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Abstract—In this paper we present an application of a new Be-
lief Function-based Inter-Criteria Analysis (BF-ICrA) approach
for Global Positioning System (GPS) Surveying Problems (GSP).
GPS surveying is an NP-hard problem. For designing Global
Positioning System surveying network, a given set of earth points
must be observed consecutively. The survey cost is the sum of
the distances to go from one point to another one. This kind
of problems is hard to be solved with traditional numerical
methods. In this paper we use BF- ICrA to analyze an Ant Colony
Optimization (ACO) algorithm developed to provide near-optimal
solutions for Global Positioning System surveying problem.

Index Terms—Inter-Criteria Analysis, BF-ICrA, GPS surveying,
belief functions.

I. INTRODUCTION

In our previous work [1] we did apply classical Atanassov’s
Inter-Criteria Analysis (ICrA) to examine some relations be-
tween considered GSP’s and ACO algorithm performance. In
this paper we consider a recent improved version of ICrA
based on belief functions [2] and show how to apply it in same
GSP problematic to revise and refine our previous analysis.

After a short presentation of GSP problematic and ACO
in the next section, and brief basics of BF in section III, we
recall the classical Atanassov’s ICrA method in section IV and
we present the new ICrA method based on Belief Functions,
called BF-ICrA, in section V. In section VI, we show how to
apply BF-ICrA for GSP problematic. Concluding remarks are
given in Section VII.

II. PRESENTATION OF ACO AND GSP PROBLEMATIC

A. GPS surveying problem description

GPS satellites continuously transmit radio signals to the
Earth while orbiting it. A receiver, with unknown position on
Earth, has to detect and convert the signals received from all of
the satellites into useful measurements. These measurements
would allow a user to compute a three-dimensional coordinate
position: location of the receiver. Any GPS observation is
proven to have biases, hence, in order to survey an appro-
priate combination of measurement processing strategies must
be used to minimize their effect on the positioning results.
Differencing data collected simultaneously from two or more
GPS receivers to several GPS satellites allows to eliminate
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or significantly reduce most of the biases. The GPS network
can be defined as set of stations (a1, a2, . . . an), which are
co-ordinated by placing receivers (X1, X2, . . . ) on them to
determine sessions (a1a2, a1a3, a2a3, . . . ) among them. The
problem is to search for the best order in which these sessions
can be organized to give the best schedule. Thus, the schedule
can be defined as a sequence of sessions to be observed
consecutively. The solution is represented by linear graph
with weighted edges. The nodes represent the stations and
the edges represent the moving cost. The objective function
of the problem is the cost of the solution which is the sum
of the costs (time) to move from one point to another one,
C(V ) =

∑
C(ai, aj), where aiaj is a session in solution V .

For example if the number of points (stations) is 4, a possible
solution is V = (a1, a3, a2, a4) and it can be represented by
linear graph a1 → a3 → a2 → a4. The moving costs are
as follows: C(a1, a3), C(a3, a2), C(a2, a4). Thus the cost of
the solution is C(V ) = C(a1, a3)+C(a3, a2)+C(a2, a4). In
practice, determining how each GPS receiver should be moved
between stations to be surveyed in an efficient manner taking
into account some important factors such as time, cost etc. The
problem is to search for the best order, with respect to the time,
in which these sessions can be observed to give the cheapest
schedule or to minimize C(V ). The initial data is a cost matrix,
which represents the cost (time, or distance) of moving a
receiver from one point to another. Solving such problems -
GSPs - to optimality requires a very high computational time.
Therefore, meta-heuristic methods are used to provide near-
optimal solutions for large networks within acceptable amount
of computational effort. In this paper, we consider the Max-
Min Ant System (MMAS) meta-heuristic [3] and we present
it briefly in the next subsection.

B. Ant colony optimization for GPS surveying problem

Real ants foraging for food lay down quantities of
pheromone (chemical cues) marking the path that they follow.
An isolated ant moves essentially at random but an ant
encountering a previously laid pheromone will detect it and
decide to follow it with high probability and thereby reinforce
it with a further quantity of pheromone. The repetition of the
above mechanism represents the auto-catalytic behavior of real
ant colony where the more the ants follow a trail, the more
attractive that trail becomes.



