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Levee security assessment is a complex expert assessment process based on several heterogeneous data. In our
previous research works, we applied information fusion techniques to characterize flood protection levees. We
used the proportional conflict redistribution rule no.6 (PCR6) proposed in DSmT (Dezert Smarandache Theory)
framework to combine data from geotechnical and geophysical investigation methods. However, in some cases,
this rule can generate non satisfactory results. Indeed, the uncertainty between several hypotheses (lithological
materials) is overestimated after the fusion process, which is detrimental to decision making in the end. This result
occurs because the PCR6 rule does not preserve the neutrality of the vacuous belief assignment, which can be
judged as being a counter-intuitive behavior. To overcome this problem we present an improved rule that preserves
the neutrality of vacuous belief assignments in the fusion process. Hence, the redistribution of the partial conflict
masses using this new rule does not overestimate the masses associated with partial uncertainties. To illustrate the
use of this new fusion rule in a levee characterization problematic, we simulate data acquisition. Two geophysical
investigation campaigns (electrical resistivity tomography and multi-channel analysis of surface waves methods)
and a geotechnical acquisition campaign (core drillings with particle size analysis) are numerically simulated on
an earthen structure. The objective is to compare and discuss the fusion results obtained using this new rule with
respect to the methodology based on the original PCR6 rule as well as to demonstrate the enhancement of the levee
characterization.

Keywords: Belief functions, levee, cross-disciplinary approach, natural hazards, fusion rules, risk management,
proportional conflict redistribution rule.

1. Introduction
This work is part of a problematic of levee characterization for flood protection. Indeed, these hydraulic
works are mostly old and heterogeneous and their rupture can lead to disastrous consequences such as
human, economic and environmental losses. Since many different materials and construction methods
exist, each flood protection embankment is unique, and the nature of its structure goes hand in hand with
its environment (Sharp et al., 2013). The structures are more or less subject to breakage in weak areas
under specific loads. Reducing the risk of levee rupture requires an improvement of their diagnosis and
therefore to enhance their characterization. First, it relies on technical surveys able to determine if specific
pathologies that could lead to failure mechanisms are present in the levee structure. Methodologies for
the evaluation of these structures usually include geotechnical and geophysical investigation methods.
Geophysical methods are mainly non-intrusive and provide physical information on large volumes of
subsoil but with potential significant uncertainties. Geotechnical investigation methods, on the other
hand, are intrusive and provide more punctual information spatially, but also more precise. These two
sets of methods are complementary. Information fusion is a helpful technique to combine geotechnical
and geophysical data in a complex processing for the levee security assessment based on several hetero-
geneous data. The processing of the data from geophysical and geotechnical investigation methods and
their fusion, taking into account their imperfections and associated spatial distributions, is an essential
issue for the evaluation of earthen levees. A cross-disciplinary fusion approach for the characterization
of lithological materials within the structures has recently been proposed in the mathematical framework
of belief functions Dezert et al. (2019).

In this paper, we present a flawed behavior of PCR6 combination rule attributed to the non neutrality
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of the vacuous BBA (Basic Belief Assignment), and we propose an improvement to this rule (PCR6+) in
order to ensure the neutrality property of the vacuous BBA. This improvement helps in reducing the level
of uncertainty in fusion results by discarding ignorant sources for each partial conflict. To demonstrate
the pertinence and advantages of PCR6+ over PCR6, we compare the obtained results for i) a simple
numerical example and for ii) the fusion of simulated geophysical and geotechnical data on an earthen
levee.

2. Belief Functions
Based on preliminary works done in Dempster (1967, 1968), Shafer has introduced the belief functions
(BF) in Shafer (1976) to model epistemic uncertainty, to reason about uncertainty and to combine
uncertain information. The theory of belief functions is also known as Dempster-Shafer Theory (DST) in
the literature. We assume that the answera of the problem under concern belongs to a known (or given)
finite discrete frame of discernement (FoD) Θ = {θ1, θ2, . . . , θn}, with n > 1, and where all elements
of Θ are exhaustive and exclusiveb. The set of all subsets of Θ (including empty set ∅, and Θ) is the
power-set of Θ denoted by 2Θ. The number of elements (i.e. the cardinality) of 2Θ is 2|Θ|. In this section
we recall the main definitions related with BF and introduce briefly the conjunctive and Dempster-Shafer
rules of combinations.

