B. Fagin-Halpern belief conditioning formulas

In [8] we have proved that the TBT justifies the following
FH conditioning formulas (assuming Bel(B) > 0)

Bel(A|B) =
Bel(A ∩B)

Bel(A ∩B) + Pl(Ā ∩B)
(15)

Pl(A|B) =
Pl(A ∩B)

Pl(A ∩B) +Bel(Ā ∩B)
(16)

Fagin and Halpern in [7] proved that Bel(·|B) is a true
belief function and so FH belief conditioning is an appealing
solution for belief and plausibility conditioning. A proof that
FH formulas are belief functions has been also given by
Sundberg and Wagner in [18]. Hence TBT provides a complete
justification of FH formulas which offers a full compatibility
with the conditional probability calculus [18], [19].

Similarly, by interchanging notations A and B and assuming
Bel(A) > 0, the previous FH formulas can be expressed as

Bel(B|A) =
Bel(A ∩B)

Bel(A ∩B) + Pl(B̄ ∩A)
(17)

Pl(B|A) =
Pl(A ∩B)

Pl(A ∩B) +Bel(B̄ ∩A)
(18)



When m(·) is Bayesian Bel(·) = Pl(·) = P (·), and so
Pl(A∩B) = Bel(A∩B) = P (A∩B), Pl(Ā∩B) = Bel(Ā∩
B) = P (Ā∩B) and Pl(B̄ ∩A) = Bel(B̄ ∩A) = P (B̄ ∩A).
FH formulas above reduce to

Bel(A|B) = Pl(A|B) =
P (A ∩B)

P (A ∩B) + P (Ā ∩B)

From TPT [16]) P (A ∩B) + P (Ā ∩B) = P (B), thus

Bel(A|B) = Pl(A|B) = P (A ∩B)/P (B) = P (A|B) (19)

Similarly, one can also easily verify that

Bel(B|A) = Pl(B|A) = P (A ∩B)/P (A) = P (B|A) (20)

Hence from (19) and (20) one obtains the well-known equality

P (A ∩B) = P (A|B)P (B) = P (B|A)P (A) (21)

IV. GENERALIZED BAYES’ THEOREM

In [8] we did also establish from TBT the following
Generalized Bayes’ Theorem (GBT) and lemma.

Generalized Bayes’ Theorem (GBT): For any partition
{A1, . . . , Ak} of a FoD Θ, any belief function Bel(·) : 2Θ 7→
[0, 1], and any subset B of Θ with Bel(B) > 0, one has for
i ∈ {1, . . . , k}

Bel(Ai|B) =
Bel(B|Ai)q(Ai, B)∑k

i=1 Bel(B|Ai)q(Ai, B) + U((Āi ∩B)
∗
)

(22)

where

q(Ai, B) , Bel(Ai) + U((B̄ ∩Ai)
∗
)− U(B∗ ∩Ai) (23)

with

U((B̄ ∩Ai)
∗
) , Pl(B̄ ∩Ai)−Bel(B̄ ∩Ai) (24)

U(B∗ ∩Ai) ,
∑

X∈FB∗ (m)|X∈FAi
(m)

m(X) (25)

and where

U((Āi ∩B)
∗
) , Pl(Āi ∩B)−Bel(Āi ∩B) (26)

Lemma 1: GBT degenerates to Bayes’ theorem formula if
Bel(·) is a Bayesian BF, that is

P (Ai|B) =
P (B|Ai)P (Ai)∑k
i=1 P (B|Ai)P (Ai)

(27)

V. SIMPLIFIED FORMULATION OF GBT

In this section we establish a simplified formulation of
GBT which will be denoted SGBT for short in the sequel.
Because the GBT formula (22) is not very easy to use and
quite difficult to compute in applications, we propose a
more useful simplified formulation of GBT which is drawn
from (22) when considering only a simple dichotomous
partitioning of the frame of discernment Θ. More precisely
we consider a partition {A, Ā} of Θ with A ⊆ Θ and Ā is the
complement of A in Θ, that is Ā = Θ−{A}. We establish the
following theorem which is the main contribution of this paper.