The ACO algorithm uses a colony of artificial ants that
behave as cooperative agents in a mathematics space were
they are allowed to search and reinforce pathways (solutions)
in order to find the optimal ones. The problem is represented
by graph and the ants walk on the graph to construct solu-
tions. The solution is represented by path in the graph. After
initialization of the pheromone trails, ants construct feasible
solutions, starting from random nodes, then the pheromone
trails are updated. At each step ants compute a set of feasible
moves and select the best one (according to some probabilistic
rules) to carry out the rest of the tour. The transition probability
pij , to chose the node j when the current node is i, is based
on the heuristic information ηij and pheromone trail level τij
of the move, where i, j = 1, . . . . , n.

pij =
ταijη

β
ij∑

k∈Unused τ
α
ikη

β
ik

. (1)

The higher value of the pheromone and the heuristic infor-
mation, the more profitable is to select this move and resume
the search. In the beginning, the initial pheromone level is set
to a small positive constant value τ0 and then ants update this
value after completing the construction stage. ACO algorithms
adopt different criteria to update the pheromone level.

In our implementation we use MAX-MIN Ant System
(MMAS) [3], [4], which is ones of the best ant approaches. In
MMAS the main is using fixed upper bound τmax and lower
bound τmin of the pheromone trails. Thus accumulation of big
amount of pheromone by part of the possible movements and
repetition of same solutions is partially prevented. The main
features of MMAS are:

The aim of using only one solution is to make solution
elements, which frequently occur in the best found solutions,
get large reinforcement. Pheromone trail update is given by:

τij ← ρτij +∆τij , (2)

where

∆τij =

 1/C(Vbest) if (i, j) ∈ best solution

0 otherwise

and Vbest is the iteration best solution and i, j = 1, . . . , n.
To avoid stagnation of the search, the range of possible

pheromone value on each movement is limited to an interval
[τmin, τmax]. τmax is an asymptotic maximum of τij and
τmax = 1/(1 − ρ)C(V ∗), while τmin = 0.087τmax. Where
V ∗ is the optimal solution, but it is unknown, therefore we
use Vbest instead of V ∗.

When all ants have completed their solutions, the
pheromone level is updated by applying the global update
rule. Only the pheromone corresponding to the best found
solution is increased by the similar to the MMAS way. The
global update rule is intended to provide a greater amount of
pheromone on the paths of the best solution. It is a kind of
intensification of the search around the best found solution.

We use heuristic information equals to one over the cost of
the session.

III. BASICS OF THE THEORY OF BELIEF FUNCTIONS

Let consider a finite discrete frame of discernement (FoD)
Θ = {θ1, θ2, . . . , θn}, with n > 1, and where θi ∩ θj = ∅ for
i ̸= j. The power-set of Θ (i;e. the set of all subsets of Θ)
is denoted 2Θ. A basic belief assignment (BBA) associated
with a given source of evidence is defined [5] as the mapping
m(·) : 2Θ → [0, 1] satisfying m(∅) = 0 and

∑
A∈2Θ m(A) =

1. The quantity m(A) is called the mass of A committed by
the source of evidence. Belief and plausibility functions are
usually interpreted respectively as lower and upper bounds of
unknown (possibly subjective) probability measure [6]. They
are defined by1

Bel(A) ,
∑

B⊆A,B∈2Θ

m(B), and Pl(A) , 1− Bel(Ā). (3)

If m(A) > 0, A is called a focal element of m(·). When all
focal elements are singletons then m(·) is called a Bayesian
BBA and its corresponding Bel(·) function is homogeneous to
a probability measure. Historically the combination of BBAs is
accomplished by Dempster’s rule in Dempster-Shafer Theory
(DST) [5]. Because of serious problems of Dempster’s rule2,
we recommend the Proportional Conflict Redistribution rule
no. 6 (PCR6) proposed by Martin and Osswald in [10] (Vol.
3) which remains the most appealing alternative rule for BBA
combination so far.