2.1. Main Definitions
A (normal) basic belief assignment (BBA) associated with a given source of evidence is a mapping
m(·) : 2Θ → [0, 1] satisfying m(∅) = 0 and

∑
A∈2Θ m(A) = 1. The real number m(A) is called the

mass of A committed by the source of evidence. The subset A ∈ 2Θ is called a focal element (FE) of
the BBA m(·) if and only if m(A) > 0. The set of all the focal elements of a BBA m(·) is denoted
FΘ(m) = {X ∈ 2Θ|m(X) > 0}. The set FΘ(m) has at least one focal element, and at most 2|Θ| − 1
focal elements because one has always m(∅) = 0 by the definition of a normal BBA - see Shafer (1976).
Belief and plausibility functions are respectively defined from m(·) by

Bel(A) =
∑

X∈2Θ|X⊆A

m(X) (1)

Pl(A) =
∑

X∈2Θ|A∩X 6=∅

m(X) (2)

where Ā represents the complement of A in Θ, that is Ā , Θ − {A} = {X|X ∈ Θ and X /∈ A}.
The symbol , means equal by definition and the minus symbol denotes the set difference operator - see
Halmos (1974); Li (1999).
Bel(A) and Pl(A) are usually interpreted respectively as lower and upper bounds of an unknown

(subjective) probability measureP (A). The widthPl(A)−Bel(A) of the belief interval [Bel(A), P l(A)]
is usually called the uncertainty on A but it represents in fact the imprecision on the probability of A
granted by the source of evidence. When all the focal elements of a BBA m(·) are singletons this BBA is
called a Bayesian BBA and its correspondingBel(·) function is equal to Pl(·) and they are homogeneous
to a (subjective) probability measure P (·). The vacuous BBA (VBBA for short) representing a totally
ignorant source is defined as mv(Θ) = 1.

2.2. Conjunctive Combination Rule
We consider S ≥ 2 distinct reliable sources of evidence characterized by their BBAms(·) (s = 1, . . . , S)
defined on the same frame of discernment Θc. Their conjunctive fusion, denoted Conj(m1,m2, . . . ,mS),

ai.e. the solution, or the decision to take.
bThis is so-called Shafer’s model of FoD Smarandache and Dezert (2004).
cFor notation simplicity, we omit Θ lower index in the notations of sets of focal elements FΘ(m1), . . . , FΘ(mS), and their
cardinalities are simply written as F1, . . . , and FS .
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corresponds to a (non proper) BBA defined for all A ∈ 2Θ by

m
Conj
1,2,...,S(A) =

∑
Xj∈F(m1,...,mS)
Xj1∩...∩XjS

=A

S∏
i=1

mi(Xji) (3)

where Xj , (Xj1 , Xj2 , . . . , XjS ) is a possible S-uple of focal elements, where j1 ∈ {1, . . . ,F1},
j2 ∈ {1, . . . ,F2}, . . . , and jS ∈ {1, . . . ,FS}. The element Xji is the focal element of the BBA mi(·)
that makes the i-th component of the j-th S-uple Xj . The set F(m1, . . . ,mS) is the set of all possible
S-uples. The cardinality of the set F(m1, . . . ,mS) is noted F for convenience. The total conflicting
mass, denoted mConj

1,2,...,S(∅), is given by

m
Conj
1,2,...,S(∅) =

∑
Xj∈F(m1,...,mS)
Xj1
∩...∩XjS

=∅

S∏
i=1

mi(Xji) (4)