Simplified Generalized Bayes’ Theorem (SGBT): For any
partition {A, Ā} of a FoD Θ, any belief function Bel(·) :
2Θ 7→ [0, 1], and any subset B of Θ, one has

• If Pl(A ∩ B̄) > 0 (Condition C1)

Bel(A|B) =
Bel(B|A)Pl(A ∩ B̄)

Bel(B|A)Pl(A ∩ B̄) + Pl(B̄|A)Pl(Ā ∩B)
(28)

• If Bel(A ∩ B̄) > 0 (Condition C2)

Pl(A|B) =
Pl(B|A)Bel(A ∩ B̄)

Pl(B|A)Bel(A ∩ B̄) +Bel(B̄|A)Bel(Ā ∩B)
(29)

and if the denominators involved in formulas (28) and (29)
are strictly positive.

Note that if condition C2 is satisfied then the condition C1

is also satisfied, but not necessarily the converse.

Proof of SGBT: From GBT formula (22), we replace the terms
by their expressions to obtain SGBT formulas (28)–(29). For
notation convenience, we denote A1 , A and A2 , Ā. Hence
the GBT formula reduces to

Bel(A|B) =
Num

Den

=
Bel(B|A1)q(A1, B)∑2

i=1 Bel(B|Ai)q(Ai, B) + U((Ā1 ∩B)
∗
)

where

Num , Bel(B|A1)q(A1, B)

Den , Bel(B|A1)q(A1, B)

+Bel(B|A2)q(A2, B) + U((Ā1 ∩B)
∗
)

and

q(A1, B) = Bel(A1) + U((B̄ ∩A1)
∗
)− U(B∗ ∩A1)

= Bel(A1) + Pl(B̄ ∩A1)−Bel(B̄ ∩A1)︸ ︷︷ ︸
U((B̄∩A1)

∗)

−U(B∗ ∩A1)

Because FB∗(m) = FΘ(m)−FB(m)−FB̄(m) one has

U(B∗ ∩A1) =
∑

X∈FB∗ (m)|X∈FA1
(m)

m(X)

=
∑

X∈FΘ(m)−FB(m)−FB̄(m)|X∈FA1
(m)

m(X)

=
∑

X∈FΘ(m)|X∈FA1
(m)

m(X)

−
∑

X∈FB(m)|X∈FA1
(m)

m(X)

−
∑

X∈FB̄(m)|X∈FA1
(m)

m(X)

= Bel(A1)−Bel(A1 ∩B)−Bel(A1 ∩ B̄)

Therefore

q(A1, B) = Bel(A1) + Pl(B̄ ∩A1)−Bel(B̄ ∩A1)︸ ︷︷ ︸
U((B̄∩A1)

∗)

− [Bel(A1)−Bel(A1 ∩B)−Bel(A1 ∩ B̄)]︸ ︷︷ ︸
U(B∗∩A1)

= Pl(A1 ∩ B̄) +Bel(A1 ∩B)



Similarly, one has

q(A2, B) = Bel(A2) + U((B̄ ∩A2)
∗
)− U(B∗ ∩A2)

= Bel(A2) + Pl(B̄ ∩A2)−Bel(B̄ ∩A2)︸ ︷︷ ︸
U((B̄∩A2)

∗)

− [Bel(A2)−Bel(A2 ∩B)−Bel(A2 ∩ B̄)]︸ ︷︷ ︸
U(B∗∩A2)

= Pl(A2 ∩ B̄) +Bel(A2 ∩B)

The value U((Ā1 ∩B)
∗
) is given by

U((Ā1 ∩B)
∗
) = Pl(Ā1 ∩B)−Bel(Ā1 ∩B)

Therefore the numerator and denominator of Bel(A|B) are

Num , Bel(B|A1)q(A1, B)

= Bel(B|A1)[Pl(A1 ∩ B̄) +Bel(A1 ∩B)]

= Bel(B|A)[Pl(A ∩ B̄) +Bel(A ∩B)]

Den , Bel(B|A1)q(A1, B) +Bel(B|A2)q(A2, B)

+ U((Ā1 ∩B)
∗
)

= Bel(B|A1)[Pl(A1 ∩ B̄) +Bel(A1 ∩B)]

+Bel(B|A2)[Pl(A2 ∩ B̄) +Bel(A2 ∩B)]

+ [Pl(Ā1 ∩B)−Bel(Ā1 ∩B)]

= Bel(B|A)[Pl(A ∩ B̄) +Bel(A ∩B)]

+Bel(B|Ā)[Pl(Ā ∩ B̄) +Bel(Ā ∩B)]

+ [Pl(Ā ∩B)−Bel(Ā ∩B)]

Because Bel(B|A) = Bel(A∩B)/[Bel(A∩B)+Pl(A∩B̄)]
and Bel(B|Ā) = Bel(Ā ∩ B)/[Bel(Ā ∩ B) + Pl(Ā ∩ B̄)]
based on FH formulas, after basic algebra one can verify that
Num = Bel(A∩B) and Den = Bel(A∩B) +Pl(Ā∩B).

