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Abstract In this paper, we present a fast Belief Function based Inter-Criteria Anal-
ysis (BF-ICrA) method based on the canonical decomposition of basic belief assign-
ments defined on a dichotomous frame of discernment. This new method is then
applied for evaluating the Multiple-Objective Ant Colony Optimization (MO-ACO)
algorithm forWireless SensorNetworks (WSN) deployment and forWorkforce Plan-
ning Problem (WPP).
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1 Introduction

In our previous work [1] we propose a new and improved version of classical
Atanassov’s InterCriteria Analysis (ICrA) [2–4] approach based on Belief Func-
tions (BF-ICrA). This method proposes a better construction of Inter-Criteria Matrix
that fully exploits all the information of the score matrix, and the closeness measure
of agreement between criteria based on belief interval distance. In [6], we show how
the fusion of many sources of evidences represented by Basic Belief Assignments
(BBAs) defined on a same dichotomous frame of discernment can be fast and easily
done thanks to the Proportional Conflict Redistribution rule no. 5 based canonical
decomposition of the BBAs, proposed recently in [7]. In [8] we did show how to
use this fast fusion method for decision-making support. In this paper we propose
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a new fast BF-ICrA method based on this canonical decomposition. Then we show
how to apply it for the evaluation of the Multiple-Objective Ant Colony Optimiza-
tion (MO-ACO) algorithm for Wireless Sensor Networks (WSN) deployment, and
for workforce planning problem. After a condensed presentation of basics of belief
functions in Sect. 2, including the short description of canonical decomposition of
dichotomous BBAs approach (in Sect. 2.2), and the main steps of fast fusion method
of dichotomous BBAs (in Sect. 2.3), the BF-ICrA method is described and analyzed
in Sect. 3, and the fast BF-ICrA method in Sect. 4. In the Sect. 5 we present the
Multiple-Objective Ant Colony Optimization (MO-ACO) algorithm. In Sect. 6 the
results of the fast BF-ICrA method with the MO-ACO algorithm for WSN layout
deployment [22] are presented and discussed. The fast BF-ICrA method has also
been applied to the workforce planning problem [24], and the results are presented
in Sect. 7. Conclusion is given in Sect. 8.

2 Basics of Belief Functions

2.1 Basic Definitions

Belief functions (BF) have been introduced by Shafer in [9] to model epistemic
uncertainty and to combine distinct sources of evidence thanks to Dempster’s rule
of combination. In Shafer’s framework, we assume that the answer1 of the problem
under concern belongs to a known finite discrete frame of discernment (FoD) ! =
{θ1, θ2, . . . , θn}, with n > 1, and where all elements of ! are mutually exclusive
and exhaustive. The set of all subsets of ! (including empty set ∅ and !) is the
power-set of ! denoted by 2!. A proper Basic Belief Assignment (BBA) associated
with a given source of evidence is defined [9] as a mapping m(·) : 2! → [0, 1]
satisfying m(∅) = 0 and

∑
A∈2! m(A) = 1. The quantity m(A) is called the mass

of A committed by the source of evidence. Belief and plausibility functions are
respectively defined from a proper BBA m(·) by

Bel(A) =
∑

B∈2!|B⊆A

m(B) (1)

and
Pl(A) =

∑

B∈2!|A∩B &=∅
m(B) = 1 − Bel( Ā). (2)

where Ā is the complement of A in !.

Bel(A) and Pl(A) are usually interpreted respectively as lower and upper bounds
of an unknown (subjective) probabilitymeasure P(A). The quantitiesm(·) and Bel(·)

1 I.e. the solution, or the decision to take.



Evaluation of MO-ACO Algorithms Using a New Fast … 55

are one-to-one and linked by the Möbius inverse formula (see [9], p. 39). A is called
a Focal Element (FE) of m(·) if m(A) > 0. When all focal elements are singletons,
m(·) is called a Bayesian BBA [9] and its corresponding Bel(·) function is equal
to Pl(·) and they are homogeneous to a (subjective) probability measure P(·). The
vacuous BBA, representing a totally ignorant source, is defined as mv(!) = 1. A
dichotomous BBA is a BBA defined on a FoD which has only two proper subsets,
for instance ! = {A, Ā} with A &= ! and A &= ∅. A dogmatic BBA is a BBA such
thatm(!) = 0. Ifm(!) > 0 the BBAm(·) is nondogmatic. A simple BBA is a BBA
that has at most two focal sets and one of them is !. A dichotomous non dogmatic
mass of belief is a BBA having three focal elements A, Ā and A ∪ Ā with A and Ā
subsets of !.

In his Mathematical Theory of Evidence [9], Shafer proposed to combine s ≥ 2
distinct sources of evidence represented by BBAs with Dempster’s rule (i.e. the nor-
malized conjunctive rule), which unfortunately behaves counterintuitively both in
high and low conflicting situations as reported in [10–13]. In our previous works
(see [14], Vols. 2 and 3 for full justification and examples) we did propose new rules
of combination based on different Proportional Conflict Redistribution (PCR) prin-
ciples, and we have shown the interest of the PCR rule No 5 (PCR5) for combining
two BBAs, and PCR rule No 6 (PCR6) for combining more than two BBAs alto-
gether [14], Vol. 2. PCR6 coincides with PCR5 when one combines two sources.
The difference between PCR5 and PCR6 lies in the way the proportional conflict
redistribution is done as soon as three (or more) sources are involved in the fusion.
PCR5 transfers the conflicting mass only to the elements involved in the conflict and
proportionally to their individual masses, so that the specificity of the information is
entirely preserved in this fusion process.

The general (complicate) formulas for PCR5 and PCR6 rules are given in [14],
Vol. 2. The fusion of two BBAs based on PCR5 (or PCR6) rule which will be use
for canonical decomposition of a dichotomous BBA is obtained by the formula

mPCR5(X) =
∑

X1,X2∈2!
X1∩X2=X

m1(X1)m2(X2)+

∑

X2∈2!

X2∩X=∅

[
m1(X)2m2(X2)

m1(X)+ m2(X2)
+ m2(X)2m1(X2)

m2(X)+ m1(X2)

]
(3)

where all denominators in (3) are different from zero. If a denominator is zero, that
fraction is discarded.

From the implementation point of view, PCR6 is simpler to implement than PCR5.
For convenience, very basic (not optimized) Matlab™ codes of PCR5 and PCR6
fusion rules can be found in [14, 15] and from the toolboxes repository on the web
[16]. The main drawback of PCR5 and PCR6 rules is their very high combinatorial
complexity when the number of source is big, as well as the cardinality of the FoD. In
this case, PCR5 or PCR6 rules cannot be used directly because of memory overflow.
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Even for combining BBAs defined on a simple dichotomous FoD as those involved
in the Inter-Criteria Analysis (ICrA), the computational time for combining more
than 10 sources can take several hours.2 That is why a fast fusion method to combine
dichotomous BBAs is necessary, and we present it in the next subsections.