This fusion rule is commutative and associative, and the vacuous BBA mv has a neutral impact, that
is Conj(m1,m2, . . . ,mS ,mv) = Conj(m1,m2, . . . ,mS). Its main drawback is that it does not generate
a proper BBA because mConj

1,2,...,S(∅) > 0 in general. Because the empty set ∅ is the absorbing element for
the conjunctive operation, this rule generates mConj

1,2,...,S(∅) that quickly tends to one after only few steps
of a sequential fusion processing of the sources which is not very useful for decision-making support.
The main interest of this rule is its ability to identify the partial conflicts, and to provide a measure of the
total level of conflict mConj

1,2,...,S(∅) between the sources which can be used to manage (select or discard)
the sources in the fusion process if one prefers, see Dezert et al. (2019) for instance.

2.3. Dempster-Shafer Combination Rule
Dempster-Shafer (DS) rule of combination is the emblematic rule of combination proposed by Shafer in
his Mathematical Theory of Evidence (see Shafer (1976)) which is based on Dempster’s early works (see
Dempster (1967, 1968)). DS rule is nothing but the normalized version of the conjunctive rule. Hence,
DS combination of S > 1 BBAs ms(·) (s = 1, . . . , S) defined on the same frame of discernment Θ,
denoted as DS(m1,m2, . . . ,mS), is a proper BBA defined bymDS

1,2,...,S(∅) = 0, and for allA ∈ 2Θ\{∅}
by

mDS
1,2,...,S(A) =

m
Conj
1,2,...,S(A)

1−mConj
1,2,...,S(∅)

(5)

DS fusion rule is commutative and associative, and the vacuous BBA mv has also a neutral impact
for this rule, but its justification and behavior have been disputed over the years from many counter-
examples involving high or low conflicting sources (from both theoretical and practical standpoints) as
reported in Dezert et al. (2012); Tchamova and Dezert (2012); Dezert and Tchamova (2014). In our
applications that are related with risk assessment and safety, we do not prefer to use DS rule because of
its very serious problems. Actually, many alternative rules of combination existd, and among them we
focus on the new interesting rule based on the proportional conflict redistribution no. 6 (PCR6) principle
(see Smarandache and Dezert (2004), Vol. 3 for details) which is presented in the next section.

3. PCR6 Combination Rule

3.1. PCR6 General Formula
The PCR6 rule of combination has been proposed in Martin and Osswald (2006); Martin et al. (2008) as
an interesting alternative of original PCR rule of combination no. 5 (PCR5) proposed in Smarandache
and Dezert (2005, 2006). The PCR6 rule coincides with the PCR5 rule when one combines only two

dsee Smarandache and Dezert (2004), Vol. 2 for a detailed list of many fusion rules.
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sources (i.e. two BBAs defined on the same FoD). The difference between PCR5 and PCR6 rules lies in
the way the proportional conflict redistribution is done as soon as three (or more) sources are involved in
the fusion. For notation convenience, we define

πj(Xj1 ∩Xj2 ∩ . . . ∩XjS ) ,
S∏
i=1

mi(Xji) (6)

If Xj1 ∩Xj2 ∩ . . . ∩XjS = ∅, then we use the more concise notation πj(∅) instead of πj(Xj1 ∩Xj2 ∩
. . . ∩XjS ), and πj(∅) is called a conflicting mass product.

The PCR6 fusion of S > 2 BBAs is obtained by mPCR6
1,2,...,S(∅) = 0, and for all A ∈ 2Θ \ {∅} by

mPCR6
1,2,...,S(A) = m

Conj
1,2,...,S(A)