Because Bel(B|Ā) = Bel(Ā∩B)/[Bel(Ā∩B)+Pl(Ā+B̄)],
the term Bel(B|Ā)[Pl(Ā∩B̄)+Bel(Ā∩B)] involved in Den
equals Bel(Ā ∩B). Hence the expression of Den reduces to

Den = Bel(B|A)[Pl(A ∩ B̄) +Bel(A ∩B)]

+Bel(B|Ā)[Pl(Ā ∩ B̄) +Bel(Ā ∩B)]︸ ︷︷ ︸
Bel(Ā∩B)

+ [Pl(Ā ∩B)−Bel(Ā ∩B)]

= Bel(B|A)[Pl(A ∩ B̄) +Bel(A ∩B)] + Pl(Ā ∩B)

If Pl(B̄|A) = Pl(A∩B̄)/[Pl(A∩B̄)+Bel(A∩B)] > 0 and
if we multiply the expressions of Num and Den by Pl(B̄|A)
one gets

Bel(A|B) =
Num

Den
=

Num · Pl(B̄|A)

Den · Pl(B̄|A)

=
Num · Pl(A∩B̄)

Pl(A∩B̄)+Bel(A∩B)

Den · Pl(A∩B̄)
Pl(A∩B̄)+Bel(A∩B)

=
Bel(B|A)Pl(A ∩ B̄)

Bel(B|A)Pl(A ∩ B̄) + Pl(B̄|A)Pl(Ā ∩B)

which corresponds exactly to the SGBT formula (28).

The SGBT formula (29) can also be obtained similarly from
GBT by expressing at first Bel(Ā|B) = Bel(A2|B) as

Bel(Ā|B) =
Num′

Den′ =
Bel(B|A2)q(A2, B)∑2

i=1 Bel(B|Ai)q(Ai, B) + U((Ā2 ∩B)
∗
)

=
Bel(B|A2)q(A2, B)

Bel(B|A1)q(A1, B) +Bel(B|A2)q(A2, B) + U((Ā2 ∩B)
∗
)

where4

Num′ , Bel(B|A2)q(A2, B)

= Bel(B|Ā)[Pl(Ā ∩ B̄) +Bel(Ā ∩B)]

= Bel(Ā ∩B)

Den′ , Bel(B|A1)q(A1, B) +Bel(B|A2)q(A2, B)

+ U((Ā2 ∩B)
∗
)

= Bel(B|A)[Pl(A ∩ B̄) +Bel(A ∩B)]

+Bel(B|Ā)[Pl(Ā ∩ B̄) +Bel(Ā ∩B)]

+ [Pl(A ∩B)−Bel(A ∩B)]

= Bel(Ā ∩B) + Pl(A ∩B)

If Bel(B̄|A) = Bel(A∩B̄)/[Bel(A∩B̄)+Pl(A∩B)] > 0
and if we multiply Num′ and Den′ by Bel(B̄|A) one gets5

Bel(Ā|B) =
Num′

Den′ =
Num′ ·Bel(B̄|A)

Den′ ·Bel(B̄|A)

=
Bel(Ā ∩B)Bel(B̄|A)

Bel(Ā ∩B)Bel(B̄|A) + Pl(A ∩B)Bel(B̄|A)

=
Bel(Ā ∩B)Bel(B̄|A)

Bel(Ā ∩B)Bel(B̄|A) + Pl(B|A)Bel(A ∩ B̄)

Hence

Pl(A|B) = 1−Bel(Ā|B)

=
Pl(B|A)Bel(A ∩ B̄)

Pl(B|A)Bel(A ∩ B̄) +Bel(B̄|A)Bel(Ā ∩B)

which corresponds to SGBT formula (29).
Therefore, one has proved that expression (28) can be

obtained from GBT if Pl(A ∩ B̄) > 0, and expression (29)
can be obtained from GBT if Bel(A∩B̄) > 0. This completes
the proof of SGBT.