IV. ATANASSOV’S INTER-CRITERIA ANALYSIS (ICRA)
Based on Intuitionistic Fuzzy Sets (IFS) [11], the Inter-

Criteria Analysis (ICrA) has been introduced in 2014 by
Atanassov et al. in [12], and then improved in [13], [15].
ICrA aims to identify the possible links between the criteria
involved in a process of evaluation of multiple objects against
multiple criteria. The aim of ICrA is to discover any existing
correlations between the criteria themselves. Such analysis
can permit (when possible) to reduce the complexity of
large multiple criteria decision-making (MCDM) problems [2].
Until now the classical3 ICrA has been applied in different
fields: medicine [16], [17], optimization [18]–[21], workforce
planning [22], competitiveness analysis [23], radar detection
[24], ranking [25]–[27], etc. In this section we just recall the
basic principles of classical ICrA.

Let consider a set of alternatives (or objects) A ,
{A1, A2, . . . , AM} (M > 2), and a set of criteria C ,
{C1, C2, . . . , CN} (N ≥ 1). The available information is
expressed by a M × N score matrix4 S , [Sij = Cj(Ai)],
and (eventually) the importance factor wj ∈ [0, 1] of each
criterion Cj with

∑N
j=1 wj = 1. The ICrA method consists to

build an N × N Inter-Criteria (IC) matrix K from the score
matrix S. The elements of the IC matrix K consist of all In-
tuitionistic Fuzzy (IF) pairs (µjj′ , νjj′) ∈ [0, 1]× [0, 1] whose

1In the notations, the symbol , means equal by definition.
2that is: 1) insensitivity to the level of conflict between sources in some

cases and dictatorial behavior [7], [8], and 2) inconsistency of Shafer’s belief
conditioning [9] with bounds of conditional probabilities.

3We refer Atanassov’s ICrA as the classical approach in the sequel.
4also called benefit or payoff matrix in Multi-Criteria Decision-Making

framework.



components express respectively the degree of agreement and
the degree of disagreement between criteria Cj and Cj′ for
j, j′ ∈ {1, 2, . . . , N}. For a given column j (i.e. criterion Cj),
it is always possible to compare with >, < and = operators
all the scores Sij for i = 1, 2, . . .M because the scores of
each column are expressed in same unit. The construction
of IC matrix K can be used to search relations between
the criteria because the method compares homogeneous data
relatively to a same column. Atanassov in [14] prescribes5 the
normalization of the element Sij of score matrix S by taking

Snorm
ij = (Sij − Smin

j )/(Smax
j − Smin

j ) ∈ [0, 1] (4)

where {
Smin
j = min{S1j , . . . , SMj}

Smax
j = max{S1j , . . . , SMj}

(5)

The construction of the N × N IC matrix K is based on
the pairwise comparisons between every two criteria along all
evaluated alternatives. More precisely in [14] the degree of
agreement between criteria Cj and Cj′ µjj′ , and their degree
of disagreement νjj′ are calculated by

µjj′ ,
2Kµ

jj′

M(M − 1)
and νjj′ ,

2Kν
jj′

M(M − 1)
(6)

where Kµ
jj′ be the number of cases in which the inequalities

Sij > Si′j and Sij′ > Si′j′ hold simultaneously, and Kν
jj′ be

the number of cases in which the inequalities Sij > Si′j and
Sij′ < Si′j′ hold simultaneously.

By construction the IC matrix K is always a symmetric
matrix. Atanassov provides explicit formulas in [14] for Kµ

jj′

and Kν
jj′ which depend on a particular choice of the signum

function. Because of this the results of Kµ
jj′ and Kν

jj′ are
disputable and that is why some authors [22], [28] propose
other methods to calculate Kµ

jj′ and Kν
jj′ values for making

the Inter-Criteria Analysis.
Once the IC matrix K = [Kjj′ ] of intuitionistic fuzzy

pairs is calculated one needs to analyze it to decide which
criteria Cj and Cj′ are in strong agreement (or positive
consonance) reflecting the correlation between Cj and Cj′ , in
strong disagreement (or negative consonance) reflecting non
correlation between Cj and Cj′ , or in dissonance reflecting
the uncertainty situation where nothing can be said about the
non correlation or the correlation between Cj and Cj′ .

