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Abstract. Data association is one of the main tasks to achieve in per-
ception applications. Its aim is to match the sensor detections to the
known objects. To treat such issue, recent research focus on the evidential
approach using belief functions, which are interpreted as an extension of
the probabilistic model for reasoning about uncertainty. The data fusion
process begins by quantifying sensor data by belief masses. Thereafter,
these masses are combined in order to provide more accurate informa-
tion. Finally, a probabilistic approximation of these combined masses is
done to make-decision on associations. Several probabilistic transforma-
tions have been proposed in the literature. However, to the best of our
knowledge, these transformations have been evaluated only on simulated
examples. For this reason, the objective of this paper is to benchmark
most of interesting probabilistic transformations on real-data in order
to evaluate their performances for the autonomous vehicle perception
problematic.

Keywords: Data Association · Evidential Theory · Belief Functions ·
Probabilistic Transformation.

1 Introduction

Multiple Target Tracking (MTT) is important in perception applications (au-
tonomous vehicle, surveillance, etc.). The MTT system is usually based on two
main steps: data association and tracking. The first step associates detected ob-
jects in the perceived scene, called targets, to known objects characterized by
their predicted tracks. The second step estimates the track states over time typi-
cally thanks to Kalman Filters [1], or improved state estimation techniques (like
particle filters, etc). Nevertheless, bad associations provide wrong track estima-
tion and then leads to false perception results.

The data association problem is usually resolved by Bayesian theory [1,2].
Several methods have been proposed as the Global Nearest Neighbor (GNN)
method, the Probabilistic Data Association Filter (PDAF), and the Multiple
Hypothesis Tracking (MHT) [3,12,22]. However, the Bayesian theory doesn’t
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manage efficiently data imperfection due to the lack of knowledge we can have
on sensor quality, reliability, etc. To circumvent this drawback, the Evidential
theory [9,25] appears as an interesting approach because of its ability to model
and deal with epistemic uncertainty. Its provides a theoretical framework to
manage ignorance and data imperfection.

Several evidential data association approaches have been proposed [6,10,20,23]
in the framework of belief functions. Rombaut [23] uses the Evidential theory to
measure the confidence of the association between perceived and known obsta-
cles. To manage efficiently objects appearance and disappearance, Gruyer and
Cherfaoui [15] propose the bi-directional data association. The first direction
concerns the target-to-track pairings which provides a good way to manage the
appearance of the new tracks. The second direction concerns the track-to-target
pairings and then manage disappearance of tracks. This approach has been ex-
tended by Mercier et al. [20] to track vehicles by using a global optimization
to make assignment decisions. To reduce the complexity for real-time applica-
tions, a local optimization has been used [5,6]. For all these methods, the data
fusion process begins by defining belief masses from sensor information and prior
knowledge. These masses represent the belief and ignorance on the assignment
hypotheses. Thereafter, the masses are combined in order to provide a com-
plete information of the considered problem. Finally, to make a decision, the
belief masses are classically approximated by a probability measure thanks to a
chosen probabilistic transformation.

For data association applications, the widely used probabilistic transforma-
tion (i.e. approximation) is the pignistic transformation [5,6,17,20]. This trans-
formation is based on a simple mapping process from belief to probability do-
main. However, several published works criticize the pignistic transformation and
propose generalized and/or alternative transformations [7,8,11,19,21,30]. To our
knowledge, the proposed transformations have been evaluated by their authors
only on simulated examples. The main objective of this paper is to compare these
transformations on real-data in order to determine which one is well-suited for
assignment problems.

The rest of the paper is structured as follows. Section II recalls the basics of
belief functions and their uses in data association problems. In Section III, the
most appealing probabilistic transformations are presented and compared on the
well-known KITTI public database in Section IV. Finally, Section V concludes
the paper.