Lemma 2: SGBT formulas (28) and (29) coincide with condi-
tional probability formula P (A|B) = P (B|A)P (A)/P (B) =
P (A ∩B)/P (B) if the belief function is Bayesian.

Proof: Replacing Bel(·) and Pl(·) by P (·) in (28) and
(29) we get P (A|B) = P (B|A)P (A∩B̄)

P (B|A)P (A∩B̄)+P (B̄|A)P (Ā∩B)
=

P (B|A)P (A∩B̄)
P (A∩B)

P (A)
P (A∩B̄)+

P (A∩B̄)
P (A)

P (Ā∩B)
= P (B|A)P (A)

P (A∩B)+P (Ā∩B)
=

P (B|A)P (A)
P (B) because P (A ∩ B) + P (Ā ∩ B) = P (B). This

completes the proof of lemma 2.

In appendix we also prove that Bel(A|B) ≤ Pl(A|B) when
using SGBT formulas (28) and (29).

4Here U((Ā2 ∩B)
∗
) = Pl(Ā2 ∩ B)− Bel(Ā2 ∩ B) = Pl(A ∩ B)−

Bel(A ∩B) because Ā2 = ¯̄A = A.
5From FH formulas Pl(A ∩B)Bel(B̄|A) = Pl(B|A)Bel(A ∩ B̄).



VI. EXAMPLES

In this section we give two simple interesting examples of
application of SGBT. Example 1 shows that GBT and SGBT
works fine because conditions C1 and C2 are satisfied, whereas
the example 2 shows that GBT works fine but SGBT doesn’t
work because of violation of condition C1.

A. Example 1

We consider Θ = {x1, x2, x3, x4} and the BBA chosen as
follows m(x1) = 0.05, m(x2) = 0.03, m(x1 ∪ x2) = 0.02,
m(x3) = 0.04, m(x4) = 0.06, m(x3 ∪ x4) = 0.10, m(x2 ∪
x3) = 0.30 and m(x1∪x2∪x3∪x4) = m(Θ) = 0.40. We also
consider the partition Θ = {A = {x1, x2}, Ā = {x3, x4}} and
the subset B = {x2, x3}. Hence one has

Θ = {
B︷ ︸︸ ︷

x1, x2, x3, x4︸ ︷︷ ︸ ︸ ︷︷ ︸
A Ā

}

with A = {x1, x2} = x1 ∪ x2, Ā = {x3, x4} = x3 ∪ x4,
B = {x2, x3} = x2 ∪ x3, and B̄ = {x1, x4} = x1 ∪ x4.

The set of focal elements in this example is

FΘ(m) = {x1, x2, x1 ∪ x2, x3, x4, x3 ∪ x4,

x2 ∪ x3, x1 ∪ x2 ∪ x3 ∪ x4}

The sets of focal elements included in A and in Ā are
FA(m) = {x1, x2, x1 ∪x2}, and FĀ(m) = {x3, x4, x3 ∪x4},
and one has FA∗(m) = FΘ(m)−FA(m)−FĀ(m) = {x2 ∪
x3, x1∪x2∪x3∪x4}. The sets of focal elements included in B
and in B̄ are FB(m) = {x2, x3, x2∪x3}, FB̄(m) = {x1, x4},
and one has FB∗(m) = FΘ(m) − FB(m) − FB̄(m) =
{x1 ∪x2, x3 ∪x4, x1 ∪x2 ∪x3 ∪x4}. From the BBA m(·) we
get the following belief and plausibility values listed in Table
I which are useful for making derivations of FH, GBT and
SGBT formulas.

Subsets of Θ Bel(·) Pl(·)
A = x1 ∪ x2 Bel(A) = 0.10 Pl(A) = 0.80
Ā = x3 ∪ x4 Bel(Ā) = 0.20 Pl(Ā) = 0.90
B = x2 ∪ x3 Bel(A) = 0.37 Pl(B) = 0.89
B̄ = x1 ∪ x4 Bel(B̄) = 0.11 Pl(B̄) = 0.63
A ∩B = x2 Bel(A ∩B) = 0.03 Pl(A ∩B) = 0.75
A ∩ B̄ = x1 Bel(A ∩ B̄) = 0.05 Pl(A ∩ B̄) = 0.47
Ā ∩B = x3 Bel(Ā ∩B) = 0.04 Pl(Ā ∩B) = 0.84
Ā ∩ B̄ = x4 Bel(Ā ∩ B̄) = 0.06 Pl(Ā ∩ B̄) = 0.56

Table I
BELIEF AND PLAUSIBILITY VALUES USED FOR THE DERIVATIONS.

