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Abstract—In this paper, we present a fast Belief Function
based Inter-Criteria Analysis (BF-ICrA) method based on the
canonical decomposition of basic belief assignments defined on
a dichotomous frame of discernment. This new method is then
applied for evaluating the Multiple-Objective Ant Colony Op-
timization (MO-ACO) algorithm for Wireless Sensor Networks
(WSN) deployment.
Keywords: Inter-Criteria Analysis, belief functions, informa-
tion fusion, canonical decomposition, PCR5 rule.

I. INTRODUCTION

In our previous work [1] we propose a new and improved
version of classical Atanassov’s InterCriteria Analysis (ICrA)
[2] - [4] approach based on Belief Functions (BF-ICrA). This
method proposes a better construction of Inter-Criteria Matrix
that fully exploits all the information of the score matrix, and
the closeness measure of agreement between criteria based
on belief interval distance. In [5], we show how the fusion
of many sources of evidences represented by Basic Belief
Assignments (BBAs) defined on a same dichotomous frame
of discernment can be fast and easily done thanks to the
Proportional Conflict Redistribution rule no.5 based canonical
decomposition of the BBAs, proposed recently in [6]. In the
recent paper we consider BF-ICrA based on this promising
technique. Then we show how to apply it for the evaluation of
the Multiple-Objective Ant Colony Optimization (MO-ACO)
algorithm for Wireless Sensor Networks (WSN) deployment.
After a condensed presentation of basics of belief functions
in Section II, including the short description of canonical
decomposition of dichotomous BBAs approach, and the main
steps of fast fusion method of dichotomous BBAs, in Section
III the BF-ICrA method is described and analyzed. Section IV
is devoted to the multi-objective ACO algorithm. In Section
V the results of the fast BF-ICrA method with the MO-
ACO algorithm for WSN layout deployment is presented and
discussed. Conclusion is given in Section VI.

II. BASICS OF BELIEF FUNCTIONS

A. Basic definitions

Belief functions (BF) have been introduced by Shafer in
[7] to model epistemic uncertainty and to combine distinct
sources of evidence thanks to Dempster’s rule of combination.

In Shafer’s framework, we assume that the answer1 of the
problem under concern belongs to a known finite discrete
frame of discernment (FoD) Θ = {θ1, θ2, . . . , θn}, with
n > 1, and where all elements of Θ are mutually exclusive
and exhaustive. The set of all subsets of Θ (including empty
set ∅ and Θ) is the power-set of Θ denoted by 2Θ. A proper
Basic Belief Assignment (BBA) associated with a given source
of evidence is defined [7] as a mapping m(·) : 2Θ → [0, 1]
satisfying m(∅) = 0 and

∑
A∈2Θ m(A) = 1. The quantity

m(A) is called the mass of A committed by the source of
evidence. Belief and plausibility functions are respectively
defined from a proper BBA m(·) by

Bel(A) =
∑

B∈2Θ|B⊆A

m(B) (1)

and
Pl(A) =

∑
B∈2Θ|A∩B 6=∅

m(B) = 1− Bel(Ā). (2)

where Ā is the complement of A in Θ.

Bel(A) and Pl(A) are usually interpreted respectively as
lower and upper bounds of an unknown (subjective) probabil-
ity measure P (A). The quantities m(·) and Bel(·) are one-
to-one and linked by the Möbius inverse formula (see [7], p.
39). A is called a Focal Element (FE) of m(·) if m(A) > 0.
When all focal elements are singletons, m(·) is called a
Bayesian BBA [7] and its corresponding Bel(·) function is
equal to Pl(·) and they are homogeneous to a (subjective)
probability measure P (·). The vacuous BBA, representing
a totally ignorant source, is defined as mv(Θ) = 1. A
dichotomous BBA is a BBA defined on a FoD which has only
two proper subsets, for instance Θ = {A, Ā} with A 6= Θ and
A 6= ∅. A dogmatic BBA is a BBA such that m(Θ) = 0. If
m(Θ) > 0 the BBA m(·) is nondogmatic. A simple BBA is
a BBA that has at most two focal sets and one of them is Θ.
A dichotomous non dogmatic mass of belief is a BBA having
three focal elements A, Ā and A ∪ Ā with A and Ā subsets
of Θ.

In his Mathematical Theory of Evidence [7], Shafer pro-
posed to combine s ≥ 2 distinct sources of evidence repre-

1i.e. the solution, or the decision to take.



sented by BBAs with Dempster’s rule (i.e. the normalized con-
junctive rule), which unfortunately behaves counterintuitively
both in high and low conflicting situations as reported in [8]–
[11]. In our previous works (see [12], Vol. 2 and Vol. 3 for full
justification and examples) we did propose new rules of combi-
nation based on different Proportional Conflict Redistribution
(PCR) principles, and we have shown the interest of the PCR
rule No 5 (PCR5) for combining two BBAs, and PCR rule
No 6 (PCR6) for combining more than two BBAs altogether
[12], Vol. 2. PCR6 coincides with PCR5 when one combines
two sources. The difference between PCR5 and PCR6 lies in
the way the proportional conflict redistribution is done as soon
as three (or more) sources are involved in the fusion. PCR5
transfers the conflicting mass only to the elements involved in
the conflict and proportionally to their individual masses, so
that the specificity of the information is entirely preserved in
this fusion process.

The general (complicate) formulas for PCR5 and PCR6
rules are given in [12], Vol. 2. The fusion of two BBAs based
on PCR5 (or PCR6) rule which will be use for canonical
decomposition of a dichotomous BBA is obtained by the
formula

mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑
X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) +m2(X2)
+

m2(X)2m1(X2)

m2(X) +m1(X2)
] (3)

where all denominators in (3) are different from zero. If a
denominator is zero, that fraction is discarded.