2 Belief Functions For Data Association

To select “best” associations, the data fusion process consists in four steps:
modeling, estimation, combination and decision-making. This section presents
their definitions and principles.
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2.1 Basic Fundamentals

The Belief Functions (BF) have been introduced by Shafer [25] based on Demp-
ster’s researches [9]. They offer a theoretical framework for reasoning about
uncertainty. Let’s consider a problem where we have an exhaustive list of hy-
potheses (Hj) which are mutually exclusive. They define a so-called frame of
discernment Θ:

Θ =

k⋃
j=1

{Hj}with Hi ∩Hj = ∅ (1)

The power set 2Θ is the set of all subsets of Θ, that is:

2Θ = {∅, H1, ...,Hk, ..., {H1, H2, H3} , ..., Θ} (2)

The proposition A = {H1, H2, H3} represents the disjunction meaning that
either H1 or H2 or H3 can be the solution to the problem under concern. In
other words, A represents a partial ignorance if A is the disjunction of several
elements of Θ. The union of all hypotheses Θ represents the total ignorance and
∅ is the empty set that represents the impossible solution (interpreted usually
as the conflicting information).

The truthfulness of each proposition A ∈ 2Θ issued from source j is modeled
by a basic belief assignment (bba) mΘ

j (A):

mΘ
j : 2Θ → [0, 1],

∑
A∈2Θ

mΘ
j (A) = 1 (3)

Thereafter, the different bbas (mΘ
j ) are combined which provides a global

knowledge of the considered problem. Several rules of combination have been
proposed [29], the conjunctive operator is widely used in many rules proposed in
the literature for the combination of sources of evidence. For instance, Shafer [25]
did propose Dempster’s rule of combination below which is nothing but the
normalized version of the conjunctive rule [26]:mΘ

DS(A) = 1
1−K

∑
A1∩...∩Ap=A

p∏
j=1

mΘ
j (Aj)

mΘ
DS(∅) = 0,

(4)

where K is a normalized coefficient:

K =
∑

A1∩...∩Ap=∅

p∏
j=1

mΘ
j (Aj). (5)

Finally, in order to make decisions in Θ, a probabilistic approximation of the
combined bbas (mΘ

DS(A)) is usually done. The upper and the lower bounds of the
unknown probability P (A) are defined by the belief Bel(A) and the plausibility
Pl(A) functions given respectively by:

Bel(A) =
∑
B⊆A

mΘ
DS(B)

Pl(A) =
∑

B∩A6=∅

mΘ
DS(B)

(6)
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2.2 Belief Modeling

The data association problem can be analyzed from two points of view: target-to-
track and track-to-target association. Consequently, two frames of discernment
are defined: Θi,. and Θ.,j , i = 1, ..., n, with n the number of targets, and j =
1, ...,m, with m the number of tracks:

Θi,. =
{
Y(i,1), Y(i,2), ..., Y(i,m), Y(i,∗)

}
Θ.,j =

{
X(1,j), X(2,j), ..., X(n,j), X(∗,j)

} (7)

where Θi,. is composed of the m possible target(i)-to-track(j) associations de-
noted Y(i,j). The hypothesis of appearance is represented by Y(i,∗)

4. Θ.,j contains
the n possible track(j)-to-target(i) associations denoted X(i,j), and X(∗,j) is the
track disappearance.

2.3 Basic Belief Assignment

For target-to-track assignment, three bba’s are used to answer the question “Is
target Xi associated with track Yj?”:

– m
Θi,.
j (Y(i,j)): belief in “Xi is associated with Yj”,

– m
Θi,.
j (Y(i,j)): belief in “Xi is not associated with Yj”

5,

– m
Θi,.
j (Θi,.): the degree of ignorance.