• Application of FH formulas: with (15)-(16) one gets

Bel(A|B) =
Bel(A ∩B)

Bel(A ∩B) + Pl(Ā ∩B)
=

0.03

0.03 + 0.84

≈ 0.03448275

Pl(A|B) =
Pl(A ∩B)

Pl(A ∩B) +Bel(Ā ∩B)
=

0.75

0.75 + 0.04

≈ 0.94936708

With FH formulas (17)-(18), one gets

Bel(B|A) =
Bel(A ∩B)

Bel(A ∩B) + Pl(B̄ ∩A)
=

0.03

0.03 + 0.47

= 0.06

Pl(B|A) =
Pl(A ∩B)

Pl(A ∩B) +Bel(B̄ ∩A)
=

0.75

0.75 + 0.05

= 0.9375

• Application of SGBT formulas: with (28) and (29) one gets6

Bel(A|B) =
Bel(B|A)Pl(A ∩ B̄)

Bel(B|A)Pl(A ∩ B̄) + Pl(B̄|A)Pl(Ā ∩B)

=
Bel(B|A)Pl(A ∩ B̄)

Bel(B|A)Pl(A ∩ B̄) + [1−Bel(B|A)]Pl(Ā ∩B)

=
0.06 · 0.47

0.06 · 0.47 + [1− 0.06]0.84
=

0.0282

0.0282 + 0.7896

≈ 0.03448275

Pl(A|B) =
Pl(B|A)Bel(A ∩ B̄)

Bel(B̄|A)Bel(Ā ∩B) + Pl(B|A)Bel(A ∩ B̄)

=
Pl(B|A)Bel(A ∩ B̄)

[1− Pl(B|A)]Bel(Ā ∩B) + Pl(B|A)Bel(A ∩ B̄)

=
0.9375 · 0.05

[1− 0.9375]0.04 + 0.9375 · 0.05

=
0.046875

0.0025 + 0.046875
≈ 0.94936708

• Application of GBT formula (22): we denote A1 = A =
x1 ∪ x2 and A2 = Ā = x3 ∪ x4. Here GBT formula (22)
becomes

Bel(A|B) =
Bel(B|A1)q(A1, B)∑2

i=1 Bel(B|Ai)q(Ai, B) + U((Ā1 ∩B)
∗
)

where Bel(B|A1) and Bel(B|A2) terms are given by

Bel(B|A1) ≡ Bel(B|A) =
Bel(A ∩B)

Bel(A ∩B) + Pl(B̄ ∩A)

=
0.03

0.03 + 0.47
= 0.06

Bel(B|A2) ≡ Bel(B|Ā) =
Bel(Ā ∩B)

Bel(Ā ∩B) + Pl(B̄ ∩ Ā)

=
0.04

0.04 + 0.56
≈ 0.06666667

The terms q(A1, B) and q(A2, B) are given by

q(A1, B) = Bel(A1) + U((B̄ ∩A1)
∗
)− U(B∗ ∩A1)

= 0.10 + 0.42− 0.02 = 0.50

q(A2, B) = Bel(A2) + U((B̄ ∩A2)
∗
)− U(B∗ ∩A2)

= 0.20 + 0.50− 0.10 = 0.60

6It is worth noting that conditions C1 and C2 are satisfied in this example
because Pl(A ∩ B̄) = 0.47 and Bel(A ∩ B̄) = 0.05.



because

U((B̄ ∩A1)
∗
) = Pl(B̄ ∩A1)−Bel(B̄ ∩A1)

= Pl(B̄ ∩A)−Bel(B̄ ∩A)

= 0.47− 0.05 = 0.42

U(B∗ ∩A1) =
∑

X∈FB∗ (m)|X∈FA1
(m)

m(X)

=
∑

X∈FB∗ (m)|X∈FA(m)

m(X)

= m(x1 ∪ x2) = 0.02

and

U((B̄ ∩A2)
∗
) = Pl(B̄ ∩A2)−Bel(B̄ ∩A2)

= Pl(B̄ ∩ Ā)−Bel(B̄ ∩ Ā)

= 0.56− 0.06 = 0.50

U(B∗ ∩A2) =
∑

X∈FB∗ (m)|X∈FA2
(m)

m(X)