2.2 Canonical Decomposition of Dichotomous BBA

A FoD ! = {A, Ā} is called dichotomous if it consists of only two proper subsets
A and Ā with A ∪ Ā = ! and A ∩ Ā = ∅, where Ā is the complement of A in !

and A is different from ! and from Empty-Set. We consider a given proper BBA
m(·) : 2! → [0, 1] of the general form

m(A) = a, m( Ā) = b, m(A ∪ Ā) = 1 − a − b (4)

The canonical decomposition problem consists in finding the two following simple
proper BBAs mp and mc of the form

mp(A) = x, mp(A ∪ Ā) = 1 − x (5)

mc( Ā) = y, mc(A ∪ Ā) = 1 − y (6)

with (x, y) ∈ [0, 1] × [0, 1], such that m = Fusion(mp,mc), for a chosen rule of
combination denoted by Fusion(·, ·). The simple BBA mp(·) is called the pro-
BBA (or pro-evidence) of A, and the simple BBA mc(·) the contra-BBA (or contra-
evidence) of A. The BBA mp(·) is interpreted as a source of evidence providing an
uncertain evidence in favor of A, whereasmc(·) is interpreted as a source of evidence
providing an uncertain contrary evidence about A.

In [7], we have shown that this decomposition is possible with Dempster’s rule
only if 0 < a < 1, 0 < b < 1 and a + b < 1, and we have x = a

1−b and y = b
1−a .

However, any dogmaticBBAm(A) = a,m( Ā) = bwith a + b = 1 is not decompos-
able from Dempster’s rule for the case when (a, b) &= (1, 0) and (a, b) &= (0, 1), and
the dogmatic BBAs m(A) = 1, m( Ā) = 0, or m(A) = 0, m( Ā) = 1 have infinitely
many decompositions based onDempster’s rule of combination.We have also proved
that this canonical decomposition cannot be done from conjunctive, disjunctive,
Yager’s [17] or Dubois-Prade [18] rules of combination, neither from the averaging
rule. The main result of [7] is that this canonical decomposition is unique and is
always possible in all cases using the PCR5 rule of combination. This is very useful
to implement a fast efficient approximating fusion method of dichotomous BBAs as
presented in details in [6]. We recall the following two important theorems proved
in [7].

2 With a MacBook Pro 2.8 GHz Intel Core i7 with 16 Go 1600 MHz DDR3 memory running
Matlab™ R2018a.
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Theorem 1 Consider a dichotomous FoD ! = {A, Ā} with A &= ! and A &= ∅ and
a nondogmatic BBA m(·) : 2! → [0, 1] defined on ! by m(A) = a, m( Ā) = b, and
m(A ∪ Ā) = 1 − a − b, where a, b ∈ [0, 1] and a + b < 1. Then the BBA m(·) has
a unique canonical decomposition using PCR5 rule of combination of the form m =
PCR5(mp,mc) with pro-evidence mp(A) = x, m p(A ∪ Ā) = 1 − x and contra-
evidence mc( Ā) = y, mc(A ∪ Ā) = 1 − y where x, y ∈ [0, 1].

Theorem 2 Any dogmatic BBA defined by m(A) = a and m( Ā) = b, where a, b ∈
[0, 1] and a + b = 1, has a canonical decomposition using PCR5 rule of combi-
nation of the form m = PCR5(mp,mc) with mp(A) = x, m p(A ∪ Ā) = 1 − x and
mc( Ā) = y, mc(A ∪ Ā) = 1 − y where x, y ∈ [0, 1].

Theorems1 and 2 prove that the decomposition based on PCR5 always exists and
it is unique for any dichotomous (nondogmatic, or dogmatic) BBA.

For the case of dichotomous nondogmatic BBA considered in Theorem 1, one
has to find x and y solutions of the system

a = x(1 − y)+ x2y
x + y

= x2 + xy − xy2

x + y
(7)

b = (1 − x)y + xy2

x + y
= y2 + xy − x2y

x + y
(8)

under the constraints (a, b) ∈ [0, 1]2, and 0 < a + b < 1. The explicit expression of
x and y are difficult to obtain analytically (even with modern symbolic computing
systems likeMathematica™, orMaple™) because one has a quartic equation to solve
whose general analytical expression of its solutions is very complicate. Fortunately,
the solutions can be easily calculated numerically by these computing systems, and
even with Matlab™ system (thanks to the fsolve function) as soon as the numerical
values are committed to a and to b, and this is what we use in our simulations.

2.3 Fast Fusion of Dichotomous BBAs

The main idea for making the fast fusion of dichotomous BBAs ms(.), for s =
1, 2, . . . , S defined on the same FoD ! is based on the three following main steps:

1. In the first step, one decomposes canonically each dichotomousBBAms(·) into its
pro and contra evidencesmp,s = (mp,s(A),mp,s( Ā),mp,s(A ∪ Ā)) = (xs, 0, 1 −
xs) and mc,s = (mc,s(A),mc,s( Ā),mc,s(A ∪ Ā)) = (0, ys, 1 − ys),

2. In the second step, one combines the pro-evidences mp,s for s = 1, 2, . . . , S
altogether to get a global pro-evidence mp, and in parallel one combines all
the contra-evidences mc,s for s = 1, 2, . . . , S altogether to get a global contra-
evidence mc. The fusion step of pro and contra evidences is based on conjunctive
rule of combination.
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3. Once mp and mc are calculated, then one combines them with PCR5 fusion rule
to get the final result.

Because the PCR5 rule of combination is not associative, the fusion of the canon-
ical BBAs followed by their PCR5 fusion will not provide in general the same result
as the direct fusion of the dichotomous BBAs altogether but only an approximate
result, which is normal. However, this new fusion approach is interesting because the
fusion of the pro-evidence mp,s (resp. contra-evidences mc,s) is very simple because
there is non conflict between mp,s (resp. between mc,s), so that their fusion can be
done quite easily and a large number of sources can be combinedwithout a high com-
putational burden. In fact, with this fusion approach, only one PCR5 fusion step of
simple (combined) canonical BBAs is needed at the very end of the fusion process.
In [6], we have proved with a Monte-Carlo simulation analysis that the approxi-
mation obtained by this new fusion method based on the fusion of pro-evidences
and contra-evidences with respect to the direct fusion of the BBAs with PCR5 (or
PCR6 when considering more than two sources to combine) is effective because the
agreement between the decision taken from the direct fusion method, and the indi-
rect (canonical decomposition based) method is very good. This new fusion method
based on this canonical decomposition does not suffer of combinatorial complexity
limitation which is of great interest in some applications because many (hundreds
or even thousands) of dichotomous BBAs could be easily combined very quickly.
Actually with this method what takes a bit time is only the canonical decomposition
done by the numerical solver. Our analysis [6] has shown that complexity of this fast
approach is quasi-linear with the number of sources to combine.

3 The BF-ICrA Method

In [1], we did present an improved version of Atanassov’s Inter-Criteria Analysis
(ICrA) method [2–4] based on belief functions. This new method has been named
BF-ICrA (Belief Function based Inter-Criteria Analysis) for short. It has already
been applied to GPS surveying problems in [19]. We present briefly in this section
the principles of BF-ICrA.