At the beginning of ICrA development it was not very clear
how these intuitionistic fuzzy (IF) pairs (µjj′ , νjj′) had to
be used and that is why Atanassova [29], [30] proposed to
handle both components of the IF pair. For this, she interpreted
pairs (µjj′ , νjj′) as points located in the elementary TFU
triangle, where the point T of coordinate (1, 0) represents the
maximal positive consonance (i.e. the true consonance), the
point F with coordinate (0, 1) represents the maximal negative
consonance (i.e. the falsity), and the point U with coordinates
(0, 0) represents the maximal dissonance (i.e. the uncertainty).
From this interpretation it becomes quite easy to identify the

5Although this normalization is not very necessary in fact for ICrA making.

top of consonant IF pairs (µjj′ , νjj′) that fall in bottom right
corner of (TFU) triangle limited by vertical line from x-axis
x = α, and horizontal line from y-axis y = β, where α and β
are two ad-hoc threshold values in [0, 1]. The set of consonant
IF pairs are then ranked according to their (Euclidean) distance
dTCjCj′

with respect to T point of coordinate (1, 0) defined by

dTCjCj′
= d((1, 0), (µjj′ , νjj′)) =

√
(1− µjj′)2 + ν2jj′ (7)

It is worth noting that µjj′ and νjj′ values are in fact linked
with belief function through the following formulas

Beljj′(θ) = µjj′ (8)
Pljj′(θ) = 1− νjj′ (9)
Ujj′(θ) = Pljj′(θ)−Beljj′(θ) = 1− νjj′ − µjj′ (10)

where θ means: the criteria Cj and Cj′ are totally positively
consonant (i.e. totally correlated), whereas θ̄ means: the crite-
ria Cj and Cj′ are totally negatively consonant (uncorrelated).
The FoD is defined as Θ , {θ, θ̄}. Ujj′(θ) represents
the dissonance (the uncertainty about the correlation) of the
criteria Cj and Cj′ . From this, one can easily define any BBA
mjj′(θ), mjj′(θ̄) and mjj′(θ ∪ θ̄) of 2Θ by taking

mjj′(θ) = µjj′ (11)
mjj′(θ̄) = νjj′ (12)
mjj′(θ ∪ θ̄) = 1− µjj′ − νjj′ (13)

Remark 1: The construction of the Inter-Criteria Matrix K
is not unique and depends on the choice of algorithm of
construction of µjj′ and νjj′ (and the choice of the signum
function) as reported in [28]. This can yield different ICrA
results in general.
Remark 2: The construction of µjj′ and νjj′ appears to be
only a crude approximation of true values because they are
only based on counting the valid ”>” or ”<” inequalities. In
fact, their calculations do not exploit how bigger and how
smaller the scores values are in each comparison done. So it
yields a lack of precision on estimation of µjj′ and νjj′ values.

ICrA can be very useful for verification of algorithm
correctness. When the optimization problem have a lot of
constraints with ICrA we can find if some of the constrain
is subconstrain of some other and to exclude it. With the help
of ICrA we can divide constraints to two or more groups, more
sensitive and less sensitive and to solve problem first according
more sensitive constraints and later to less sensitive ones.
To circumvent the aforementioned drawbacks, we present
succinctly in the next section a new ICrA approach based
on belief functions which is presented in more details with
examples in [2].

V. A NEW ICRA METHOD BASED ON BELIEF FUNCTIONS

The new Belief Function based ICrA method, called BF-
ICrA for short, presented in this section improves Atanassov’s
ICrA. It provides a more precise construction of µjj′ and νjj′
values because it exploits all available information included in
the score matrix.



BF-ICrA starts with the construction of an M × N BBA
matrix M = [mij(·)] from the score matrix S = [Sij ]. The
BBA matrix M is obtained as follows - see [31] for details
and justification.

mij(Ai) = Belij(Ai) (14)
mij(Āi) = Belij(Āi) = 1− Plij(Ai) (15)

mij(Ai ∪ Āi) = Plij(Ai)−Belij(Ai) (16)

where6

Belij(Ai) , Supj(Ai)/A
j
max (17)

Belij(Āi) , Infj(Ai)/A
j
min (18)

with

Supj(Ai) ,
∑

k∈{1,...M}|Skj≤Sij

|Sij − Skj | (19)

Infj(Ai) , −
∑

k∈{1,...M}|Skj≥Sij

|Sij − Skj | (20)

and

Aj
max , max

i
Supj(Ai) (21)

Aj
min , min

i
Infj(Ai) (22)

For another criterion Cj′ and the j′-th column of the score
matrix we will obtain another set of BBA values mij′(·).
Applying this method for each column of the score matrix we
are able to compute the BBA matrix M = [mij(·)] whose each
component is in fact a triplet (mij(Ai),mij(Āi),mij(Ai ∪
Āi)) of BBA values in [0, 1] such that mij(Ai) +mij(Āi) +
mij(Ai ∪ Āi)) = 1 for all i = 1, . . . ,M and j = 1, . . . , N .