+
∑

j∈{1,...,F}|A∈Xj∧πj(∅)[( ∑
i∈{1,...,S}|Xji

=A

mi(Xji)
)
·

πj(∅)∑
X∈Xj

( ∑
i∈{1,...,S}|Xji

=X

mi(Xji)
)] (7)

where ∧ is the logical conjunctione.
We use this general PCR6 formula because it is more easy to implement and to improve than the

original formula given in Martin and Osswald (2006) and in Martin et al. (2008). The PCR6 rule is
quasi-associative and it offers a more refined conflict redistribution than DS rule but it is more complex,
and it does not preserve the neutrality of the vacuous BBA. PCR6 is simpler to implement than PCR5.
When S > 2, PCR6 is better than PCR5 for decision-making as shown in Martin and Osswald (2006).
MatlabTM codes of PCR5 and PCR6 fusion rules can be found in Smarandache and Dezert (2004);
Smarandache et al. (2010), and also from the BFASf repository. The PCR5 formula can be obtained
from the PCR6 formula by just replacing the two summation operators on i ∈ {1, . . . , S}|Xji = A
appearing in (7) by the two product operators on i ∈ {1, . . . , S}|Xji = A, that is∑

i∈{1,...,S}|Xji
=A

→
∏

i∈{1,...,S}|Xji
=A

3.2. Drawback of PCR6 Rule
The PCR6 (resp. PCR5) rule of combination is not associative which means that the fusion of the BBAs
must be done using general formula (7) if one has more than two BBAs to combine, which is not
very convenient. Therefore, the sequential PCR6 (resp. PCR5) combination of S > 2 BBAs are not
in general equal to the global PCR6 (resp. PCR5) fusion of the S BBAs altogether because the order
of the combination of the sources does matter in the sequential combination. Moreover, the PCR6 rule
(resp. PCR5) can become computationally intractable for combining a large number of sources and for
working with large FoD. This is a well-known limitation of this rule, but this is the price to pay to
get better results than with DS rule. Aside the complexity of this rule, it is worth to mention that the
neutral impact property of the vacuous BBAmv is lost in general when considering the PCR6 (or PCR5)
combination of S > 2 BBAs altogether because of the proportional conflict redistribution principles
used in PCR6 (resp. PCR5) rule. The non neutral impact of the vacuous BBA is clearly a drawback
because it is naturally expected that the vacuous BBA must not impact the fusion result in the fusion
process because the vacuous BBA brings no useful information to exploit. Also a BBA that is close to
the vacuous BBA should not have a strong impact on the fusion result because it brings only a very
little valuable information. This can be seen as a flaw of the behavior of PCR6 (resp. PCR5) rule of
combination. To emphasize clearly this flaw, we give in the example 1 a case where the mass committed
to some partial uncertainties can increase more than necessary with PCR6 rule if we have a BBA which
is close (or equal) to the vacuous BBA, which is detrimental for the quality of the fusion result and for
decision-making (because the result is more incertain than it should be, and consequently the decision is
more difficult to make).

ei.e. x ∧ y means that conditions x and y are both true.
fBelief Functions and Applications Society, see https://www.bfasociety.org/.

https://www.bfasociety.org/
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Example 1: consider Θ = {A,B,C,D,E} and the three BBAs listed in Table 1.

Table 1. The three BBAs to combine.

Focal Elements m1(·) m2(·) m3(·)

B 0.05 0.05 0
A ∪B 0.65 0.05 0
C ∪D 0.05 0.50 0
A ∪B ∪ C ∪D 0.15 0.05 0
E 0.10 0.35 0.01
Θ 0 0 0.99

Here m3(·) is not equal to the vacuous BBA but it is very close to the vacuous BBA because m3(Θ)
is close to one. The resultsg of the fusion PCR6(m1,m2), and the fusion PCR6(m1,m2,m3) are given
in Table 2.

Table 2. mPCR6
1,2 (·) and mPCR6

1,2,3(·) results.