=
∑

X∈FB∗ (m)|X∈FĀ(m)

m(X)

= m(x3 ∪ x4) = 0.10

The value U((Ā1 ∩B)
∗
) involved in the denominator of

Bel(A|B) expression is given by

U((Ā1 ∩B)
∗
) = Pl(Ā ∩B)−Bel(Ā ∩B)

= 0.84− 0.04 = 0.80

Replacing all these values in GBT formula of Bel(A|B) we
get

Bel(A|B) ≡ Bel(A1|B)

=
Bel(B|A1)q(A1, B)∑2

i=1 Bel(B|Ai)q(Ai, B) + U((Ā1 ∩B)
∗
)

≈ 0.06 · 0.50
0.06 · 0.50 + 0.06666667 · 0.60 + 0.80

≈ 0.03

0.870000002
≈ 0.03448275

As shown, Bel(A|B) calculated by GBT and by SGBT
formulas are consistent with the value calculated directly from
FH formulas. For calculating Pl(A|B), we calculate at first
Bel(Ā|B) = Bel(A2|B) and then Pl(A|B) = 1−Bel(Ā|B).
Applying GBT formula for calculating Bel(A2|B), one has

Bel(Ā|B) = Bel(A2|B)

=
Bel(B|A2)q(A2, B)∑2

i=1 Bel(B|Ai)q(Ai, B) + U((Ā2 ∩B)
∗
)

The values of Bel(B|Ai), q(Ai, B) for i = 1, 2 have been
calculated previously and U((Ā2 ∩B)

∗
) is given by

U((Ā2 ∩B)
∗
) = Pl(Ā2 ∩B)−Bel(Ā2 ∩B)

= Pl(A ∩B)−Bel(A ∩B)

= 0.75− 0.03 = 0.72

Therefore,

Bel(Ā|B) ≡ Bel(A2|B)

=
Bel(B|A2)q(A2, B)∑2

i=1 Bel(B|Ai)q(Ai, B) + U((Ā2 ∩B)
∗
)

≈ 0.06666667 · 0.60
0.06 · 0.50 + 0.06666667 · 0.60 + 0.72

≈ 0.040000002

0.790000002
≈ 0.05063292

and finally we get

Pl(A|B) = 1−Bel(Ā|B) ≈ 0.94936708

From this very simple example we have verified that FH
formulas, GBT formula and simplified GBT formula are all
consistent because the conditions C1 and C2 are satisfied.

B. Example 2

We consider the example of [8] (Section VIII). We verify
that SGBT formula (28) works because Bel(B|A1) = 0.0889,
Pl(A1 ∩ B̄) = 0.41, Pl(B̄|A1) = 1 − Bel(B|A1) = 1 −
0.0889 = 0.9111 and Pl(Ā1 ∩B) = 0.54 so that

Bel(A1|B) =
Bel(B|A1)Pl(A1 ∩ B̄)

Bel(B|A1)Pl(A1 ∩ B̄) + Pl(B̄|A1)Pl(Ā1 ∩B)

=
0.0889 · 0.41

0.0889 · 0.41 + 0.9111 · 0.54
= 0.0690

which is the same value of what we get by applying directly
FH formula, or GBT formula (22). The SGBT formula (28)
works because the condition C1 (i.e. Pl(A1∩ B̄) = 0.41 > 0)
is satisfied. Similarly, using (28), one has for Bel(A2|B)

Bel(A2|B) =
Bel(B|A2)Pl(A2 ∩ B̄)

Bel(B|A2)Pl(A2 ∩ B̄) + Pl(B̄|A2)Pl(Ā2 ∩B)

=
0 · 0.43

0 · 0.43 + 1 · 0.80
= 0

which is the same value of what we get by applying directly
FH formula, or GBT formula (22). Here SGBT formula (28)
works because the condition C1 (i.e. Pl(A2∩ B̄) = 0.43 > 0)
is satisfied.

For the value Bel(A3|B) = 0.0625 computed by FH
conditioning formula, or by GBT formula (22) things are
different because when applying SGBT formula (28) we get
0/0 indetermination. Indeed,

Bel(A3|B) =
Bel(B|A3)Pl(A3 ∩ B̄)

Bel(B|A3)Pl(A3 ∩ B̄) + Pl(B̄|A3)Pl(Ā3 ∩B)

=
1 · 0

1 · 0 + 0 · 0.75
=

0

0

So one sees that SGBT formula (28) does not work for
computing Bel(A3|B) in this case because the condition C1

(i.e. Pl(A3 ∩ B̄) > 0) is not satisfied which is normal. In this
case the correct value Bel(A3|B) = 0.0625 must be calculated
by GBT or FH formulas.