BF-ICrA starts with the construction of an M × N BBA matrix M = [mi j (·)]
from the score matrix S = [Si j ]. The BBA matrix M is obtained as follows—see
[20] for details and justification.

mi j (Ai ) = Beli j (Ai ) (9)

mi j ( Āi ) = Beli j ( Āi ) = 1 − Pli j (Ai ) (10)

mi j (Ai ∪ Āi ) = Pli j (Ai ) − Beli j (Ai ) (11)
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where3

Beli j (Ai ) ! Sup j (Ai )/A j
max (12)

Beli j ( Āi ) ! I n f j (Ai )/A
j
min (13)

with

Sup j (Ai ) !
∑

k∈{1,...M}|Skj≤Si j

|Si j − Skj | (14)

I n f j (Ai ) ! −
∑

k∈{1,...M}|Skj≥Si j

|Si j − Skj | (15)

and

A j
max ! max

i
Sup j (Ai ) (16)

A j
min ! min

i
I n f j (Ai ) (17)

For another criterion C j ′ and the j ′th column of the score matrix we will obtain
another set of BBA valuesmi j ′(·). Applying this method for each column of the score
matrix we are able to compute the BBAmatrixM = [mi j (·)]whose each component
is in fact a triplet (mi j (Ai ),mi j ( Āi ),mi j (Ai ∪ Āi )) of BBA values in [0, 1] such that
mi j (Ai )+ mi j ( Āi )+ mi j (Ai ∪ Āi )) = 1 for all i = 1, . . . ,M and j = 1, . . . , N .

The next step of BF-ICrA approach is the construction of the N × N Inter-Criteria
Matrix K = [K j j ′] from M × N BBA matrix M = [mi j (·)] where elements K j j ′

corresponds to the BBA (m j j ′(θ),m j j ′(θ̄),m j j ′(θ ∪ θ̄)) about positive consonance
θ , negative consonance θ̄ and uncertainty between criteria C j and C j ′ respectively.
The construction of the triplet K j j ′ = (m j j ′(θ),m j j ′(θ̄),m j j ′(θ ∪ θ̄)) is based on two
steps:

• Step 1 (BBA construction): Getting mi
j j ′(.).

For each alternative Ai for i = 1, . . . ,M , we first compute the belief assign-
ment (mi

j j ′(θ),m
i
j j ′(θ̄),m

i
j j ′(θ ∪ θ̄)) for any two criteria j, j ′ ∈ {1, 2, . . . , N }.

For this, we consider two sources of evidences (SoE) indexed by j and j ′ provid-
ing the BBA mi j and mi j ′ defined on the simple FoD {Ai , Āi } and denoted mi j =
[mi j (Ai ),mi j ( Āi ),mi j (Ai ∪ Āi )] and mi j ′ = [mi j ′(Ai ),mi j ′( Āi ),mi j ′(Ai ∪ Āi )].
We also denote ! = {θ, θ̄} the FoD about the relative state of the two SoE, where
θ means that the two SoE agree, θ̄ means that they disagree and θ ∪ θ̄ means that
we don’t know. Hence, two SoE are in total agreement if both commit their maxi-
mum belief mass to the same element Ai or to the same element Āi . Similarly, two
SoE are in total disagreement if each one commits its maximum mass of belief
to one element and the other to its opposite, that is if one has mi j (Ai ) = 1 and

3 Assuming that A j
max &= 0 and A j

min &= 0. If A j
max = 0 then Beli j (Ai ) = 0, and if A j

min = 0 then
Pli j (Ai ) = 1.
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mi j ′( Āi ) = 1, or if mi j ( Āi ) = 1 and mi j ′(Ai ) = 1. Based on this very simple and
natural principle, one can now compute the belief masses as follows:

mi
j j ′(θ) = mi j (Ai )mi j ′(Ai )+ mi j ( Ā)mi j ′( Ā) (18)

mi
j j ′(θ̄) = mi j (Ai )mi j ′( Āi )+ mi j ( Āi )mi j ′(Ai ) (19)

mi
j j ′(θ ∪ θ̄) = 1 − mi

j j ′(θ) − mi
j j ′(θ̄) (20)

mi
j j ′(θ) represents the degree of agreement between the BBAmi j (·) andmi j ′(·) for

the alternative Ai , mi
j j ′(θ̄) represents the degree of disagreement of the two BBAs

andmi
j j ′(θ ∪ θ̄) the level of uncertainty (i.e. howmuchwe don’t know if they agree

or disagree). By construction mi
j j ′(·) = mi

j ′ j (·), mi
j j ′(θ),m

i
j j ′(θ̄),m

i
j j ′(θ ∪ θ̄) ∈

[0, 1] and mi
j j ′(θ)+ mi

j j ′(θ̄)+ mi
j j ′(θ ∪ θ̄) = 1. This BBA modeling permits to

build a set of M symmetrical Inter-Criteria Belief Matrices (ICBM) Ki = [K i
j j ′ ]

of dimension N × N relative to each alternative Ai whose components K i
j j ′ cor-

respond to the triplet of BBA values mi
j j ′ = (mi

j j ′(θ),m
i
j j ′(θ̄),m

i
j j ′(θ ∪ θ̄)) mod-

eling the belief of agreement and of disagreement between C j and C j ′ based on
Ai .

• Step 2 (fusion): Getting mjj′(.).
In this step, one needs to combine the BBAs mi

jj′(.) for i = 1, . . . ,M altogether
to get the component K j j ′ = (m j j ′(θ),m j j ′(θ̄),m j j ′(θ ∪ θ̄)) of the Inter-Criteria
Beliefmatrix4 (ICBM)K = [K j j ′]. For this and from the theoretical standpoint,we
recommend to use the PCR6 fusion rule [14] (Vol. 3) because of knowndeficiencies
of Dempster’s rule.

Once the global Inter-Criteria Belief Matrix (ICBM) is calculated as the matrix
K = [K j j ′ = (m j j ′(θ),m j j ′(θ̄),m j j ′(θ ∪ θ̄))], we can identify the criteria that are
in strong agreement, in strong disagreement, and those on which we are uncertain.
For identifying the criteria that are in strong agreement, we evaluate the distance
of each component of K j j ′ with the BBA representing the best agreement state and
characterized by the specific BBA5 mT (θ) = 1. From a similar approach we can
also identify, if we want, the criteria that are in very strong disagreement using the
distance of m j j ′(·) with respect to the BBA representing the best disagreement state
characterized by the specific BBA mF (θ̄) = 1. We use the belief interval distance
dBI (m1,m2) presented in [21] for measuring the distance between the two BBAs.

4 For presentation convenience, the ICBMK = [K j j ′ = (m j j ′ (θ),m j j ′ (θ̄),m j j ′ (θ ∪ θ̄))] is decom-

posed into three matrices K(θ) = [K θ
j j ′ = m j j ′ (θ)], K(θ̄) = [K θ̄

j j ′ = m j j ′ (θ̄)] and K(θ ∪ θ̄) =
[K θ∪θ̄

j j ′ = 1 − m j j ′ (θ) − m j j ′ (θ̄)].
5 We use the index T in the notation mT (·) to refer that the agreement is true, and F in mF (·) to
specify that the agreement is false.
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4 Fast BF-ICrA Method

The computational complexity of BF-ICrA is of course higher than the complexity
of ICrA because it makes a more precise evaluation of local and global inter-criteria
beliefmatrices with respect to inter-criteriamatrices calculated byAtanassov’s ICrA.
The overall reduction of the computational burden of the original MCDM problem
thanks to BF-ICrA depends highly on the problem under concern, the complexity
and cost to evaluate each criteria involved in it, as well as the number of redundant
criteria identified by BF-ICrA method.