The recent benchmark [4] on huge real data shows that the most suited model
is the non-antagonist model [14,23] which is defined as follows:

m
Θi,.
j (Y(i,j)) =

{
0 , Ii,j ∈ [0, τ ]
Φ1(Ii,j) , Ii,j ∈ [τ, 1]

(8)

m
Θi,.
j (Y(i,j)) =

{
Φ2(Ii,j) , Ii,j ∈ [0, τ ]
0 , Ii,j ∈ [τ, 1]

(9)

m
Θi,.
j (Θi,.) = 1−mΘi,.

j (Y(i,j))−m
Θi,.
j (Y(i,j)), (10)

where 0 < τ < 1 represents the impartiality of the association process and
Ii,j ∈ [0, 1] is an index of similarity between Xi and Yj . Φ1(.) and Φ2(.) are two
cosine functions defined by:Φ1(Ii,j) = α

2

[
1− cos(π

Ii,j−τ
τ )

]
Φ2(Ii,j) = α

2

[
1 + cos(π

Ii,j
τ )
]
,

(11)

where 0 < α < 1 is the reliability factor of the data source. In the same manner,
belief masses are generated for the track-to-target assignment.

4 Y(i,∗) refers to the fact that no track is assigned to the target(i).
5 Y(i,j) defines the complementary hypothesis of Y(i,j),
Y(i,j) = {Y(i,1), . . . , Y(i,j−1), Y(i,j+1), . . . , Y(i,m), Y(i,∗)}.
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2.4 Belief Combination

Based on Dempster’s rule (4), the combined masses mΘi,. (and mΘ.,j ) over 2Θi,.

(and 2Θ.,j ) can be computed as follows [24]:

mΘi,.
(
Y(i,j)

)
= K · mΘi,.

j

(
Y(i,j)

) m∏
a=1
a 6=j

α(i,a)

mΘi,.({Y(i,j), . . . , Y(i,l), Y(i,∗)}) = K · γ(i,(j,...,l))
m∏
a=1
a6=j
......
a6=l

β(i,a)

mΘi,.
(
Y(i,∗)

)
= K ·

m∏
a=1

β(i,a)

mΘi,. (Θi,.) = K ·
m∏
a=1

mΘi,.
a (Θi,.)

(12)

with: 

α(i,a) = 1−mΘi,.
a

(
Y(i,a)

)
β(i,a) = m

Θi,.
a

(
Y(i,a)

)
γ(i,(j,...,l)) = m

Θi,.
j (Θi,.) . . .m

Θi,.
l (Θi,.)

K =

 m∏
a=1

α(i,a) +

m∑
a=1

mΘi,.
a

(
Y(i,a)

) m∏
b=1
b 6=a

α(i,b)


−1

2.5 Decision-Making

Finally, the probabilities matrix Pi,. (P.,j) is obtained by using a probabilistic
transformation. Table 1 presents the Pi,. matrix where each line defines the
association probabilities of the target Xi with all tracks Yj . Pi,.(Y(i,∗)) represents
the appearance probability of Xi.

Table 1. Probabilities of Target-to-Track Associations

Pi,.(.) Y1 . . . Ym Y∗

X1 P1,.(Y(1,1)) . . . P1,.(Y(1,m)) P1,.(Y(1,∗))

X2 P2,.(Y(2,1)) . . . P2,.(Y(2,m)) P2,.(Y(2,∗))
...

...
...

...
...

Xn Pn,.(Y(n,1)) . . . Pn,.(Y(n,m)) Pn,.(Y(n,∗))

The association decisions are made by using a global or a local optimization
strategy. The Joint Pignistic Probability (JPP) [20] selects associations that
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maximize the probability product. However, this global optimization is time-
consuming and can select doubtful local associations. To cope these drawbacks,
local optimizations have been proposed as the Local Pignistic Probability (LPP).
Interested readers in the benchmark of these algorithms can refer to [17,18].

3 Probabilistic Transformations

The generalized formula of the probabilistic transformation can be defined as
follows:

Pi,.
(
Y(i,j)

)
= mΘi,.

(
Y(i,j)

)
+

∑
A∈2Θi,.
Y(i,j)⊂A

T (Y(i,j), A) ·mΘi,. (A),
(13)

where A represents the partial/global ignorance about the association of target
Xi and T (Y(i,j), A) represents the rate of the ignorance mass mΘi,. (A) which is
transfered to singleton Y(i,j).