The next step of BF-ICrA approach is the construction of
the N × N Inter-Criteria Matrix K = [Kjj′ ] from M × N
BBA matrix M = [mij(·)] where elements Kjj′ corresponds
to the BBA (mjj′(θ),mjj′(θ̄),mjj′(θ ∪ θ̄)) about positive
consonance θ, negative consonance θ̄ and uncertainty between
criteria Cj and Cj′ respectively. The construction of the triplet
Kjj′ = (mjj′(θ),mjj′(θ̄),mjj′(θ∪ θ̄)) is based on two steps:

• Step 1 (BBA construction): Getting mi
jj′(.).

For each alternative Ai for i = 1, . . . ,M , we
first compute the BBA (mi

jj′(θ),m
i
jj′(θ̄),m

i
jj′(θ ∪

θ̄)) for any two criteria j, j′ ∈ {1, 2, . . . , N}. For
this, we consider two sources of evidences (SoE) in-
dexed by j and j′ providing the BBA mij and mij′

defined on the simple FoD {Ai, Āi} and denoted
mij = [mij(Ai),mij(Āi),mij(Ai ∪ Āi)] and mij′ =
[mij′(Ai),mij′(Āi),mij′(Ai∪Āi)]. We also denote Θ =
{θ, θ̄} the FoD about the relative state of the two SoE,
where θ means that the two SoE agree, θ̄ means that they
disagree and θ ∪ θ̄ means that we don’t know. Hence,
two SoE are in total agreement if both commit their
maximum belief mass to the same element Ai or to

6assuming that Aj
max ̸= 0 and Aj

min ̸= 0. If Aj
max = 0 then

Belij(Ai) = 0, and if Aj
min = 0 then Plij(Ai) = 1.

the same element Āi. Similarly, two SoE are in total
disagreement if each one commits its maximum mass
of belief to one element and the other to its opposite,
that is if one has mij(Ai) = 1 and mij′(Āi) = 1, or
if mij(Āi) = 1 and mij′(Ai) = 1. Based on this very
simple and natural principle, one can now compute the
belief masses as follows:

mi
jj′(θ) = mij(Ai)mij′(Ai) +mij(Ā)mij′(Ā) (23)

mi
jj′(θ̄) = mij(Ai)mij′(Āi) +mij(Āi)mij′(Ai) (24)

mi
jj′(θ ∪ θ̄) = 1−mi

jj′(θ)−mi
jj′(θ̄) (25)

mi
jj′(θ) represents the degree of agreement between the

BBA mij(·) and mij′(·) for the alternative Ai, mi
jj′(θ̄)

represents the degree of disagreement of the two BBAs
and mi

jj′(θ ∪ θ̄) the level of uncertainty (i.e. how much
we don’t know if they agree or disagree). By construction
mi

jj′(·) = mi
j′j(·), mi

jj′(θ),m
i
jj′(θ̄),m

i
jj′(θ ∪ θ̄) ∈ [0, 1]

and mi
jj′(θ) + mi

jj′(θ̄) + mi
jj′(θ ∪ θ̄) = 1. This BBA

modeling permits to build a set of M symmetrical
Inter-Criteria Belief Matrices (ICBM) Ki = [Ki

jj′ ] of
dimension N ×N relative to each alternative Ai whose
components Ki

jj′ correspond to the triplet of BBA values
mi

jj′ = (mi
jj′(θ),m

i
jj′(θ̄),m

i
jj′(θ ∪ θ̄)) modeling the

belief of agreement and of disagreement between Cj and
Cj′ based on Ai.

• Step 2 (fusion): Getting mjj′(.).