From the implementation point of view, PCR6 is simpler
to implement than PCR5. For convenience, very basic (not
optimized) MatlabTMcodes of PCR5 and PCR6 fusion rules
can be found in [12], [13] and from the toolboxes repository
on the web [14]. The main drawback of PCR5 and PCR6 rules
is their very high combinatorial complexity when the number
of source is big, as well as the cardinality of the FoD. In this
case, PCR5 or PCR6 rules cannot be used directly because
of memory overflow. Even for combining BBAs defined on a
simple dichotomous FoD as those involved in the Inter-Criteria
Analysis (ICrA), the computational time for combining more
than 10 sources can take several hours2. That is why a fast
fusion method to combine dichotomous BBAs is necessary,
and we present it in the next subsections.

B. Canonical decomposition of dichotomous BBA

A FoD Θ = {A, Ā} is called dichotomous if it consists
of only two proper subsets A and Ā with A ∪ Ā = Θ and
A ∩ Ā = ∅, where Ā is the complement of A in Θ and A is
different from Θ and from Empty-Set. We consider a given
proper BBA m(·) : 2Θ → [0, 1] of the general form

m(A) = a, m(Ā) = b, m(A ∪ Ā) = 1− a− b (4)

2with a MacBook Pro 2.8 GHz Intel Core i7 with 16 Go 1600 MHz DDR3
memory running MatlabTMR2018a.

The canonical decomposition problem consists in finding the
two following simple proper BBAs mp and mc of the form

mp(A) = x, mp(A ∪ Ā) = 1− x (5)

mc(Ā) = y, mc(A ∪ Ā) = 1− y (6)

with (x, y) ∈ [0, 1]× [0, 1], such that m = Fusion(mp,mc),
for a chosen rule of combination denoted by Fusion(·, ·). The
simple BBA mp(·) is called the pro-BBA (or pro-evidence)
of A, and the simple BBA mc(·) the contra-BBA (or contra-
evidence) of A. The BBA mp(·) is interpreted as a source
of evidence providing an uncertain evidence in favor of A,
whereas mc(·) is interpreted as a source of evidence providing
an uncertain contrary evidence about A.

In [6], we have shown that this decomposition is possible
with Dempster’s rule only if 0 < a < 1, 0 < b < 1 and
a + b < 1, and we have x = a

1−b and y = b
1−a . However,

any dogmatic BBA m(A) = a, m(Ā) = b with a + b = 1
is not decomposable from Dempster’s rule for the case when
(a, b) 6= (1, 0) and (a, b) 6= (0, 1), and the dogmatic BBAs
m(A) = 1, m(Ā) = 0, or m(A) = 0, m(Ā) = 1 have
infinitely many decompositions based on Dempster’s rule of
combination. We have also proved that this canonical decom-
position cannot be done from conjunctive, disjunctive, Yager’s
[15] or Dubois-Prade [16] rules of combination, neither from
the averaging rule. The main result of [6] is that this canonical
decomposition is unique and is always possible in all cases
using the PCR5 rule of combination. This is very useful to
implement a fast efficient approximating fusion method of
dichotomous BBAs as presented in details in [5]. We recall
the following two important theorems proved in [6].

Theorem 1: Consider a dichotomous FoD Θ = {A, Ā} with
A 6= Θ and A 6= ∅ and a nondogmatic BBA m(·) : 2Θ → [0, 1]
defined on Θ by m(A) = a, m(Ā) = b, and m(A ∪ Ā) =
1 − a − b, where a, b ∈ [0, 1] and a + b < 1. Then the BBA
m(·) has a unique canonical decomposition using PCR5 rule
of combination of the form m = PCR5(mp,mc) with pro-
evidence mp(A) = x, mp(A∪Ā) = 1−x and contra-evidence
mc(Ā) = y, mc(A ∪ Ā) = 1− y where x, y ∈ [0, 1].

Theorem 2: Any dogmatic BBA defined by m(A) = a and
m(Ā) = b, where a, b ∈ [0, 1] and a+ b = 1, has a canonical
decomposition using PCR5 rule of combination of the form
m = PCR5(mp,mc) with mp(A) = x, mp(A ∪ Ā) = 1− x
and mc(Ā) = y, mc(A ∪ Ā) = 1− y where x, y ∈ [0, 1].

Theorems 1 & 2 prove that the decomposition based on
PCR5 always exists and it is unique for any dichotomous
(nondogmatic, or dogmatic) BBA.

For the case of dichotomous nondogmatic BBA considered
in Theorem 1, one has to find x and y solutions of the system

a = x(1− y) +
x2y

x+ y
=
x2 + xy − xy2

x+ y
(7)

b = (1− x)y +
xy2

x+ y
=
y2 + xy − x2y

x+ y
(8)



under the constraints (a, b) ∈ [0, 1]2, and 0 < a + b < 1.
The explicit expression of x and y are difficult to obtain
analytically (even with modern symbolic computing systems
like MathematicaTM, or MapleTM) because one has a quartic
equation to solve whose general analytical expression of its
solutions is very complicate. Fortunately, the solutions can be
easily calculated numerically by these computing systems, and
even with MatlabTMsystem (thanks to the fsolve function) as
soon as the numerical values are committed to a and to b, and
this is what we use in our simulations.

C. Fast Fusion of dichotomous BBAs

The main idea for making the fast fusion of dichotomous
BBAs ms(.), for s = 1, 2, . . . , S defined on the same FoD Θ
is based on the three following main steps:

1) In the first step, one decomposes canonically each di-
chotomous BBA ms(·) into its pro and contra evidences
mp,s = (mp,s(A),mp,s(Ā),mp,s(A∪ Ā)) = (xs, 0, 1−
xs) and mc,s = (mc,s(A),mc,s(Ā),mc,s(A ∪ Ā)) =
(0, ys, 1− ys),

2) In the second setp, one combines the pro-evidences
mp,s for s = 1, 2, . . . , S altogether to get a global
pro-evidence mp, and in parallel one combines all the
contra-evidences mc,s for s = 1, 2, . . . , S altogether to
get a global contra-evidence mc. The fusion step of pro
and contra evidences is based on conjunctive rule of
combination.

3) Once mp and mc are calculated, then one combines
them with PCR5 fusion rule to get the final result.