Focal Elements mPCR6
1,2 (·) mPCR6

1,2,3(·)

B 0.054877 0.048939
A ∪B 0.406987 0.247656
C ∪D 0.312886 0.204005
A ∪B ∪ C ∪D 0.024917 0.013439
E 0.200333 0.101731
Θ 0 0.384230

One sees that combining the BBAsm1,m2 with the BBAm3 (wherem3 is close to vacuous BBA, and
therefore m3 is almost non-informative) generates a big increase of the belief of the uncertainty in the
resulting BBA. This behavior is clearly counter-intuitive because if the source is almost vacuous, only a
small degradation of the uncertainty is expected and in the limit case when m3 is the vacuous BBA no
impact of m3 on the fusion result should occur. Because of this flawed behavior, we propose in the next
section an improvement of PCR6 rule (called PCR6+ fusion rule) in order to preserve the neutrality of
the vacuous BBA.

4. Improvement of PCR6 Rule
The very simple and basic idea to improve the PCR6 conflict redistribution principle is to discard
the elements that contain the other elements implied in the conflict mass product πj(∅) calculation.
Indeed, the elements discarded are regarded as non informative and not useful for making the conflict
redistribution. To illustrate clearly this point, let’s consider again Example 1 and the conflicting product

π16(∅) = m1(A ∪B)m2(C ∪D)m3(Θ).

With PCR6, the redistribution of π16(∅) follows

x16(A ∪B)

m1(A ∪B)
=
x16(C ∪D)

m2(C ∪D)
=
x16(Θ)

m3(Θ)
=

π16(∅)
m1(A ∪B) +m2(C ∪D) +m3(Θ)

which is not very efficient because Θ is not the source of conflict in this case since A ∪ B ⊆ Θ and
C ∪D ⊆ Θ. The conflict exists only because (A∪B)∩ (C ∪D) = ∅. In the improved version of PCR6

gThe numerical values have been rounded to their sixth digit.
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rule, denoted PCR6+, the conflicting product π16(∅) will be redistributed only to A ∪ B and to C ∪D
but not to Θ. With PCR6+ rule we will make the new (simpler) redistribution of π16(∅) according to

x16(A ∪B)

m1(A ∪B)
=
x16(C ∪D)

m2(C ∪D)
==

π16(∅)
m1(A ∪B) +m2(C ∪D)

4.1. PCR6+ general formula

The general expression of PCR6+ (and also PCR5+) is presented in details, with many examples and
MatlabTM codes in Dezert et al. (2021). Here, due to space limitation, we just recall its expression for
convenience. Actually, PCR6+ fusion rule is the proper modification of PCR6 formula (7) taking into
account the selection of focal elements on which the proportional redistribution must apply thanks to
the value of their keeping-index. More precisely, the PCR6+ fusion of S > 2 BBAs is obtained by
mPCR6+

1,2,...,S(∅) = 0, and for all A ∈ 2Θ \ {∅} by

mPCR6+

1,2,...,S(A) = mConj
1,2,...,S(A)

+
∑

j∈{1,...,F}|A∈Xj∧πj(∅)[(
κj(A)

∑
i∈{1,...,S}|Xji

=A

mi(Xji)
)
·

πj(∅)∑
X∈Xj

(
κj(X)

∑
i∈{1,...,S}|Xji

=X

mi(Xji)
)] (8)

where κj(A) and κj(X) are respectively the keeping indexes of elements A and X involved in the
conflicting product πj(∅), that are calculated by the formula

κj(Xji) , 1−
∏

Xl′ ,Xl∈Xj |Xl′ 6=Xl

|Xji
|≤|Xl|

|Xl′ |≤|Xl|

δj(Xl′ , Xl) (9)

Xj = {X1, . . . , Xsj , sj ≤ S} is the set of all distinct components of the S-uple Xj related with the
conflicting product πj(∅). The term δj(Xl′ , Xl) is the binary containing indicator of Xl with respect
to Xl′ ∈ Xj that characterizes if Xl contains (includes) Xl′ in wide sense, or not. More precisely,
δj(Xl′ , Xl) is defined by

δj(Xl′ , Xl) ,

{
1 if Xl′ ⊆ Xl,
0 if Xl′ * Xl.