Therefore in practice a special attention must always be paid
to conditions C1 and C2 before applying SGBT formulas, and
in case of violation of one of these conditions, one needs to
work back directly with FH or GBT formulas.

VII. CONCLUSION

The main contribution of this paper is the derivation of a
simplified formulation of Generalized Bayes’ Theorem, called
SGBT, which extends Bayesian Theorem in the frame of
belief functions. The simplification is imposed from the fact
that the general formulation of GBT is not easy to apply in
real world applications. It is drawn from GBT for working
with a dichotomous partitioning of the frame of discernment.
The conditions under which this new formulation is valid
are presented. The theoretical results obtained are illustrated
with simple theoretical examples. The challenging question of
application of GBT and SGBT to solve real-world problems
is under investigation.

APPENDIX

A. Proof that Bel(A|B) ≤ Pl(A|B) from SGBT formula

To prove that Bel(A|B) ≤ Pl(A|B) from SGBT formulas
(28)-(29) one needs to prove the following inequality

Bel(B|A)Pl(A ∩ B̄)

Bel(B|A)Pl(A ∩ B̄) + Pl(B̄|A)Pl(Ā ∩B)
≤

Pl(B|A)Bel(A ∩ B̄)

Bel(B̄|A)Bel(Ā ∩B) + Pl(B|A)Bel(A ∩ B̄)

After basic algebraic manipulations on the previous in-
equality, one has to prove if R1 ≤ R2 · R3 · R4. where,
for the notation convenience, R1 = Bel(B|A)/P l(B|A),
R2 = Bel(A ∩ B̄)/P l(A ∩ B̄), R3 = Pl(B̄|A)/Bel(B̄|A)
and R4 = Pl(Ā ∩ B)/Bel(Ā ∩ B). Our proof is done by
contradiction as follows.

Let us assume that R2 ·R3 ·R4 < R1 is valid, that is

Bel(A ∩ B̄)

Pl(A ∩ B̄)︸ ︷︷ ︸
R2

· Pl(B̄|A)

Bel(B̄|A)︸ ︷︷ ︸
R3

· Pl(Ā ∩B)

Bel(Ā ∩B)︸ ︷︷ ︸
R4

<
Bel(B|A)

Pl(B|A)︸ ︷︷ ︸
R1

(30)

Because R2 ≤ 1, one has necessarily R2 ·R3 ·R4 ≤ R3 ·R4,
so we must have (if our assumption is valid) R3 · R4 < R1,
that is

1−Bel(B|A)

1− Pl(B|A)︸ ︷︷ ︸
R3

· Pl(Ā ∩B)

Bel(Ā ∩B)︸ ︷︷ ︸
R4

<
Bel(B|A)

Pl(B|A)︸ ︷︷ ︸
R1

(31)

or equivalently

[1−Bel(B|A)]Pl(B|A) < Bel(B|A)[1−Pl(B|A)]
Bel(Ā ∩B)

Pl(Ā ∩B)︸ ︷︷ ︸
1/R4

Because Bel(Ā ∩B)/P l(Ā ∩B) ≤ 1 then

Bel(B|A)[1−Pl(B|A)]
Bel(Ā ∩B)

Pl(Ā ∩B)︸ ︷︷ ︸
1/R4

≤ Bel(B|A)[1−Pl(B|A)]

So we must have (if our assumption is valid)

[1−Bel(B|A)]Pl(B|A) < Bel(B|A)[1− Pl(B|A)] (32)

which is (after rearranging terms) equivalent to have the
inequality Pl(B|A) < Bel(B|A) satisfied. However, from
Fagin-Halpern definitions of conditional belief function
and properties of belief functions the previous inequality
Pl(B|A) < Bel(B|A) is never satisfied. Therefore our
assumption R2 · R3 · R4 < R1 is not valid and one has
necessarily R1 ≤ R2 · R3 · R4, which completes the proof
that Bel(A|B) ≤ Pl(A|B) when Bel(A|B) and Pl(A|B)
are calculated by the SGBT formulas (28) and (29).
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