Several probabilistic transformations have been proposed in the literature.
In this section, only the most interesting ones are presented.

3.1 Pignistic Probability

The pignistic transformation denoted by BetP and proposed by Smets [27,28]
is still widely used for evidential data association applications [6,14,16,20]. This
transformation redistributes equitably the mass of ignorance on singletons as
follows:

TBetPi,.(Y(i,j), A) = 1
|A| , (14)

where |A| represents the cardinality of the subset A. However, the pignistic
transformation (14) ignores the bbas of singletons which can be considered as a
crude commitment. BetP is easy to implement because it has a low complexity
due to its simple redistribution process.

3.2 Dezert-Smarandache Probability

Besides of the cardinality, Dezert-Smarandache Probability (DSmP ) transfor-
mation [11] considers the values of masses when transferring ignorance on sin-
gletons:

TDSmPi,.(Y(i,j), A) =
mΘi,.(Y(i,j))+ε∑

Y(i,k)⊂A
mΘi,.

(
Y(i,k)

)
+ ε · |A| (15)

The value of the tuning parameter ε ≥ 0 is used to adjust the effect of focal
element’s cardinality in the proportional redistribution, and to make DSmP
defined and computable when encountering zero masses. Typically, one takes
ε = 0.001. The smaller ε, the better approximation of probability measure we
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get [11]. DSmP allows to obtain in general a higher Probabilistic Information
Content (PIC) [31] than BetP because it uses more information than BetP for
its establishment. The PIC indicates the level of the available knowledge to make
a correct decision. PIC = 0 indicates that no knowledge exists to take a correct
decision.

3.3 MultiScale Probability

The Multiscale Probability (MulP ) transformation [19] highlights the propor-
tion of each hypothesis in the frame of discernment by using a difference function
between belief and plausibility:

TMulPi,.(Y(i,j), A) =
(PlΘi,.(Y(i,j))−BelΘi,.(Y(i,j)))q∑

Y(i,k)⊂A
(PlΘi,.

(
Y(i,k)

)
−BelΘi,.

(
Y(i,k)

)
)q
,

(16)

where q ≥ 0 is a factor used to amend the proportion of the difference (Pl(·)−
Bel(·)). However, the TMulPi,. is not defined ( 0

0 ) when m(·) is a Bayesian mass
(Pl(·) = Bel(·)).

3.4 Sudano’s Probabilities

Sudano proposes several alternatives to BetP as the Proportional Plausibility
(PrP l) and the Proportional Belief (PrBel) transformations [11,30]. Those lat-
ter redistribute respectively the ignorance mass according to the normalized
plausibility and belief functions:

TPrPli,.(Y(i,j), A) =
PlΘi,.(Y(i,j))∑

Y(i,k)⊂A
PlΘi,.

(
Y(i,k)

)
(17)

TPrBeli,.(Y(i,j), A) =
BelΘi,.(Y(i,j))∑

Y(i,k)⊂A
BelΘi,.

(
Y(i,k)

)
(18)

3.5 Pan’s Probabilities

Other proportional transformations have been proposed in [21]. Those transfor-
mations assume that the bba are proportional to a function S(·) which is based
on the belief and the plausibility:

TPrBPi,.(Y(i,j), A) = S(i,j)∑
Y(i,k)⊂A

S(i, k)
,

(19)

where different definitions of S have been proposed:PrBP1i,. : S(i, j) = PlΘi,.
(
Y(i,j)

)
·BelΘi,.

(
Y(i,j)

)
PrBP2i,. : S(i, j) = BelΘi,.(Y(i,j)) · (1− PlΘi,.(Y(i,j)))−1
PrBP3i,. : S(i, j) = PlΘi,.(Y(i,j)) · (1−BelΘi,.(Y(i,j)))−1

(20)
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4 Results

This section presents a benchmark of the probabilistic transformations in the
framework of the object association system for autonomous vehicles. The aim
is to assign detected objects in the scene (targets) to known ones (tracks). The
transformations have been evaluated on real data.