The main drawback of BF-ICrA method is the PCR6 combination required in its
step 2 for combining altogether the dichotomous BBAs mi

j j ′(.). Because of combi-
natorial complexity of PCR6 rule, it cannot work in reasonable computational time
as soon as the number of sources to combine altogether is greater than 10, which pre-
vents its use for solving ICrA problems involving more than 10 alternatives (as in the
Examples 2 and 3 presented in Sect. 6). That is why it is necessary to adapt the origi-
nal BF-ICrAmethod for working with a large number of alternatives and criteria. For
this, we can in step 2 of BF-ICrA exploit the method for the fast fusion of dichoto-
mous BBAs presented in Sect. 2.3. More precisely, each dichotomous BBA mi

j j ′(.)

will be canonically decomposed in its pro-evidencemi
j j ′,p(.) and its contra-evidence

mi
j j ′,c(.) that will be combined separately to get the global pro-evidence m j j ′,p(.)

and the global contra-evidence m j j ′,c(.). Then, the BBAs m j j ′,p(.) and m j j ′,c(.) are
combined with PCR5 rule to get the BBAs m j j ′(.) and, finally, the global Inter-

Fig. 1 Principle of fast fusion of mi
j j ′ (.) of Step 2 of BF-ICrA



62 J. Dezert et al.

Criteria Belief Matrix K = [K j j ′ = (m j j ′(θ),m j j ′(θ̄),m j j ′(θ ∪ θ̄))]. The principle
of this modified step 2 of BF-ICrA is summarized in the Fig. 1 for convenience.

Another simpler fusion method to combine the dichotomous BBAsmi
j j ′(.)would

just consist to average them. In Sect. 6, we will show how these two methods behave
in the examples chosen for the evaluation of MO-ACO Algorithm for optimal WSN
deployment.

5 Multi-objective ACO Algorithm

Recently Wireless Sensor Networks (WSNs) have attracted the attention of the
research scientists community, conditioned by a set of challenges: theoretical and
practical. WSNs consists of distributed sensor nodes and their main purpose is to
monitor the real-time environmental status, based on gathering available sensor infor-
mation, processing and transmitting the collected data to the specified remote base
station. It is a promising technology that is used in a coverage of application requir-
ing minimum human contribution, ranging from civil and military to healthcare and
environmental monitoring. One of the key mission of WSN is the full surveillance
of the monitoring region with a minimal number of sensors and minimized energy
consumption of the network. The lifetime of the sensors is strongly related to the
amount of the power loaded in the battery, that is why the control of the energy
consumption of sensors is an important active research problem. The small energy
storage capacity of sensor nodes intrudes the possibility to gather the information
directly to the main base. Because of this they transfer their data to the so called High
Energy Communication Node (HECN), which is able to collect the information from
across the network and to transmit it to the base computer for processing. The sensors
transmit their data to the HECN, either directly or via hops, using closest sensors as
communication relays. The WSN can have large numbers of nodes and the problem
can be very complex.

In order to solve successfully the keymissionofWSNs, in [22],wedid applymulti-
objective Ant Colony Optimization (ACO) to solve this hard, from the computational
point of view, telecommunication problem. The number of ants is one of the key
algorithm parameters in the ACO and it is important to find the optimal number
of ants needed to achieve good solutions with minimal computational resources. In
[22], the optimal solution was obtained by applying the classical Atanassov’s ICrA
method. In the next section we will present the results obtained by the fast BF-ICrA
approach and compare their results.

The problem of designing aWSN ismulti-objective, with two objective functions:
(1) one wants to minimize the energy consumption of the nodes in the network, and
(2) one wants to minimize the number of nodes. The full coverage of the network
and connectivity are considered as constraints. For solving this problem, we have
proposed to use a Multi-Objective Ant Colony Optimization (MO-ACO) algorithm
in [22] and we have studied the influence of the number of ants on the algorithm
performance and quality of the achieved solutions. The computational resources,
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which the algorithm needs, are not negligible. The computational resources depends
on the size of the solved problem and on the number of ants. The aim is to find a
minimal number of ants which allow the algorithm to find good solution for WSN
deployment.

The ACO algorithm uses a colony of artificial ants that behave as cooperating
agents. With the help of the pheromone and the heuristic information they try to
construct better solutions and to find the optimal ones. The pheromone corresponds
to the global memory of the ants and the heuristic information is a some preliminary
knowledge of the problem. The problem is represented by a graph and the solution is
representedby apath in the graphor by tree in the graph.Ants start from randomnodes
and construct feasible solutions.When all ants construct their solution the pheromone
is updated. The new, added, pheromone depends to the quality of the solution. The
elements of the graph, which belong to better solutions will receive more pheromone
and will be more desirable in the next iteration. In our implementation, we use the
MAX-MINAnt System (MMAS)which is one of themost successful ant approaches
originally presented in [23]. In our case, the graph of the problem is represented by
a square grid. The nodes of the graph are enumerated. The ants will deposit their
pheromone on the nodes of the grid. We will deposit the sensors on the nodes of the
grid too. The solution is represented by tree. An ant starts to create a solution starting
from randomnode,which communicateswith theHECN.After it includes next nodes
in the solution applying probabilistic rule, called transition probability which is a
product of the heuristic information and quantity of the pheromone, corresponding
to this new node. Construction of the heuristic information is a crucial point in the
ant algorithms. It is problem dependent and helps us to manage the search process.
Our heuristic information represented by (21) is a product of three values.

ηi j (t) = si j li j (1 − bi j ) (21)

where si j is the number of the new points (nodes of the graph) which the new sensor
will cover, and which are not covered by other sensors, and

li j =
{
1 if communication exists ;
0 if there is no communication.

(22)

and where bi j is the solution matrix. The matrix element bi j equals 1 when there is
sensor on this position, otherwise bi j = 0. With si j , we try to increase the number of
points covered by one sensor and thus to decrease the number of sensors we need.
With li j , we guarantee that all sensors will be connected. With bi j we guarantee that
maximum one sensor will be mapped on the same point. The search stops when
transition probability pi j = 0 for all values of i and j . It means that there are no
more free positions, or that all area is fully covered. At the end of every iteration the
quantity of the pheromone is updated according to the rule:

τi j ← ρτi j + &τi j , (23)
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with the increment &τi j = 1/F(k) if (i, j) belongs to the non-dominated solution
constructed by ant k, or&τi j = 0 otherwise. The parameterρ is a pheromone decreas-
ing parameter chosen in [0, 1]. This parameter ρ models evaporation in the nature
and decreases the influence of old information on the search process. After that, we
add the new pheromone, which is proportional to the value of the fitness function
constructed as:

F(k) = f1(k)
maxi ( f1(i))

+ f2(k)
maxi ( f2(i))

, (24)

where f1(k) is the number of sensors proposed by the kth ant, and f2(k) is the
energy of the solution of the kth ant. These are also the objective functions of the
WSN layout problem. We normalize the values of two objective functions with their
maximal achieved values from the first iteration.