Because the PCR5 rule of combination is not associative, the
fusion of the canonical BBAs followed by their PCR5 fusion
will not provide in general the same result as the direct fusion
of the dichotomous BBAs altogether but only an approximate
result, which is normal. However, this new fusion approach is
interesting because the fusion of the pro-evidence mp,s (resp.
contra-evidences mc,s) is very simple because there is non
conflict between mp,s (resp. between mc,s), so that their fusion
can be done quite easily and a large number of sources can be
combined without a high computational burden. In fact, with
this fusion approach, only one PCR5 fusion step of simple
(combined) canonical BBAs is needed at the very end of the
fusion process. In [5], we have proved with a Monte-Carlo
simulation analysis that the approximation obtained by this
new fusion method based on the fusion of pro-evidences and
contra-evidences with respect to the direct fusion of the BBAs
with PCR5 (or PCR6 when considering more than two sources
to combine) is effective because the agreement between the
decision taken from the direct fusion method, and the indirect
(canonical decomposition based) method is very good. This
new fusion method based on this canonical decomposition
does not suffer of combinatorial complexity limitation which is
of great interest in some applications because many (hundreds
or even thousands) of dichotomous BBAs could be easily
combined very quickly. Actually with this method what takes
a bit time is only the canonical decomposition done by the

numerical solver. Our analysis [5] has shown that complexity
of this fast approach is quasi-linear with the number of sources
to combine.

III. THE BF-ICRA METHOD

In [1], we did present an improved version of Atanassov’s
Inter-Criteria Analysis (ICrA) method [2]–[4] based on belief
functions. This new method has been named BF-ICrA (Belief
Function based Inter-Criteria Analysis) for short. It has already
been applied to GPS surveying problems in [17]. We present
briefly in this section the principles of BF-ICrA.

BF-ICrA starts with the construction of an M × N BBA
matrix M = [mij(·)] from the score matrix S = [Sij ]. The
BBA matrix M is obtained as follows - see [18] for details
and justification.

mij(Ai) = Belij(Ai) (9)
mij(Āi) = Belij(Āi) = 1− Plij(Ai) (10)

mij(Ai ∪ Āi) = Plij(Ai)−Belij(Ai) (11)

where3

Belij(Ai) , Supj(Ai)/A
j
max (12)

Belij(Āi) , Infj(Ai)/A
j
min (13)

with

Supj(Ai) ,
∑

k∈{1,...M}|Skj≤Sij

|Sij − Skj | (14)

Infj(Ai) , −
∑

k∈{1,...M}|Skj≥Sij

|Sij − Skj | (15)

and

Aj
max , max

i
Supj(Ai) (16)

Aj
min , min

i
Infj(Ai) (17)

For another criterion Cj′ and the j′-th column of the score
matrix we will obtain another set of BBA values mij′(·).
Applying this method for each column of the score matrix we
are able to compute the BBA matrix M = [mij(·)] whose each
component is in fact a triplet (mij(Ai),mij(Āi),mij(Ai ∪
Āi)) of BBA values in [0, 1] such that mij(Ai) +mij(Āi) +
mij(Ai ∪ Āi)) = 1 for all i = 1, . . . ,M and j = 1, . . . , N .

The next step of BF-ICrA approach is the construction of
the N × N Inter-Criteria Matrix K = [Kjj′ ] from M × N
BBA matrix M = [mij(·)] where elements Kjj′ corresponds
to the BBA (mjj′(θ),mjj′(θ̄),mjj′(θ ∪ θ̄)) about positive
consonance θ, negative consonance θ̄ and uncertainty between
criteria Cj and Cj′ respectively. The construction of the triplet
Kjj′ = (mjj′(θ),mjj′(θ̄),mjj′(θ∪ θ̄)) is based on two steps:
• Step 1 (BBA construction): Getting mi

jj′(.).

For each alternative Ai for i = 1, . . . ,M , we
first compute the BBA (mi

jj′(θ),m
i
jj′(θ̄),m

i
jj′(θ ∪

3assuming that Ajmax 6= 0 and Ajmin 6= 0. If Ajmax = 0 then
Belij(Ai) = 0, and if Ajmin = 0 then Plij(Ai) = 1.



θ̄)) for any two criteria j, j′ ∈ {1, 2, . . . , N}. For
this, we consider two sources of evidences (SoE) in-
dexed by j and j′ providing the BBA mij and mij′

defined on the simple FoD {Ai, Āi} and denoted
mij = [mij(Ai),mij(Āi),mij(Ai ∪ Āi)] and mij′ =
[mij′(Ai),mij′(Āi),mij′(Ai∪Āi)]. We also denote Θ =
{θ, θ̄} the FoD about the relative state of the two SoE,
where θ means that the two SoE agree, θ̄ means that they
disagree and θ ∪ θ̄ means that we don’t know. Hence,
two SoE are in total agreement if both commit their
maximum belief mass to the same element Ai or to
the same element Āi. Similarly, two SoE are in total
disagreement if each one commits its maximum mass
of belief to one element and the other to its opposite,
that is if one has mij(Ai) = 1 and mij′(Āi) = 1, or
if mij(Āi) = 1 and mij′(Ai) = 1. Based on this very
simple and natural principle, one can now compute the
belief masses as follows:

mi
jj′(θ) = mij(Ai)mij′(Ai) +mij(Ā)mij′(Ā) (18)

mi
jj′(θ̄) = mij(Ai)mij′(Āi) +mij(Āi)mij′(Ai) (19)

mi
jj′(θ ∪ θ̄) = 1−mi

jj′(θ)−mi
jj′(θ̄) (20)

mi
jj′(θ) represents the degree of agreement between the

BBA mij(·) and mij′(·) for the alternative Ai, mi
jj′(θ̄)

represents the degree of disagreement of the two BBAs
and mi

jj′(θ ∪ θ̄) the level of uncertainty (i.e. how much
we don’t know if they agree or disagree). By construction
mi

jj′(·) = mi
j′j(·), mi

jj′(θ),m
i
jj′(θ̄),m

i
jj′(θ ∪ θ̄) ∈ [0, 1]

and mi
jj′(θ) + mi

jj′(θ̄) + mi
jj′(θ ∪ θ̄) = 1. This BBA

modeling permits to build a set of M symmetrical
Inter-Criteria Belief Matrices (ICBM) Ki = [Ki

jj′ ] of
dimension N ×N relative to each alternative Ai whose
components Ki

jj′ correspond to the triplet of BBA values
mi

jj′ = (mi
jj′(θ),m

i
jj′(θ̄),m

i
jj′(θ ∪ θ̄)) modeling the

belief of agreement and of disagreement between Cj and
Cj′ based on Ai.