Fig. 1. Examples of images provided by KITTI [4].

The KITTI dataset6 provides 21 sequences recorded from cameras mounted
on a moving vehicle on urban roads [13]. To our knowledge, no comparison of
probabilistic transformations has been done on real data where more than 30000
associations have been observed. These latter cover different road scenarii as
shown in Fig. 4. For this work, detections are defined only by 2D bounding box
in the image plane as presented in Fig. 4.

6 http://www.cvlibs.net/datasets/kitti/eval tracking.php
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4.1 Experimental Setting

The assignment information are based on the distance between objects in the
image plane. For that, the distance di,j is defined as follows:

di,j =
1

2
(d right
i,j + d left

i,j ), (21)

where d right
i,j (resp. d left

i,j ) is the Euclidean distance between bottom-right (resp.
top-left) corners of the bounding boxes of target Xi (detected object) and track
Yj (known object) as presented in Fig. 4.1.

Fig. 2. The illustration of the distances d right
i,j and d left

i,j [4].

The parameters of the bba model (11) are: α = 0.9 and τ = 0.5. The index
of similarity is defined as follows:

Ii,j =

{
1− di,j

D , if di,j < D
0 , otherwise,

(22)

where D is the limit distance for association which is determined heuristically,
e.g. D = 210 in this work.

The tuning parameters ε = 0.001 and q = 5 for DSmP and MulP transfor-
mations respectively. The LPP algorithm has been used as optimization strategy
in the decision-making step.
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4.2 Comparison of probabilistic transformations

All discussed transformations are characterized by an equivalent complexity ex-
cept the pignistic transformation. BetP is computed directly from combined
masses which leads to a lower computational time.

To compare the performance of the probabilistic transformations presented
previously, the object association system is evaluated by the True Associations
Rate (TAR):

TAR =

∑
t True Associationt∑
tGround Trutht

, (23)

where t is the frame index.
Table 2 compares association outcomes of the system based on different prob-

abilistic transformations. Only target-to-track association results have been pre-
sented in Table 2 due to the lack of space. However, from track-to-target associ-
ation results, similar comments/conclusions hold. The penultimate row of Table
2 shows the weighted average of TAR value based on all sequences which is given
by:

TARavg =

20∑
i=0

wiTARi (24)

where TARi is the TAR value of the i-th sequence, and where the weight wi is
wi = ni/

∑20
i=0 ni and ni being the number of associations of the i-th sequence.

For instance, TARaver = 0.9852 (or 98.52%) for the BetP transformation, etc.
The last row of Table 2 represents the weighted standard deviation (σw) of
association scores defined as follows:

σw =

√√√√ 20∑
n=0

wi(TARi − TARavg.)2 (25)

The obtained results show that PrBel, PrBP1, and PrBP2 provide the
worst mean associations scores (≤ 97.40%) with the largest standard deviation
(1.36%) for PrBP2. It can be explained by the fact that these transformations
are based on the Bel function which is a pessimistic measurement. The rest of
the transformations provide rates of correct association (i.e. scores) > 98.40%
which represents a gain of +1%. The best mean score ≈ 98.50% is given by
BetP , PrP l, and MultP transformations. Based only on the mean score cri-
terion, BetP seems more interesting because it provides better scores on 15
sequences from 21 as illustrated in Fig. 4.2. In addition, BetP is based on a very
simple transferring process of uncertainty which makes BetP a good choice for
real-time applications. However, this apparent advantage of BetP needs to be
seen in relative terms because BetP also generates a quite large standard devi-
ation of 1.38%, which clearly indicate that BetP is not very precise. PrP l and
MultP are also characterized by a relatively high standard deviation (1.22%
and 1.39%). On the other hand, the lower standard deviation 1.05% is given
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Table 2. target-to-track associations score (in %) obtained by different probabilistic
transformations.