6 Application to WSN Layout Deployment

In this section we present the results of the fast BF-ICrA method with the MO-
ACO algorithm for WSN layout deployment. Fidanova and Roeva have developed
a software, which realizes the MO-ACO algorithm. This software can solve the
problem at any rectangular area, the communication and the coverage radius can
be different and can have any positive value. We can have regions in the area. The
program was written in C language, and the tests were run on computer with an Intel
Pentium 2.8GHz processor. In their tests, they use an example where the area is
square. The coverage and communication radii cover 30 points. The HECN is fixed
in the centre of the area. In the sequel we consider three examples of areas with
three sizes: 350 × 350 points, 500 × 500 points, and 700 × 700 points. The MO-
ACO algorithm is based on 30 runs for each number of ants. We extract the Pareto
front from the solutions of these 30 runs, and we show the achieved non dominated
solutions (approximate Pareto fronts) for each case on which the BF-ICrA will be
applied. The score matrices for each case is given in Tables1, 2 and 3 [22].

Table 1 The 6 × 10 score matrix S for 350 × 350 case (Example 1)

S =





ACO1 ACO2 ACO3 ACO4 ACO5 ACO6 ACO7 ACO8 ACO9 ACO10

111 30 36 30 30 30 30 30 30 30 30
112 30 36 30 30 30 30 30 30 30 30
113 28 35 28 30 30 30 28 28 28 28
114 26 26 26 26 26 26 26 26 26 26
115 26 26 26 26 26 26 26 26 26 26
116 26 26 26 26 26 26 25 25 26 25




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Table 2 The 22 × 10 score matrix S for 500 × 500 case (Example 2)

S =





ACO1 ACO2 ACO3 ACO4 ACO5 ACO6 ACO7 ACO8 ACO9 ACO10

223 90 96 90 90 89 81 90 90 90 90
224 61 96 89 89 88 65 61 59 57 71
225 61 96 74 58 60 58 57 58 57 57
226 59 95 73 57 59 57 56 58 57 57
227 60 57 57 57 57 56 56 57 57 57
228 60 57 57 57 57 56 56 57 54 57
229 58 57 57 55 57 56 56 56 54 56
230 57 57 57 55 57 52 56 54 54 56
231 57 55 57 55 55 52 56 54 54 56
232 57 55 55 51 54 50 52 51 54 48
233 57 55 55 51 54 50 51 51 54 48
234 57 55 55 51 53 50 51 48 53 48
235 57 55 54 51 53 50 51 48 50 48
236 57 55 54 51 53 50 51 48 50 48
237 57 55 54 51 53 50 51 48 50 48
238 57 55 53 51 53 50 51 48 50 48
239 56 55 53 50 53 50 51 48 50 48
240 53 53 53 50 53 50 51 48 50 48
241 53 53 53 50 53 50 51 48 50 48
242 53 53 53 50 53 50 51 48 50 48
243 53 53 53 50 53 50 51 48 50 48
244 53 53 53 50 52 50 51 48 50 48





Table 3 The 19 × 10 score matrix S for 700 × 700 case (Example 3)

S =





ACO1 ACO2 ACO3 ACO4 ACO5 ACO6 ACO7 ACO8 ACO9 ACO10

437 173 173 173 173 173 118 168 172 261 172
438 173 173 173 173 173 118 112 117 260 172
439 172 173 173 173 140 93 110 115 131 172
440 172 173 173 173 115 93 110 114 111 162
441 172 173 173 122 111 93 110 114 111 110
442 172 173 173 114 111 93 110 112 111 110
443 172 150 123 114 111 93 110 112 111 110
444 124 112 112 106 107 93 110 102 111 105
445 117 112 112 106 107 93 110 102 108 105
446 117 112 105 105 105 93 107 102 104 105
447 117 112 105 105 105 93 105 102 102 105
448 115 111 105 105 105 93 105 102 102 105
449 115 111 105 105 105 93 102 99 102 105
450 113 111 105 105 105 93 102 99 102 105
451 113 109 105 105 105 93 102 99 97 105
452 113 109 105 105 105 93 99 99 97 104
453 113 109 105 105 105 93 99 99 97 104
454 113 109 105 105 96 93 96 96 96 104
455 106 106 105 105 96 93 96 96 96 97




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Table 4 Matrix K≈PCR6(θ) for Example 1





0.865 0.821 0.865 0.790 0.790 0.790 0.806 0.806 0.865 0.806
0.821 0.928 0.821 0.950 0.950 0.950 0.805 0.805 0.821 0.805
0.865 0.821 0.865 0.790 0.790 0.790 0.806 0.806 0.865 0.806
0.790 0.950 0.790 1.000 1.000 1.000 0.795 0.795 0.790 0.795
0.790 0.950 0.790 1.000 1.000 1.000 0.795 0.795 0.790 0.795
0.790 0.950 0.790 1.000 1.000 1.000 0.795 0.795 0.790 0.795
0.806 0.805 0.806 0.795 0.795 0.795 0.843 0.843 0.806 0.843
0.806 0.805 0.806 0.795 0.795 0.795 0.843 0.843 0.806 0.843
0.865 0.821 0.865 0.790 0.790 0.790 0.806 0.806 0.865 0.806
0.806 0.805 0.806 0.795 0.795 0.795 0.843 0.843 0.806 0.843





Each row of S corresponds to the number of sensors used inWSN to cover the area
as indicated in the first column at the left side of the score matrix. Each column of S
corresponds to ACO j algorithm used with j ants ( j = 1, 2, . . . , 10). Each element
Si j of S corresponds to the energy corresponding to this number of sensors and with
the number of ants used for Multiple Objective ACO algorithm.

6.1 Application of Fast BF-ICrA in Example 1 (350× 350
Points)

In this example, one sees from the score matrix of the Table1 that ACO1, ACO3 and
ACO9 algorithms perform equally for all alternatives (i.e. all rows) and they define
a first group/cluster of methods providing exactly the same performances. Similarly,
ACO4, ACO5 and ACO6 constitute a second group of algorithms. The third group
is made of ACO7, ACO8 and ACO10 algorithms. It is worth noting that these three
groups {ACO1,ACO3,ACO9}, {ACO4,ACO5,ACO6}, and {ACO7,ACO8,ACO10}
differ only very slightly, whereas the ACO2 algorithm (i.e the 2nd column of the
score matrix S) differs a bit more from all the three aforementioned groups.

Example 1with fast PCR6: If we apply the fast BF-ICrAmethod using approximate
PCR6 fusion rule based on the canonical decomposition of the M = 6 dichotomous
BBAs (mi

j j ′(θ),m
i
j j ′(θ̄),m

i
j j ′(θ ∪ θ̄)), we get the matrix of mass of belief of agree-

ment between criteria given in Table4.6

The matrix of distances to full agreement based on fast BF-ICrAmethod, denoted
by D≈PCR6(θ), is given in Table5.