(10)

The value κj(Xji) = 1 stipulates that the focal element Xji ∈ Xj must receive some proportional
redistribution from the conflicting mass πj(∅), and κj(Xji) = 0 indicates that Xji ∈ Xj will not be
involved in the proportional redistribution of πj(∅). Note that κj(Θ) = 0 if Θ ∈ Xj because Θ always
includes all other focal elements of Xj and Θ has the highest cardinality. For a given FoD and a given
number of BBAs to combine, it is always possible to calculate off-line the values of the keeping-indexes
of focal elements for all combinations leading to conflicting products πj(∅) > 0. We can verify that
formula (8) is consistent with PCR6 formula (7) when all keeping indexes are equal to one. The fusion
rule (8) is commutative and non associative, and the vacuous BBA mv has a neutral impact in PCR6+

rule - see proof in Dezert et al. (2021).
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4.2. Example 1 revisited with PCR6+

Consider the example 1 with the three BBAs given in table 1. If we combine the BBAs m1 and m2, we
have PCR6+(m1,m2) = PCR6(m1,m2) because these rules coincide when combining two BBAs. If
we make the PCR6+ fusion of the three BBAs altogether we obtain different results which is normal,
because for S > 2 one has in general PCR6+(m1, . . . ,mS) 6= PCR6(m1, . . . ,mS). For this example
we get results shown in Table 3.

Table 3. mPCR6+

1,2 (·) and mPCR6+

1,2,3 (·) results.

Focal Elements mPCR6+

1,2 (·) mPCR6+

1,2,3 (·)

B 0.054877 0.054485
A ∪B 0.406987 0.407174
C ∪D 0.312886 0.312660
A ∪B ∪ C ∪D 0.024917 0.025232
E 0.200333 0.200449
Θ 0 0

We can verify that the result obtained by PCR6+ fusion rule is more judicious than with PCR6 rule
because the fusion of the almost vacuous BBA m3(·) has a very little impact in the fusion result as we
intuitively expect. This is because the PCR6+ combination rule discards the ignorant (or almost ignorant)
information. WithmPCR6+

1,2,3 (·), the largest mass is allocated toA∪B as withh mPCR6+

1,2 (·), and contrariwise
to mPCR6

1,2,3(·) when using the PCR6 fusion rule - see results in Table 2.

hWe recall that one always has mPCR6+

1,2 (·) = mPCR6
1,2 (·).



8

5. Application to Levee Characterization

We now present the advantages of the new PCR6+ rule for an application on a numerical case study
representing a levee section. To do so, we use the geophysical and geotechnical information fusion
methodology introduced in Dezert et al. (2019).

5.1. Model and Information Sources
The figure 1 displays the structure of the levee, the location of the different layers and the representation
of the study levee section.

Fig. 1. a) Levee with position of investigation methods and b) materials in the section of interest.

The area is a lengthwise (parallel to the river) vertical section composed of two lithological materials:
i) compact clays (C hypothesis) and ii) soft sands (S hypothesis). The sands are present over 6 meters
thick on the first 125 meters of the section and over 10 meters thick after. Clayey materials are positioned
below. A small electrically conductive anomaly is located near the surface in the center of the model.
Thus, the FoD is defined such that Θ = {C, S,O}. As required by the fusion method, O is an additional
hypothesis standing for any other material different from the other two known. For this case study,
two geophysical methods are used: the Electrical Resistivity Tomography (ERT) and the Multi-channel
Analysis of Surface Waves (MASW). Two geotechnical boreholes providing information on the lithology
are also considered in this study.
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5.2. BBA Distribution for Each Source
5.2.1. Electrical Resistivity Tomography

The basic principle of DC-resistivity methods consists in injecting an electric current of known intensity
[A] by means of two ”current” electrodes and measuring a voltage [V] between two ”potential”
electrodes. Such measurements are acquired for several positions of the current and the potential
electrodes. Apparent resistivity values can then be computed and inverted to reconstruct a complete
section of electrical resistivity [Ω.m]. From these electrical resistivity data, the fusion methodology
(Dezert et al., 2019) enables the BBA distribution depicted in Figure 2. The ERT characterization is
disturbed by the conductive electrical artifact. Thus, clays are locally characterized in the center of the
section while we know that sands are actually present. Also, the interface between clays and sands are
not correctly defined.