In this step, one needs to combine the BBAs mi
jj′(.) for

i = 1, . . . ,M altogether to get the component Kjj′ =
(mjj′(θ),mjj′(θ̄),mjj′(θ∪θ̄)) of the Inter-Criteria Belief
matrix (ICBM) K = [Kjj′ ]. For this, we recommend to
use the PCR6 fusion rule [10] (Vol. 3) because of known
deficiencies of Dempster’s rule. Because of computational
complexity of PCR6 fusion rule when M becomes large,
one may prefer to approximate the fusion result by
using the simple averaging rule. Simple MatlabTMcode
for PCR6 rule can be found in [32] for convenience.

The computational complexity of BF-ICrA is of course
higher than the complexity of ICrA because it makes a more
precise evaluation of local and global inter-criteria belief
matrices with respect to IF inter-criteria matrices of ICrA. The
overall reduction of the computational burden of the original
MCDM problem thanks to BF-ICrA depends highly on the
problem under concern, the complexity and cost to evaluate
each criteria involved in it, as well as the number of redundant
criteria identified by BF-ICrA method.

Once the global Inter-Criteria Belief Matrix (ICBM) K =
[Kjj′ = (mjj′(θ),mjj′(θ̄),mjj′(θ ∪ θ̄))] is calculated, we
can identify the criteria that are in strong agreement, in
strong disagreement, and those on which we are uncertain.
For identifying the criteria that are in strong agreement, we
evaluate the distance of each component of Kjj′ with the
BBA representing the best agreement state and characterized



by the specific BBA7 mT (θ) = 1. From a similar approach
we can also identify, if we want, the criteria that are in
very strong disagreement using the distance of mjj′(·) with
respect to the BBA representing the best disagreement state
characterized by the specific BBA mF (θ̄) = 1. We use the
dBI(., .) distance presented in [33] for measuring the distance
d(m1,m2) between the two BBAs8 m1(·) and m2(·) over the
same FoD. It is defined by

dBI(m1,m2) ,
√

Nc ·
∑

X∈2Θ

d2W (BI1(X), BI2(X)) (26)

where the Belief-Intervals are defined by BI1(X) ,
[Bel1(X), P l1(X)] and BI2(X) , [Bel2(X), P l2(X)] and
computed from m1(.) and m2(.) thanks to formula (3).
dW (BI1(X), BI2(X)) is Wassertein’s distance between in-
tervals calculated by

dW ([a1, b1], [a2, b2]) =√[
a1 + b1

2
− a2 + b2

2

]2
+

1

3

[
b1 − a1

2
− b2 − a2

2

]2
and Nc = 1/2|Θ|−1 is a normalization factor to get
dBI(m1,m2) ∈ [0, 1].

VI. APPLICATION OF BF-ICRA TO GSP

In this section, we analyze the experimental results obtained
using MMAS algorithm described in the previous section. For
this, we use real data from Malta and Seychelles GPS networks
composed of 38 sessions and 71 sessions respectively denoted
GSP1 and GSP2. We use also 6 larger test problems range
from 100 to 443 sessions denoted GSP3,. . . , GSP8. The results
are obtained by performing 30 independent runs, for every
experiment. The details of our MMAS implementation are
given in [1]. So in our GSP example we consider 8 GSP
criteria Ci = GSPi, i = 1, . . . , 8 and six average costs as
results A1, . . . , A6, where A1 is the cost average for the first
5 runs, A2 the cost average for the first 10 runs, A3 for the
first 15 runs), . . . and finally C6 for all the 30 runs. Table I
shows the values of averaged costs obtained for this problem.
It corresponds to the transpose of the score matrix S.

A1 A2 A3 A4 A5 A6
C1 = GSP1 899.00 898.00 898.33 898.50 899.40 899.50
C2 = GSP2 916.40 915.60 922.47 924.80 924.72 922.07
C3 = GSP3 41336.40 41052.40 40991.93 40935.90 40832.20 40910.60
C4 = GSP4 3244.80 3303.30 3327.00 3344.55 3345.60 3341.93
C5 = GSP5 1656.20 1660.80 1663.93 1664.95 1666.96 1665.90
C6 = GSP6 1673.60 1683.50 1690.73 1688.75 1690.24 1692.67
C7 = GSP7 3420.00 3430.70 3433.13 3426.85 3429.44 3428.57
C8 = GSP8 3758.20 3755.70 3758.73 3760.50 3760.80 3765.80

Table I
TRANSPOSE OF THE SCORE MATRIX S = [Sij ] OF GSP PROBLEM.