In examining the Table5, one sees that ACO1, ACO3 and ACO9 are at a small
distance 0.134, with respect to other algorithms, so that they belong to the same

6All the numerical values presented in the matrices have been truncated at their 3rd digit for
typesetting convenience.
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Table 5 Matrix D≈PCR6(θ) with fast BF-ICrA for Example 1





0.134 0.178 0.134 0.209 0.209 0.209 0.193 0.193 0.134 0.193
0.178 0.071 0.178 0.049 0.049 0.049 0.194 0.194 0.178 0.194
0.134 . 0.178 0.134 0.209 0.209 0.209 0.193 0.193 0.134 0.193
0.209 0.049 0.209 0 0 0 0.204 0.204 0.209 0.204
0.209 0.049 0.209 0 0 0 0.204 0.204 0.209 0.204
0.209 0.049 0.209 0 0 0 0.204 0.204 0.209 0.204
0.193 0.194 0.193 0.204 0.204 0.204 0.156 0.156 0.193 0.156
0.193 0.194 0.193 0.204 0.204 0.204 0.156 0.156 0.193 0.156
0.134 0.178 0.134 0.209 0.209 0.209 0.193 0.193 0.134 0.193
0.193 0.194 0.193 0.204 0.204 0.204 0.156 0.156 0.193 0.156





Table 6 Matrix DAver.(θ) with BF-ICrA using averaging rule for Example 1





0.084 0.082 0.084 0.081 0.081 0.081 0.156 0.156 0.084 0.156
0.082 0.030 0.082 0.016 0.016 0.016 0.142 0.142 0.082 0.142
0.084 0.082 0.084 0.081 0.081 0.081 0.156 0.156 0.084 0.156
0.081 0.016 0.081 0 0 0 0.138 0.138 0.081 0.138
0.081 0.016 0.081 0 0 0 0.138 0.138 0.081 0.138
0.081 0.016 0.081 0 0 0 0.138 0.138 0.081 0.138
0.156 0.142 0.156 0.138 0.138 0.138 0.198 0.198 0.156 0.198
0.156 0.142 0.156 0.138 0.138 0.138 0.198 0.198 0.156 0.198
0.084 0.082 0.084 0.081 0.081 0.081 0.156 0.156 0.084 0.156
0.156 0.142 0.156 0.138 0.138 0.138 0.198 0.198 0.156 0.198





group and behave similarly. Same remarks holds for the group {ACO4,ACO5,ACO6}
because its inter-distance is zero, and for the group {ACO7,ACO8,ACO10} because
its inter-distance is 0.156. In a relativemannerACO2 appears closer to {ACO4,ACO5,

ACO6}, than {ACO1,ACO3,ACO9} or {ACO7,ACO8,ACO10}, which intuitively
makes sense when comparing directly the columns of the matrix of Table1.

Example 1 with averaging fusion: The matrix of distances to full agreement based
on BF-ICrA method using average fusion rule, denoted by DAver.(θ), is given in
Table6.

One sees that only the group {ACO4,ACO5,ACO6} can be clearly identified
based on the averaging fusion rule. The other groups ACO2 appears also close to
{ACO4,ACO5,ACO6}. But ACO1, ACO3 and ACO9 are closer to {ACO4,ACO5,

ACO6} also than in-between. Same remarks holds for ACO7, ACO8, and ACO10. So
one sees that the averaging fusion rule is not recommended for making the BF-ICrA
in this example.
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6.2 Application of Fast BF-ICrA in Example 2 (500× 500
Points)

Example 2with fast PCR6: If we apply the fast BF-ICrAmethod using approximate
PCR6 fusion rule based on the canonical decomposition of the M = 22 dichotomous
BBAs (mi

j j ′(θ),m
i
j j ′(θ̄),m

i
j j ′(θ ∪ θ̄)), we get the following matrix of distances to

full agreement, denoted by D≈PCR6(θ), given in Table7.
Based on these results, one sees that no clear group can be identified but we

emphasize in boldface in Table7 the minimal value for each row of the distance
matrixD≈PCR6(θ) (diagonal elements excluded). We see that ACO2 is at the farthest
distance of ACO1 because D12(θ) = 0.376, but in the mean time ACO2 is at closest
distance to ACO1 because D2 j (θ) > 0.376 (for j > 2) as shown in second line of
Table7. So we can conclude that ACO2 is not close to any other algorithm in fact. If
we choose a ad-hoc distance threshold, say for instance 0.28, then we can identify
the group {ACO1,ACO7,ACO8,ACO9}.
Example 2 with averaging fusion: The matrix of distances to full agreement based
on BF-ICrA method using average fusion rule, denoted by DAver.(θ), is given in
Table8.

Based on the average fusion rule there is no clear clustering of algorithms. How-
ever based on shortest inter-distance we could make the following distinct pairwise
groupings {ACO2,ACO3}, {ACO6,ACO7}, {ACO4,ACO10}, {ACO8,ACO9} and
{ACO1,ACO5} if necessary, but remember that average fusion rule cannot provide
the best result as shown in Example 1.

Table 7 Matrix D≈PCR6(θ) with fast BF-ICrA for Example 2





0.158 0.376 0.338 0.300 0.286 0.279 0.247 0.251 0.225 0.280
0.376 0.324 0.426 0.456 0.437 0.453 0.457 0.433 0.435 0.449
0.338 0.426 0.407 0.411 0.382 0.423 0.418 0.402 0.393 0.414
0.300 0.456 0.411 0.349 0.323 0.381 0.368 0.370 0.362 0.363
0.286 0.437 0.382 0.323 0.284 0.348 0.334 0.334 0.328 0.333
0.279 0.453 0.423 0.381 0.348 0.316 0.298 0.317 0.308 0.308
0.247 0.457 0.418 0.368 0.334 0.298 0.235 0.276 0.255 0.283
0.251 0.433 0.402 0.370 0.334 0.317 0.276 0.265 0.260 0.303
0.225 0.435 0.393 0.362 0.328 0.308 0.255 0.260 0.211 0.304
0.280 0.449 0.414 0.363 0.333 0.308 0.283 0.303 0.304 0.277




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Table 8 Matrix DAver.(θ) with BF-ICrA using averaging rule for Example 2





0.361 0.316 0.310 0.311 0.336 0.300 0.306 0.316 0.320 0.309
0.316 0.125 0.158 0.198 0.225 0.187 0.216 0.225 0.240 0.206
0.310 0.158 0.165 0.185 0.215 0.178 0.200 0.215 0.227 0.193
0.311 0.198 0.185 0.183 0.216 0.181 0.197 0.217 0.231 0.192
0.336 0.225 0.215 0.216 0.243 0.214 0.231 0.249 0.261 0.226
0.300 0.187 0.178 0.181 0.214 0.159 0.175 0.194 0.210 0.176
0.306 0.216 0.200 0.197 0.231 0.175 0.181 0.202 0.216 0.186
0.316 0.225 0.215 0.217 0.249 0.194 0.202 0.215 0.229 0.204
0.320 0.240 0.227 0.231 0.261 0.210 0.216 0.229 0.233 0.222
0.309 0.206 0.193 0.192 0.226 0.176 0.186 0.204 0.222 0.183