Fig. 2. a) Material with highest mass (from electrical resistivity data) and b) their mass values.

5.2.2. Multichannel Analysis of Surface Waves

The MASW method consists in studying the surface wave’s dispersion (waveform deformation) to
determine the shear wave’s velocity [m.s−1]. A seismic source is generated at various locations and
geophones are aligned on the ground surface to record the seismic waves arrival times. The use of this
method comprises three stages: (i) the data acquisition, (ii) the determination of the Rayleigh dispersion
curve, and (iii) the inversion process with the determination of the shear velocities. In this work, the
seismic acquisition is carried out from x = 212 m to x = 428 m. From the shear wave velocity data,
the associated BBA distribution is displayed in Figure 3. The MASW characterization is not disturbed
by the electrical artifact. Thus, the method characterizes correctly the two lithological materials as well
as the lithological interface position. However, Θ is characterized in most part of the section (in black,
Figure 3.a), where no data is available.

Fig. 3. a) Material with highest mass (from shear wave velocity data) and b) their mass values.
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5.2.3. Core Drillings

Two core drillings with particle size analysis are simulated at x = 80 m and x = 350 m from the
surface to 20 m depth. From the simulated geotechnical data, the associated BBA distribution is displayed
in Figure 4. The lithological materials are correctly characterized but an important area of uncertainty
remains between 6 and 10 m depth. Indeed, since two different materials are identified in both boreholes
at such depths, the section is poorly defined between them (Dezert et al., 2019).

Fig. 4. a) Material with highest mass (from two borehole data) and b) their mass values.

5.3. PCR6 and PCR6+ Fusion Results
The fusion results using PCR6 and PCR6+ rules are respectively depicted in Figures 5.a-b and Figures
5.c-d. These results highlight the lack of characterization at the center of the model using PCR6 rule (in
the red boxes, Figure 5.a). Indeed, Θ is characterized while PCR6+ rule enables to correctly characterize
sands. For PCR6, this area is difficult to define since the ERT suggests the presence of clays, the MASW
suggests the presence of sands and the geotechnical source of information is ignorant. However, PCR6+

rule manages to allocate the conflictual masses on the individual hypothesis instead of Θ. Furthermore,
the global belief mass values are greater with PCR6+ rule (Figure 5.d) than with PCR6 (Figure 5.c). This
improvement in the results could be valuable in the context of an investigation campaign on a real earthen
structure. Indeed, knowing the nature of the materials as well as their location is crucial to achieve a good
diagnosis and limit the risk of breakage. Since many investigation methods can be ignorant or partially
ignorant in the context of levee characterization, this new combination rule would be of great operational
interest to give credit to the most informative source and to avoid uncharacterized areas inside the earthen
structure.

6. Conclusions
In this work, after having introduced the belief functions as well as conjunctive, DS and PCR6 rules of
combination, we presented the flawed behavior of PCR6 rule. We then described improvements to correct
these behaviors, introducing a new PCR6+ rule. The computation of a keeping index, making it possible
to discard ignorant information sources for the calculation of each partial conflict, was detailed. This
keeping index has been integrated into the original formulation of PCR6 in order to ensure the neutrality
property of the vacuous BBA. The interest of such combination rule has finally been demonstrated for an
application on a numerical levee section with simulated geophysical and geotechnical acquisitions. As
a following perspective, we wish to apply this new PCR6+ rule to risk analysis issues with data fusion
acquired from real investigation campaigns.
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Fig. 5. Material with highest mass (from ERT, MASW and core drillings), using PCR6 (a) and PCR6+ (c) rules,
with area of interest in red box. b) and d) mass values associated with the hypothesis depicted in a) and c).
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