Hence in this problem M = 6 and N = 8, and S = [Sij ] is
a 6 × 8 score matrix. Based on classical ICrA approach, one

7We use the index T in the notation mT (·) to refer that the agreement is
true, and F in mF (·) to specify that the agreement is false.

8Here we will take m1(·) = mjj′ (.) and m2(·) = mT (·), or m2(·) =
mF (·)

gets the following IC matrices9

K
µ

=



C1 C2 C3 C4 C5 C6 C7 C8

C1 1 0.60 0.27 0.67 0.73 0.67 0.33 0.87
C2 0.60 1 0.27 0.80 0.73 0.53 0.47 0.73
C3 0.27 0.27 1 0.07 0 0.20 0.40 0.13
C4 0.67 0.80 0.07 1 0.93 0.73 0.53 0.80
C5 0.73 0.73 0 0.93 1 0.80 0.60 0.87
C6 0.67 0.53 0.20 0.73 0.80 1 0.67 0.80
C7 0.33 0.47 0.40 0.53 0.60 0.67 1 0.47
C8 0.87 0.73 0.13 0.80 0.87 0.80 0.47 1



K
ν

=



C1 C2 C3 C4 C5 C6 C7 C8

C1 0 0.40 0.73 0.33 0.27 0.33 0.67 0.13
C2 0.40 0 0.73 0.20 0.27 0.47 0.53 0.27
C3 0.73 0.73 0 0.93 1 0.80 0.60 0.87
C4 0.33 0.20 0.93 0 0.07 0.27 0.47 0.20
C5 0.27 0.27 1 0.07 0 0.20 0.40 0.13
C6 0.33 0.47 0.80 0.27 0.20 0 0.33 0.20
C7 0.67 0.53 0.60 0.47 0.40 0.33 0 0.53
C8 0.13 0.27 0.87 0.20 0.13 0.20 0.53 0



The element Kµ
jj′ of matrix Kµ expresses the degree of

agreement between criteria Cj = GSPj and Cj′ = GSPj′ ,
whereas the element Kν

jj′ of matrix Kν expresses the degree
of disagreement between Cj = GSPj and Cj′ = GSPj′ .
Based on these results, one sees that ACO algorithm performs
similarly for GSP2, GSP4 GSP5 and GSP8 because they are
all in high agreement. Indeed µjj′ values for j, j′ ∈ {2, 4, 5, 8}
are quite high (greater than 70%). They are GPS networks with
different numbers of sessions, but may have a similar structure,
therefore, the value of agreement is high. For other networks,
we can conclude that they have very different structure. What
is worth noting is that there appears also a strong agreement
of GSP1 with GSP8 because µ18 = 0.87. But because GSP8
is also in strong agreement with GSP2, GSP4, GSP5 and with
GSP1 it is logically expected that GSP1 should be also in
agreement with GSP2, GSP4, GSP5, which is unfortunately
not the case based on this classical ICrA. This example points
out some inconsistency of ICrA result because of the too
crude method of estimation of the degree of agreement and
disagreement between criteria based on IFS.

Now if we consider the same example with the same score
matrix S (built from Table I), we obtain the following IC Belief
matrices10

K(θ) =



C1 C2 C3 C4 C5 C6 C7 C8

C1 0.9098 0.6732 0.1791 0.5968 0.6106 0.5620 0.1659 0.7789
C2 0.6732 0.9546 0.0364 0.8983 0.8783 0.8341 0.5532 0.7016
C3 0.1791 0.0364 0.8722 0.0172 0.0154 0.0178 0.0366 0.1137
C4 0.5968 0.8983 0.0172 0.9552 0.9146 0.9163 0.7395 0.6092
C5 0.6106 0.8783 0.0154 0.9146 0.8917 0.8778 0.6922 0.6315
C6 0.5620 0.8341 0.0178 0.9163 0.8778 0.9060 0.7630 0.6441
C7 0.1659 0.5532 0.0366 0.7395 0.6922 0.7630 0.8587 0.2484
C8 0.7789 0.7016 0.1137 0.6092 0.6315 0.6441 0.2484 0.8508