Table 9 Matrix D≈PCR6(θ) with fast BF-ICrA for Example 3





0.313 0.388 0.465 0.498 0.469 0.500 0.426 0.451 0.498 0.477
0.388 0.339 0.403 0.496 0.461 0.500 0.421 0.440 0.497 0.464
0.465 0.403 0.348 0.493 0.456 0.500 0.416 0.437 0.495 0.457
0.498 0.496 0.493 0.362 0.385 0.500 0.376 0.391 0.470 0.303
0.469 0.461 0.456 0.385 0.230 0.380 0.256 0.288 0.300 0.324
0.500 0.500 0.500 0.500 0.380 0 0.312 0.356 0.308 0.500
0.426 0.421 0.416 0.376 0.256 0.312 0.137 0.185 0.272 0.330
0.451 0.440 0.437 0.391 0.288 0.356 0.185 0.205 0.314 0.351
0.498 0.497 0.495 0.470 0.300 0.308 0.272 0.314 0.283 0.438
0.477 0.464 0.457 0.303 0.324 0.500 0.330 0.351 0.438 0.228





6.3 Application of Fast BF-ICrA in Example 3 (700× 700
Points)

Example 3with fast PCR6: If we apply the fast BF-ICrAmethod using approximate
PCR6 fusion rule based on the canonical decomposition of the M = 19 dichotomous
BBAs (mi

j j ′(θ),m
i
j j ′(θ̄),m

i
j j ′(θ ∪ θ̄)), we get the matrix of distances to full agree-

ment, denoted by D≈PCR6(θ), given in Table9.
Weobserve that the average distance betweenACOalgorithms ismuchhigher than

in Tables5 and 7 of Examples 1 and 2. This shows clearly the difficulty to precisely
identify the clusters of similar algorithms because only fewACO algorithms perform
actually very well for this third example. Eventually, and based on shortest inter-
distance we could make the first pairwise group {ACO7,ACO8} because D78(θ) =
0.185 is the minimal inter-distance we have between the ACO algorithms. Once the
rows and columns of Table9 corresponding to ACO7 and ACO8 are eliminated, then
the second best group will be {ACO5,ACO9} because D59(θ) = 0.300. Similarly,
we will get the group {ACO4,ACO10} because D4,10(θ) = 0.303, and then the group
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Table 10 Matrix DAver.(θ) with BF-ICrA using averaging rule for Example 3





0.170 0.154 0.142 0.221 0.351 0.350 0.392 0.345 0.332 0.298
0.154 0.120 0.092 0.167 0.321 0.295 0.369 0.313 0.290 0.261
0.142 0.092 0.042 0.114 0.289 0.237 0.342 0.279 0.242 0.224
0.221 0.167 0.114 0.054 0.255 0.139 0.327 0.260 0.184 0.177
0.351 0.321 0.289 0.255 0.339 0.245 0.391 0.355 0.287 0.324
0.350 0.295 0.237 0.139 0.245 0 0.304 0.242 0.115 0.247
0.392 0.369 0.342 0.327 0.391 0.304 0.390 0.368 0.336 0.387
0.345 0.313 0.279 0.260 0.355 0.242 0.368 0.328 0.288 0.341
0.332 0.290 0.242 0.184 0.287 0.115 0.336 0.288 0.190 0.279
0.298 0.261 0.224 0.177 0.324 0.247 0.387 0.341 0.279 0.261





{ACO1,ACO2} because D12(θ) = 0.388. Finally we could also cluster ACO3 with
ACO6 because D36(θ) = 0.500, although this distance of agreement is quite large to
be considered as a trustable cluster.

Example 3 with averaging fusion: The matrix of distances to full agreement based
on BF-ICrA method using average fusion rule, denoted by DAver.(θ), is given in
Table10.

Surprisingly, the use of averaging rule provides in this example lower distance
values on averagewith respect to values given in Table9. However no clear clustering
of algorithms can be made because only few ACO algorithms perform actually very
well for this third example. If we adopt the pairwise strategy to cluster algorithms,
we will obtain now as first group {ACO2,ACO3} because D23(θ) = 0.092, as sec-
ond group {ACO6,ACO9} because D69(θ) = 0.115, as third group {ACO4,ACO10}
because D4,10(θ) = 0.177, as fourth group {ACO1,ACO8} because D18(θ) = 0.345,
and finally we could also cluster ACO5 with ACO7 because D57(θ) = 0.391. One
sees that there is no strong correlation between results obtained from BF-ICrA based
on fast PCR6 and those based on averaging rule, which is not surprising because the
rules are totally different. Nevertheless the group {ACO4,ACO10} is agreed by both
methods here.

7 Application to Workforce Planning Problem (WPP)

In this section we present a new application of our new Fast BF-ICrA method for
solving the workforce planning problem (WPP). This problem has been addressed
recently by Fidanova et al. in [24] using the classical Atanassov’s ICrAmethod [2–5].
Before presenting our new results, it is necessary to present briefly the WPP.
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7.1 The Workforce Planning Problem (WPP)

The workforce planning is a part of the human resource management. It includes
multiple level of complexity, therefore it is a hard optimization problem (NP-hard).
This problem consists of two decision sets: selection and assignment. The first set
shows selected employees from available workers. The assignment set shows which
worker which job will perform. The aim is to fulfill the work requirements with
minimal assignment cost. Such hard optimization problem with strong constraints
is usually impossible to solve with exact methods or traditional numerical methods
for instances with realistic size and that is why these methods (exact or numerical)
can be applied only on some simplified variants of the original problem (see [24] for
a detailed bibliography of the existing methods). One must emphasize that the con-
vex optimization methods are not applicable complex non-linear workforce planning
problems. Nowadays, nature-inspired metaheuristic methods receive great attention
[25–29]. In the WPP considered heresome heuristic method including genetic algo-
rithm [31, 32], memetic algorithm [30], scatter search [31] etc., have been already
applied. So far the Ant Colony Optimization (ACO) algorithm is proved to be very
effective solving various complex optimization problems [33, 34]. In our previous
work [35] we did propose ACO algorithm for workforce planning. We have consid-
ered the variant of the workforce planning problem proposed in [31]. More recently
in [24] we proposed a hybrid ACO algorithm which is a combination of ACO with
a local search procedure and the classical InterCriteria Analysis (ICrA) was used
to analyze the algorithm performance according the local search procedures and to
study the correlations between the different variants in order to improve the algorithm
performance for solving efficiently the WPP.

In this section we solve the WPP proposed in [31, 36]. The set of jobs J =
{1, . . . ,m} must be completed during a fixed period of time. The job j requires d j

hours to be completed. I = {1, . . . , n} is the set ofworkers, candidates to be assigned.
Theminimal number of hours that every jobmust require by every assignedworker is
hmin . Availability of theworker i is si hours. Oneworker can be assigned tomaximum
jmax jobs. The set Ai shows the jobs, that worker i is qualified. Maximum t workers
can be assigned during the planed period, or at most t workers may be selected from
the set I of workers. The selected workers need to be capable to complete all the
jobs. The aim is to find feasible solution, that optimizes a given objective function.