• Step 2 (fusion): Getting mjj′(.).

In this step, one needs to combine the BBAs mi
jj′(.)

for i = 1, . . . ,M altogether to get the component
Kjj′ = (mjj′(θ),mjj′(θ̄),mjj′(θ ∪ θ̄)) of the Inter-
Criteria Belief matrix4 (ICBM) K = [Kjj′ ]. For this
and from the theoretical standpoint, we recommend to
use the PCR6 fusion rule [12] (Vol. 3) because of known
deficiencies of Dempster’s rule.

Once the global Inter-Criteria Belief Matrix (ICBM) K =
[Kjj′ = (mjj′(θ),mjj′(θ̄),mjj′(θ ∪ θ̄))] is calculated, we
can identify the criteria that are in strong agreement, in
strong disagreement, and those on which we are uncertain.
For identifying the criteria that are in strong agreement, we
evaluate the distance of each component of Kjj′ with the BBA

4For presentation convenience, the ICBM K = [Kjj′ =
(mjj′ (θ),mjj′ (θ̄),mjj′ (θ ∪ θ̄))] is decomposed into three matrices
K(θ) = [Kθ

jj′ = mjj′ (θ)], K(θ̄) = [K θ̄
jj′ = mjj′ (θ̄)] and

K(θ ∪ θ̄) = [Kθ∪θ̄
jj′ = 1−mjj′ (θ)−mjj′ (θ̄)].

representing the best agreement state and characterized by the
specific BBA5 mT (θ) = 1. From a similar approach we can
also identify, if we want, the criteria that are in very strong
disagreement using the distance of mjj′(·) with respect to the
BBA representing the best disagreement state characterized
by the specific BBA mF (θ̄) = 1. We use the belief interval
distance dBI(m1,m2) presented in [19] for measuring the
distance between the two BBAs.

A. Fast BF-ICrA method

The computational complexity of BF-ICrA is of course
higher than the complexity of ICrA because it makes a more
precise evaluation of local and global inter-criteria belief
matrices with respect to inter-criteria matrices calculated by
Atanassov’s ICrA. The overall reduction of the computational
burden of the original MCDM problem thanks to BF-ICrA
depends highly on the problem under concern, the complexity
and cost to evaluate each criteria involved in it, as well as the
number of redundant criteria identified by BF-ICrA method.

The main drawback of BF-ICrA method is the PCR6
combination required in its step 2 for combining altogether
the dichotomous BBAs mi

jj′(.). Because of combinatorial
complexity of PCR6 rule, it cannot work in reasonable com-
putational time as soon as the number of sources to combine
altogether is greater than 10, which prevents its use for solving
ICrA problems involving more than 10 alternatives (as in
the examples 2 and 3 presented in section V). That is why
it is necessary to adapt the original BF-ICrA method for
working with a large number of alternatives and criteria. For
this, we can in step 2 of BF-ICrA exploit the method for
the fast fusion of dichotomous BBAs presented in section
II-C. More precisely, each dichotomous BBA mi

jj′(.) will be
canonically decomposed in its pro-evidence mi

jj′,p(.) and its
contra-evidence mi

jj′,c(.) that will be combined separately to
get the global pro-evidence mjj′,p(.) and the global contra-
evidence mjj′,c(.). Then, the BBAs mjj′,p(.) and mjj′,c(.)
are combined with PCR5 rule to get the BBAs mjj′(.) and,
finally, the global Inter-Criteria Belief Matrix K = [Kjj′ =
(mjj′(θ),mjj′(θ̄),mjj′(θ ∪ θ̄))]. The principle of this mod-
ified step 2 of BF-ICrA is summarized in the Figure 1 for
convenience.

Another simpler fusion method to combine the dichotomous
BBAs mi

jj′(.) would just consist to average them. In section V,
we will show how these two methods behave in the examples
chosen for the evaluation of MO-ACO Algorithm for optimal
WSN deployment.

IV. MULTI-OBJECTIVE ACO ALGORITHM

Recently Wireless Sensor Networks (WSNs) have attracted
the attention of the research scientists community, conditioned
by a set of challenges: theoretical and practical. WSNs consists
of distributed sensor nodes and their main purpose is to
monitor the real-time environmental status, based on gathering
available sensor information, processing and transmitting the

5We use the index T in the notation mT (·) to refer that the agreement is
true, and F in mF (·) to specify that the agreement is false.



Figure 1. Principle of fast fusion of mi
jj′ (.) of Step 2 of BF-ICrA.

collected data to the specified remote base station. It is a
promising technology that is used in a coverage of application
requiring minimum human contribution, ranging from civil
and military to healthcare and environmental monitoring. One
of the key mission of WSN is the full surveillance of the moni-
toring region with a minimal number of sensors and minimized
energy consumption of the network. The lifetime of the sensors
is strongly related to the amount of the power loaded in the
battery, that is why the control of the energy consumption
of sensors is an important active research problem. The small
energy storage capacity of sensor nodes intrudes the possibility
to gather the information directly to the main base. Because
of this they transfer their data to the so called High Energy
Communication Node (HECN), which is able to collect the
information from across the network and to transmit it to the
base computer for processing. The sensors transmit their data
to the HECN, either directly or via hops, using closest sensors
as communication relays. The WSN can have large numbers
of nodes and the problem can be very complex.