Seq. n◦ nb of nb of BetP DSmP PrP l PrBel MulP PrBP1 PrBP2 PrBP3
Frame Ass.

Seq. 0 154 675 99.41 99.11 99.41 99.26 99.41 99.41 99.26 99.11
Seq. 1 447 2643 97.50 96.71 97.43 96.03 97.47 95.88 95.50 97.39
Seq. 2 233 668 99.70 99.70 99.70 97.75 99.70 98.65 97.46 99.70
Seq. 3 144 337 99.41 99.41 99.41 98.81 99.41 99.11 98.81 99.41
Seq. 4 314 545 89.72 93.39 93.21 92.29 90.09 92.29 91.56 93.76
Seq. 5 297 925 98.59 97.51 98.16 96.00 99.46 96.32 95.24 97.95
Seq. 6 270 474 100 100 100 98.95 100 98.95 98.73 100
Seq. 7 800 2084 97.60 96.55 97.17 95.11 97.55 95.25 94.63 97.02
Seq. 8 390 492 99.19 98.78 99.19 97.76 99.39 97.76 97.56 99.19
Seq. 9 802 2888 98.44 97.33 98.10 97.09 98.37 97.13 96.92 97.82
Seq. 10 294 541 98.71 98.34 98.71 97.78 99.26 98.15 98.89 98.34
Seq. 11 373 3001 99.37 98.77 99.30 99.30 99.33 99.27 99.27 99.23
Seq. 12 78 67 100 100 100 100 100 100 100 100
Seq. 13 340 617 93.35 95.62 94.00 93.35 93.19 93.35 92.06 94.00
Seq. 14 106 374 89.04 89.57 88.50 88.77 88.50 89.84 89.04 88.77
Seq. 15 376 1249 99.28 99.28 99.28 99.04 99.28 98.80 98.80 99.28
Seq. 16 209 1872 97.54 96.63 97.44 96.69 97.54 96.85 96.90 97.38
Seq. 17 145 486 99.18 98.35 99.18 96.71 99.18 97.33 96.91 99.18
Seq. 18 339 1130 99.82 98.41 99.65 98.94 99.82 99.03 98.94 99.29
Seq. 19 1059 4968 99.42 98.73 99.42 97.83 99.36 97.89 97.36 99.34
Seq. 20 837 4673 99.68 98.35 99.59 98.35 99.64 98.20 98.10 99.42

All Seq. 8007 30709 98.52 97.85 98.47 97.35 98.52 97.40 97.10 98.37
std. dev. σw 1.38 1.05 1.22 1.26 1.39 1.21 1.36 1.18

by DSmP transformation with a good association score = 97.85%. This trans-
formation performs well in term of PCI criteria which leads to make correct
decisions [11]. Consequently, DSmP is an interesting alternative to BetP for
the data association process in autonomous vehicle perception system.

5 Conclusion

An evaluation of several probabilistic transformations for evidential data asso-
ciation has been presented in this paper. These transformations approximate
the belief masses by a probability measure in order to make association deci-
sions. The widely used probabilistic approximation is the pignistic transforma-
tion. However, several published studies criticize the choice of this method of
approximation and propose generalized transformations.

We did compare the performances of these probabilistic transformations on
real-data in order to determine which one is more suited for assignment prob-
lems in the context of autonomous vehicle navigation based on real datasets. The
obtained results based on the well-known KITTI dataset show that the pignistic
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Number of worst/best scores
0 5 10 15
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Fig. 3. The number of worst/best scores obtained by each probabilistic transformation
on 21 sequences; e.g. PrBel provides three worst scores (sequences 0, 10, and 17) and
only one best score on sequence 12.

transformation provides one of the better scores. However, it provides a quite
large standard deviation contrary to DSmP transformation which provides the
lowest standard deviation. In addition, DSmP procures a nearly similar associa-
tion score to that given by BetP . Consequently,DSmP can be a good alternative
to BetP for the autonomous vehicle perception problematic requiring a bit more
computational power with respect to BetP .
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