K(θ̄) =



C1 C2 C3 C4 C5 C6 C7 C8

C1 0.0207 0.1941 0.5385 0.2578 0.1757 0.2117 0.5335 0.0399
C2 0.1941 0.0166 0.8323 0.0486 0.0298 0.0513 0.1808 0.0682
C3 0.5385 0.8323 0.0117 0.9002 0.8754 0.8548 0.7062 0.5486
C4 0.2578 0.0486 0.9002 0.0187 0.0216 0.0204 0.0606 0.1193
C5 0.1757 0.0298 0.8754 0.0216 0.0170 0.0201 0.0558 0.0832
C6 0.2117 0.0513 0.8548 0.0204 0.0201 0.0154 0.0390 0.0726
C7 0.5335 0.1808 0.7062 0.0606 0.0558 0.0390 0.0110 0.3495
C8 0.0399 0.0682 0.5486 0.1193 0.0832 0.0726 0.3495 0.0100



From ICBM K(θ) and K(θ̄) we compute the matrix D(θ)
of distance of mjj′(.) to the full agreement state with BBA

9For presentation convenience and due to typesetting column width, we
decompose et present the IC matrix K = [Kjj′ = (Kµ

jj′ ,K
ν
jj′ )] into two

distinct matrices Kµ = [Kµ
jj′ ] and Kν = [Kν

jj′ ].
10For presentation convenience, the ICBM K = [Kjj′ =

(mjj′ (θ),mjj′ (θ̄),mjj′ (θ∪θ̄))] is decomposed into three matrices K(θ) =

[Kθ
jj′ = mjj′ (θ)], K(θ̄) = [K θ̄

jj′ = mjj′ (θ̄)] and K(θ ∪ θ̄) = [Kθ∪θ̄
jj′ =

1−mjj′ (θ)−mjj′ (θ̄)].



mF (θ) = 1 based on dBI(.) distance. We get the following
distances to full agreement

D(θ) = [D
jj′ = dBI (m

jj′ ,mT )]

=



C1 C2 C3 C4 C5 C6 C7 C8

C1 0.0590 0.2633 0.6845 0.3331 0.2892 0.3314 0.6893 0.1406

C2 0.2633 0.0321 0.8987 0.0767 0.0803 0.1135 0.3230 0.1950

C3 0.6845 0.8987 0.0774 0.9418 0.9306 0.9192 0.8381 0.7241

C4 0.3331 0.0767 0.9418 0.0326 0.0566 0.0552 0.1706 0.2668

C5 0.2892 0.0803 0.9306 0.0566 0.0679 0.0770 0.1958 0.2404

C6 0.3314 0.1135 0.9192 0.0552 0.0770 0.0592 0.1494 0.2293

C7 0.6893 0.3230 0.8381 0.1706 0.1958 0.1494 0.0849 0.5626

C8 0.1406 0.1950 0.7241 0.2668 0.2404 0.2293 0.5626 0.0892



The element Djj′ represents the agreement distance be-
tween Cj and Cj′ , the lower the better. From the values of
elements of D(θ) matrix one sees clearly that ACO performs
similarly for GSP2, GSP4 and GSP5 because distances D24,
D25, and D45 are very small. Also we see that GSP6 is also
in good agreement with GSP4 and GSP5 but is relatively less
in agreement with GSP2 because D26 = 0.1135. As we see
there is no inconsistency in this new BF-ICrA method with
respect to what provides classical ICrA because with BF-ICrA
we have a much better and precise estimation of degrees of
agreement and disagreement between criteria for making the
analysis thanks to a proper belief functions modeling.

VII. CONCLUSION

The GPS surveying problem and a new InterCriteria Ana-
lysis based on belief functions were addressed in this paper to
overcome the potential inconsistencies of the results generated
by the classical ICrA method. This technique proposes a
more precise and refined method for estimating the degree of
agreement and disagreement between criteria which use the
whole information available in the data. Instances containing
from 38 to 443 sessions have been solved using MMAS
algorithm and we did compare the performance of ACO
algorithms applied to eight GPS networks. Our results shows
that ACO can provide fast near-optimal solution for observing
GPS networks, and could help to improve the services based
on GPS networks. From this new Inter-Criteria Analysis we
are able to identify some relations and dependences between
the considered eight GSPs and MMAS algorithm performance.
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