In order to solve successfully the key mission of WSNs, in
[20], we did apply multi-objective Ant Colony Optimization
(ACO) to solve this hard, from the computational point of
view, telecommunication problem. The number of ants is
one of the key algorithm parameters in the ACO and it is
important to find the optimal number of ants needed to achieve
good solutions with minimal computational resources. In [20],
the optimal solution was obtained by applying the classical
Atanassov’s ICrA method. In the next section we will present
the results obtained by the fast BF-ICrA approach and compare
their results.

The problem of designing a WSN is multi-objective, with
two objective functions: 1) one wants to minimize the energy
consumption of the nodes in the network, and 2) one wants
to minimize the number of nodes. The full coverage of the
network and connectivity are considered as constraints. For
solving this problem, we have proposed to use a M ulti-

Objective Ant Colony Optimization (MO-ACO) algorithm in
[20] and we have studied the influence of the number of ants
on the algorithm performance and quality of the achieved solu-
tions. The computational resources, which the algorithm needs,
are not negligible. The computational resources depends on the
size of the solved problem and on the number of ants. The aim
is to find a minimal number of ants which allow the algorithm
to find good solution for WSN deployment.

The ACO algorithm uses a colony of artificial ants that
behave as cooperating agents. With the help of the pheromone
and the heuristic information they try to construct better solu-
tions and to find the optimal ones. The pheromone corresponds
to the global memory of the ants and the heuristic information
is a some preliminary knowledge of the problem. The problem
is represented by a graph and the solution is represented by
a path in the graph or by tree in the graph. Ants start from
random nodes and construct feasible solutions. When all ants
construct their solution the pheromone is updated. The new,
added, pheromone depends to the quality of the solution. The
elements of the graph, which belong to better solutions will
receive more pheromone and will be more desirable in the
next iteration. In our implementation, we use the MAX-MIN
Ant System (MMAS) which is one of the most successful
ant approaches originally presented in [21]. In our case, the
graph of the problem is represented by a square grid. The
nodes of the graph are enumerated. The ants will deposit
their pheromone on the nodes of the grid. We will deposit
the sensors on the nodes of the grid too. The solution is
represented by tree. An ant starts to create a solution starting
from random node, which communicates with the HECN.
Construction of the heuristic information is a crucial point
in the ant algorithms. Our heuristic information represented
by (21) is a product of three values.

ηij(t) = sij lij(1− bij) (21)

where sij is the number of the new points (nodes of the
graph) which the new sensor will cover, and which are not
covered by other sensors, and

lij =

{
1 if communication exists ;
0 if there is no communication.

(22)

and where bij is the solution matrix. The matrix element
bij equals 1 when there is sensor on this position, otherwise
bij = 0. With sij , we try to increase the number of points
covered by one sensor and thus to decrease the number of
sensors we need. With lij , we guarantee that all sensors
will be connected. With bij we guarantee that maximum one
sensor will be mapped on the same point. The search stops
when transition probability pij = 0 for all values of i and
j. It means that there are no more free positions, or that
all area is fully covered. At the end of every iteration the
quantity of the pheromone is updated according to the rule:
τij ← ρτij + ∆τij , with the increment ∆τij = 1/F (k) if
(i, j) belongs to the non-dominated solution constructed by
ant k, or ∆τij = 0 otherwise. The parameter ρ is a pheromone



decreasing parameter chosen in [0, 1]. This parameter ρ models
evaporation in the nature and decreases the influence of old
information on the search process. After that, we add the new
pheromone, which is proportional to the value of the fitness
function constructed as F (k) = f1(k)

maxi(f1(i)) + f2(k)
maxi(f2(i)) ,

where f1(k) is the number of sensors proposed by the k-th ant,
and f2(k) is the energy of the solution of the k-th ant. These
are also the objective functions of the WSN layout problem.
We normalize the values of two objective functions with their
maximal achieved values from the first iteration.

V. APPLICATION OF THE FAST BF-ICRA METHOD

In this section we present the results of the fast BF-
ICrA method with the MO-ACO algorithm for WSN layout
deployment. Fidanova and Roeva have developed a software,
which realizes the MO-ACO algorithm. This software can
solve the problem at any rectangular area, the communication
and the coverage radius can be different and can have any
positive value. We can have regions in the area. The program
was written in C language, and the tests were run on computer
with an Intel Pentium 2.8GHz processor. In their tests, they
use an example where the area is square. The coverage and
communication radii cover 30 points. The HECN is fixed in
the centre of the area. In the sequel we consider three examples
of areas with three sizes: 350× 350 points, 500× 500 points,
and 700×700 points. The MO-ACO algorithm is based on 30
runs for each number of ants. We extract the Pareto front from
the solutions of these 30 runs, and we show the achieved non
dominated solutions (approximate Pareto fronts) for each case
on which the BF-ICrA will be applied. The score matrices for
each case is given in Tables I, II and III [20].

S =



ACO1 ACO2 ACO3 ACO4 ACO5 ACO6 ACO7 ACO8 ACO9 ACO10

111 30 36 30 30 30 30 30 30 30 30
112 30 36 30 30 30 30 30 30 30 30
113 28 35 28 30 30 30 28 28 28 28
114 26 26 26 26 26 26 26 26 26 26
115 26 26 26 26 26 26 26 26 26 26
116 26 26 26 26 26 26 25 25 26 25


Table I

THE 6× 10 SCORE MATRIX S FOR 350× 350 CASE (EXAMPLE 1).

S =



ACO1 ACO2 ACO3 ACO4 ACO5 ACO6 ACO7 ACO8 ACO9 ACO10

223 90 96 90 90 89 81 90 90 90 90
224 61 96 89 89 88 65 61 59 57 71
225 61 96 74 58 60 58 57 58 57 57
226 59 95 73 57 59 57 56 58 57 57
227 60 57 57 57 57 56 56 57 57 57
228 60 57 57 57 57 56 56 57 54 57
229 58 57 57 55 57 56 56 56 54 56
230 57 57 57 55 57 52 56 54 54 56
231 57 55 57 55 55 52 56 54 54 56
232 57 55 55 51 54 50 52 51 54 48
233 57 55 55 51 54 50 51 51 54 48
234 57 55 55 51 53 50 51 48 53 48
235 57 55 54 51 53 50 51 48 50 48
236 57 55 54 51 53 50 51 48 50 48
237 57 55 54 51 53 50 51 48 50 48
238 57 55 53 51 53 50 51 48 50 48
239 56 55 53 50 53 50 51 48 50 48
240 53 53 53 50 53 50 51 48 50 48
241 53 53 53 50 53 50 51 48 50 48
242 53 53 53 50 53 50 51 48 50 48
243 53 53 53 50 53 50 51 48 50 48
244 53 53 53 50 52 50 51 48 50 48


Table II

THE 22× 10 SCORE MATRIX S FOR 500× 500 CASE (EXAMPLE 2).

Each row of S corresponds to the number of sensors used in
WSN to cover the area as indicated in the first column at the
left side of the score matrix. Each column of S corresponds

S =



ACO1 ACO2 ACO3 ACO4 ACO5 ACO6 ACO7 ACO8 ACO9 ACO10

437 173 173 173 173 173 118 168 172 261 172
438 173 173 173 173 173 118 112 117 260 172
439 172 173 173 173 140 93 110 115 131 172
440 172 173 173 173 115 93 110 114 111 162
441 172 173 173 122 111 93 110 114 111 110
442 172 173 173 114 111 93 110 112 111 110
443 172 150 123 114 111 93 110 112 111 110
444 124 112 112 106 107 93 110 102 111 105
445 117 112 112 106 107 93 110 102 108 105
446 117 112 105 105 105 93 107 102 104 105
447 117 112 105 105 105 93 105 102 102 105
448 115 111 105 105 105 93 105 102 102 105
449 115 111 105 105 105 93 102 99 102 105
450 113 111 105 105 105 93 102 99 102 105
451 113 109 105 105 105 93 102 99 97 105
452 113 109 105 105 105 93 99 99 97 104
453 113 109 105 105 105 93 99 99 97 104
454 113 109 105 105 96 93 96 96 96 104
455 106 106 105 105 96 93 96 96 96 97


Table III

THE 19× 10 SCORE MATRIX S FOR 700× 700 CASE (EXAMPLE 3).

to ACOj algorithm used with j ants (j = 1, 2, . . . , 10). Each
element Sij of S corresponds to the energy corresponding to
this number of sensors and with the number of ants used for
Multiple Objective ACO algorithm.

Application of BF-ICrA in example 1 (350× 350 points)

In this example, one sees from the score matrix of the
Table I that ACO1, ACO3 and ACO9 algorithms perform
equally for all alternatives (i.e. all rows) and they define
a first group/cluster of methods providing exactly the same
performances. Similarly, ACO4, ACO5 and ACO6 constitute a
second group of algorithms. The third group is made of ACO7,
ACO8 and ACO10 algorithms. It is worth noting that these
three groups {ACO1,ACO3,ACO9}, {ACO4,ACO5,ACO6},
and {ACO7,ACO8,ACO10} differ only very slightly, whereas
the ACO2 algorithm (i.e the 2nd column of the score matrix
S) differs a bit more from all the three aforementioned groups.

Example 1 with fast PCR6: If we apply the fast BF-ICrA
method using approximate PCR6 fusion rule based on the
canonical decomposition of the M = 6 dichotomous BBAs
(mi

jj′(θ),m
i
jj′(θ̄),m

i
jj′(θ∪ θ̄)), we get the matrix of mass of

belief of agreement between criteria given in Table6 IV.


0.865 0.821 0.865 0.790 0.790 0.790 0.806 0.806 0.865 0.806
0.821 0.928 0.821 0.950 0.950 0.950 0.805 0.805 0.821 0.805
0.865 0.821 0.865 0.790 0.790 0.790 0.806 0.806 0.865 0.806
0.790 0.950 0.790 1.000 1.000 1.000 0.795 0.795 0.790 0.795
0.790 0.950 0.790 1.000 1.000 1.000 0.795 0.795 0.790 0.795
0.790 0.950 0.790 1.000 1.000 1.000 0.795 0.795 0.790 0.795
0.806 0.805 0.806 0.795 0.795 0.795 0.843 0.843 0.806 0.843
0.806 0.805 0.806 0.795 0.795 0.795 0.843 0.843 0.806 0.843
0.865 0.821 0.865 0.790 0.790 0.790 0.806 0.806 0.865 0.806
0.806 0.805 0.806 0.795 0.795 0.795 0.843 0.843 0.806 0.843


Table IV

MATRIX K≈PCR6(θ) FOR EXAMPLE 1.

The matrix of distances to full agreement based on fast BF-
ICrA method, denoted by D≈PCR6(θ), is given in Table V.

In examining the table V, one sees that ACO1, ACO3
and ACO9 are at a small distance 0.134, with respect to
other algorithms, so that they belong to the same group
and behave similarly. Same remarks holds for the group
{ACO4,ACO5,ACO6} because its inter-distance is zero,

6All the numerical values presented in the matrices have been truncated at
their 3rd digit for typesetting convenience.





0.134 0.178 0.134 0.209 0.209 0.209 0.193 0.193 0.134 0.193
0.178 0.071 0.178 0.049 0.049 0.049 0.194 0.194 0.178 0.194
0.134 .0.178 0.134 0.209 0.209 0.209 0.193 0.193 0.134 0.193
0.209 0.049 0.209 0 0 0 0.204 0.204 0.209 0.204
0.209 0.049 0.209 0 0 0 0.204 0.204 0.209 0.204
0.209 0.049 0.209 0 0 0 0.204 0.204 0.209 0.204
0.193 0.194 0.193 0.204 0.204 0.204 0.156 0.156 0.193 0.156
0.193 0.194 0.193 0.204 0.204 0.204 0.156 0.156 0.193 0.156
0.134 0.178 0.134 0.209 0.209 0.209 0.193 0.193 0.134 0.193
0.193 0.194 0.193 0.204 0.204 0.204 0.156 0.156 0.193 0.156


Table V

MATRIX D≈PCR6(θ) WITH FAST BF-ICRA FOR EXAMPLE 1.

and for the group {ACO7,ACO8,ACO10} because its inter-
distance is 0.156. In a relative manner ACO2 appears closer
to {ACO4,ACO5,ACO6}, than {ACO1,ACO3,ACO9} or
{ACO7,ACO8,ACO10}, which intuitively makes sense when
comparing directly the columns of the matrix of Table I.

Example 1 with averaging fusion: The matrix of distances
to full agreement based on BF-ICrA method using average
fusion rule, denoted by DAver.(θ), is given in Table VI.



0.084 0.082 0.084 0.081 0.081 0.081 0.156 0.156 0.084 0.156
0.082 0.030 0.082 0.016 0.016 0.016 0.142 0.142 0.082 0.142
0.084 0.082 0.084 0.081 0.081 0.081 0.156 0.156 0.084 0.156
0.081 0.016 0.081 0 0 0 0.138 0.138 0.081 0.138
0.081 0.016 0.081 0 0 0 0.138 0.138 0.081 0.138
0.081 0.016 0.081 0 0 0 0.138 0.138 0.081 0.138
0.156 0.142 0.156 0.138 0.138 0.138 0.198 0.198 0.156 0.198
0.156 0.142 0.156 0.138 0.138 0.138 0.198 0.198 0.156 0.198
0.084 0.082 0.084 0.081 0.081 0.081 0.156 0.156 0.084 0.156
0.156 0.142 0.156 0.138 0.138 0.138 0.198 0.198 0.156 0.198


Table VI

MATRIX DAVER.(θ) WITH BF-ICRA USING AVERAGING RULE FOR
EXAMPLE 1.

One sees that only the group {ACO4,ACO5,ACO6}
can be clearly identified based on the averaging fu-
sion rule. The other groups ACO2 appears also close to
{ACO4,ACO5,ACO6}. But ACO1, ACO3 and ACO9 are
closer to {ACO4,ACO5,ACO6} also than in-between. Same
remarks holds for ACO7, ACO8, and ACO10. So one sees that
the averaging fusion rule is not recommended for making the
BF-ICrA in this example.

Application of BF-ICrA in example 2 (500× 500 points)

Example 2 with fast PCR6: If we apply the fast BF-ICrA
method using approximate PCR6 fusion rule based on the
canonical decomposition of the M = 22 dichotomous BBAs
(mi

jj′(θ),m
i
jj′(θ̄),m

i
jj′(θ ∪ θ̄)), we get the following matrix

of distances to full agreement, denoted by D≈PCR6(θ), given
in Table VII.



0.158 0.376 0.338 0.300 0.286 0.279 0.247 0.251 0.225 0.280
0.376 0.324 0.426 0.456 0.437 0.453 0.457 0.433 0.435 0.449
0.338 0.426 0.407 0.411 0.382 0.423 0.418 0.402 0.393 0.414
0.300 0.456 0.411 0.349 0.323 0.381 0.368 0.370 0.362 0.363
0.286 0.437 0.382 0.323 0.284 0.348 0.334 0.334 0.328 0.333
0.279 0.453 0.423 0.381 0.348 0.316 0.298 0.317 0.308 0.308
0.247 0.457 0.418 0.368 0.334 0.298 0.235 0.276 0.255 0.283
0.251 0.433 0.402 0.370 0.334 0.317 0.276 0.265 0.260 0.303
0.225 0.435 0.393 0.362 0.328 0.308 0.255 0.260 0.211 0.304
0.280 0.449 0.414 0.363 0.333 0.308 0.283 0.303 0.304 0.277


Table VII

MATRIX D≈PCR6(θ) WITH FAST BF-ICRA FOR EXAMPLE 2.

Based on these results, one sees that no clear group can
be identified but we emphasize in boldface in Table VII the
minimal value for each row of the distance matrix D≈PCR6(θ)

(diagonal elements excluded). We see that ACO2 is at the
farthest distance of ACO1 because D12(θ) = 0.376, but in
the mean time ACO2 is at closest distance to ACO1 because
D2j(θ) > 0.376 (for j > 2) as shown in second line of
Table VII. So we can conclude that ACO2 is not close to
any other algorithm in fact. If we choose a ad-hoc distance
threshold, say for instance 0.28, then we can identify the group
{ACO1,ACO7,ACO8,ACO9}.

Example 2 with averaging fusion: The matrix of distances
to full agreement based on BF-ICrA method using average
fusion rule, denoted by DAver.(θ), is given in Table VIII.



0.361 0.316 0.310 0.311 0.336 0.300 0.306 0.316 0.320 0.309
0.316 0.125 0.158 0.198 0.225 0.187 0.216 0.225 0.240 0.206
0.310 0.158 0.165 0.185 0.215 0.178 0.200 0.215 0.227 0.193
0.311 0.198 0.185 0.183 0.216 0.181 0.197 0.217 0.231 0.192
0.336 0.225 0.215 0.216 0.243 0.214 0.231 0.249 0.261 0.226
0.300 0.187 0.178 0.181 0.214 0.159 0.175 0.194 0.210 0.176
0.306 0.216 0.200 0.197 0.231 0.175 0.181 0.202 0.216 0.186
0.316 0.225 0.215 0.217 0.249 0.194 0.202 0.215 0.229 0.204
0.320 0.240 0.227 0.231 0.261 0.210 0.216 0.229 0.233 0.222
0.309 0.206 0.193 0.192 0.226 0.176 0.186 0.204 0.222 0.183


Table VIII

MATRIX DAVER.(θ) WITH BF-ICRA USING AVERAGING RULE FOR
EXAMPLE 2.

Based on the average fusion rule there is no clear
clustering of algorithms. However based on shortest inter-
distance we could make the following distinct pairwise group-
ings {ACO2,ACO3}, {ACO6,ACO7}, {ACO4,ACO10},
{ACO8,ACO9} and {ACO1,ACO5} if necessary, but remem-
ber that average fusion rule cannot provide the best result as
shown in Example 1.

Application of BF-ICrA in example 3 (700× 700 points)

Example 3 with fast PCR6: If we apply the fast BF-ICrA
method using approximate PCR6 fusion rule based on the
canonical decomposition of the M = 19 dichotomous BBAs
(mi

jj′(θ),m
i
jj′(θ̄),m

i
jj′(θ∪ θ̄)), we get the matrix of distances

to full agreement, denoted by D≈PCR6(θ), given in Table IX.


0.313 0.388 0.465 0.498 0.469 0.500 0.426 0.451 0.498 0.477
0.388 0.339 0.403 0.496 0.461 0.500 0.421 0.440 0.497 0.464
0.465 0.403 0.348 0.493 0.456 0.500 0.416 0.437 0.495 0.457
0.498 0.496 0.493 0.362 0.385 0.500 0.376 0.391 0.470 0.303
0.469 0.461 0.456 0.385 0.230 0.380 0.256 0.288 0.300 0.324
0.500 0.500 0.500 0.500 0.380 0 0.312 0.356 0.308 0.500
0.426 0.421 0.416 0.376 0.256 0.312 0.137 0.185 0.272 0.330
0.451 0.440 0.437 0.391 0.288 0.356 0.185 0.205 0.314 0.351
0.498 0.497 0.495 0.470 0.300 0.308 0.272 0.314 0.283 0.438
0.477 0.464 0.457 0.303 0.324 0.500 0.330 0.351 0.438 0.228


Table IX

MATRIX D≈PCR6(θ) WITH FAST BF-ICRA FOR EXAMPLE 3.

We observe that the average distance between ACO algo-
rithms is much higher than in Tables V and VII of examples
1 and 2. This shows clearly the difficulty to precisely identify
the clusters of similar algorithms because only few ACO
algorithms perform actually very well for this third example.
Eventually, and based on shortest inter-distance we could make
the first pairwise group {ACO7,ACO8} because D78(θ) =
0.185 is the minimal inter-distance we have between the ACO
algorithms. Once the rows and columns of Table IX corre-
sponding to ACO7 and ACO8 are eliminated, then the second
best group will be {ACO5,ACO9} because D59(θ) = 0.300.



Similarly, we will get the group {ACO4,ACO10} because
D4,10(θ) = 0.303, and then the group {ACO1,ACO2} because
D12(θ) = 0.388. Finally we could also cluster ACO3 with
ACO6 because D36(θ) = 0.500, although this distance of
agreement is quite large to be considered as a trustable cluster.

Example 3 with averaging fusion: The matrix of distances
to full agreement based on BF-ICrA method using average
fusion rule, denoted by DAver.(θ), is given in Table X.



0.170 0.154 0.142 0.221 0.351 0.350 0.392 0.345 0.332 0.298
0.154 0.120 0.092 0.167 0.321 0.295 0.369 0.313 0.290 0.261
0.142 0.092 0.042 0.114 0.289 0.237 0.342 0.279 0.242 0.224
0.221 0.167 0.114 0.054 0.255 0.139 0.327 0.260 0.184 0.177
0.351 0.321 0.289 0.255 0.339 0.245 0.391 0.355 0.287 0.324
0.350 0.295 0.237 0.139 0.245 0 0.304 0.242 0.115 0.247
0.392 0.369 0.342 0.327 0.391 0.304 0.390 0.368 0.336 0.387
0.345 0.313 0.279 0.260 0.355 0.242 0.368 0.328 0.288 0.341
0.332 0.290 0.242 0.184 0.287 0.115 0.336 0.288 0.190 0.279
0.298 0.261 0.224 0.177 0.324 0.247 0.387 0.341 0.279 0.261


Table X

MATRIX DAVER.(θ) WITH BF-ICRA USING AVERAGING RULE FOR
EXAMPLE 3.

Surprisingly, the use of averaging rule provides in this
example lower distance values on average with respect to
values given in Table IX. However no clear clustering of
algorithms can be made because only few ACO algorithms
perform actually very well for this third example. If we adopt
the pairwise strategy to cluster algorithms, we will obtain
now as first group {ACO2,ACO3} because D23(θ) = 0.092,
as second group {ACO6,ACO9} because D69(θ) = 0.115,
as third group {ACO4,ACO10} because D4,10(θ) = 0.177,
as fourth group {ACO1,ACO8} because D18(θ) = 0.345,
and finally we could also cluster ACO5 with ACO7 because
D57(θ) = 0.391. one sees that there is no strong correlation
between results obtained from BF-ICrA based on fast PCR6
and those based on averaging rule, which is not surprising
because the rules are totally different. Nevertheless the group
{ACO4,ACO10} is agreed by both methods here.

VI. CONCLUSIONS

The fast Belief Function based Inter-Criteria Analysis
method, using the canonical decomposition of basic belief
assignments defined on a dichotomous frame of discernment
was applied, tested and analysed in this paper. This new
method was applied for evaluating the Multiple-Objective
Ant Colony Optimization (MO-ACO) algorithm for Wireless
Sensor Networks (WSN) deployment. Based on the BF-ICrA
outcomes it was shown a very high correlation with fast
PCR6 rule for the ACO1, ACO3 and ACO9 group, for the
ACO4, ACO5 and ACO6 group, and for the ACO7, ACO8

and ACO10 group of algorithms in example 1 (case of
size 350 × 350) as intuitively expected. This is because the
considered ACO algorithms can solve the problem with good
solution quality in example 1. These high correlations were
not observed in the other two cases for example 2 (case of
size 500 × 500) and 3 (case of size 700 × 700) because
only few ACO algorithms perform actually very well for
these examples. So, if we considered results in case of larger

problem sizes, the BF-ICrA results show that the number of
ants has the significant influence on the obtained results, as
already pointed out in [20].
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