Let ci j is the cost of assigning the worker i to the job j . The mathematical model
of the WPP can be described by the following variables

xi j !
{
1, if worker i is assigned to job j,
0, otherwise.

and yi !
{
1, if worker i is selected,
0, otherwise.

zi j ! number of hours that worker i is assigned to perform job j

Q j ! set of workers qualified to perform job j
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The WPP consists to minimize the total assignment cost under some constraints,
more precisely we want to

Minimize
∑

i∈I

∑

j∈Ai

ci j .xi j (25)

subject to the following constraints

∑

j∈Ai

zi j ≤ si .yi , with i ∈ I (26)

∑

i∈Q j

zi j ≥ d j with j ∈ J (27)

∑

j∈Ai

xi j ≤ jmax .y j with i ∈ I (28)

hmin.xi j ≤ zi j ≤ si .xi j with i ∈ I, j ∈ Ai (29)
∑

i∈I
yi ≤ t (30)

where xi j ∈ {0, 1}, yi ∈ {0, 1} and zi j ≥ 0 with i ∈ I and j ∈ Ai .
The constraint (26) stipulates that number of hours for each selected worker is

limited, and the constraint (27) stipulates that the work must be totally achieved. The
number of jobs that every worker can perform is limited according to the constraint
(28). The inequality (29) stipulates the minimal number of hours that every job must
require by every assigned worker. The number of assigned workers is limited by
the constraint (30). WPP is difficult to solve because of very restrictive constraints
especially the relation between the parameters hmin and d j . It is easier to solve (to
find feasible solution) when the problem is structured (when d j is a multiple of hmin)
than for unstructured problems (when d j and hmin are not related).

Based on our previous works [24, 35], we will apply the ACO algorithm for
workforce planning problem coupled with different local search procedures and
based on our new fast BF-ICrA approach. One of the main points of the ant algorithm
is the proper representation of the problem by graph. In our case the graph of the
problem is 3 dimensional and the node (i, j, z) corresponds worker with number i to
be assigned to the job j for time z. The graph of the problem is asymmetric, because
the maximal value of z depends of the value of j , different jobs needs different time
to be completed. At the beginning of every iteration every ant starts to construct
their solution, from random node of the graph of the problem. For every ant, three
random numbers are generated. The first random number corresponds to a worker we
randomly select in the interval [0, . . . , n]. The second random number in the interval
[0, . . . ,m] corresponds to the job that must be done by the worker. We check if the
worker is qualified to perform the job, if not we randomly choose for him/her another
compatible job. The third random number in [hmin, . . . ,min{d j , si }] corresponds to
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the number of hours allocated to worker i to performs the job j . After, the ant applies
the transition probability rule to include next nodes in the partial solution, until a
feasible solution is completed, or there is no possibility to include new node. The
heuristic information ηi jl is problem dependent and is used for better management of
the search process. In order to assign the most cheapest worker as longer as possible,
we define the ηi jl parameter of the ACO algorithm by:

ηi jl =
{
l/ci j if l = zi j
0 otherwise

(31)

The node with a highest probability is chosen to be the next node, included in the
solution. When there are several candidate nodes with a same probability, the next
node is randomly drawn among these candidates. When some move of the ant do not
meets the problem constraints, then the probability of thismove is set to be 0. If for all
possible nodes the value of the transition probability is 0, it is impossible to include
new node in the solution and the solution construction stops. When the constructed
solution is feasible, the value of the objective function is the sum of the assignment
cost of the assigned workers. If the constructed solution is not feasible, the value of
the objective function is set to be equal to −1. The ants construct feasible solutions
and depose a new pheromone on the elements of their solutions. More precisely, the
main pheromone trail update rule is given by

τi, j ← ρτi, j + &τi, j , (32)

where ρ decreases the value of the pheromone (like the evaporation in a nature),
and where the new added pheromone &τi, j is equal to the reciprocal value of the
objective function given by

&τi, j =
ρ − 1

min
∑

i∈I
∑

j∈Ai
ci j .xi j

(33)

The nodes of the graph belonging to solutions with less value of the objective
function, receive more pheromone than others and become more desirable in the
next iteration. At the end of every iteration we compare the iteration best solution
with the best solution obtained so far. If the best solution from the current iteration
is better than the best so far solution (global best solution), we update the global
best solution with the current iteration best solution. The end condition used in our
algorithm is the number of iterations.

In order to decrease the time to find the best solution and eventually to improve the
achieved solutions, we use the local search proposed in [24] because it increases the
possibility to find feasible solution and thus the chance to improve current solution.
If the solution is not feasible we remove part of the assigned workers and after that
we assign in their place newworkers. The workers which will be removed are chosen
randomly. On this partial solution we assign new workers applying the rules of ant
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algorithm. The ACO algorithm (denoted ACO1) is a stochastic algorithm, therefore
the new constructed solution is different from previous one with a high probability.
We have proposed three variants for the local search procedure:

• ACO2: with removed workers are quarter of all assigned workers (ACO quarter);
• ACO3: with removed workers are half of all assigned workers; (ACO half)
• ACO4: with all assigned workers are removed and the solution is constructed from
the beginning (ACO restart).

7.2 WPP Addressed in This Paper

We use the artificially generated problem instances considered in [31]. The charac-
teristics of this WPP are: m = 20, n = 20, t = 10, si ∈ [50, 70], jmax ∈ [3, 5], and
hmin ∈ [10, 15]. The set of test problems consists of ten structured problems, and
ten unstructured problems. For structured problems d j is proportional to hmin. In
our previous work [35] we have shown that our ACO algorithm outperforms the
genetic and scatter search algorithms presented in [31]. The number of iterations is a
stopping criteria for our hybrid ACO algorithm. The ACO parameter settings are as
follows: ρ = 0.5, τ0 = 0.5, a = 1, b = 1, the number of ants is 20, and themaximum
number of iterations is fixed to 100. Further, the problem instances are enumerated
as S2001 to S2010 for the ten structured problems using 20 ants, and as U2001 to
U2010 for the ten unstructured problems using 20 ants. The WPP has very restric-
tive constraints. Therefore only 2–3 of the ants, per iteration, find feasible solution.
Sometimes some iterations do not generate a feasible solution. Its complicates the
search process. Our aim is to decrease the number of unfeasible solutions, in order
to increase the possibility for ants to find good solutions, and therefore to decrease
the needed number of iterations to get a good solution. We observe that after the
local search procedure applied on the first iteration, the number of unfeasible solu-
tions in a next iterations decreases. It is another reason why the computation time
does not increase significantly. We are analyzing four cases: (1) without local search
procedure (ACO1), and with the three aforementioned variant for the local search
procedure (ACO2, ACO3 and ACO4). We did perform 30 independent runs for each
of the four cases (because the algorithm is stochastic) to guarantee the robustness of
the average results.We applyANOVA test for statistical analysis to guarantee the sig-
nificance of the achieved results. The obtained results are presented in Tables11 and
12. Tables11 presents the minimal number of iterations to achieve the best solution
and Table12—the computation time needed to achieve the best solution.
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Table 11 Minimal number of iterations to achieve the best solution
Algo type ACO1 ACO2 ACO3 ACO4

S2001 13 10 15 16

S2002 17 28 28 35

S2003 29 27 37 33

S2004 77 66 41 23

S2005 21 21 4 14

S2006 21 13 20 1

S2007 43 34 29 40

S2008 57 15 50 33

S2009 36 28 22 48

S2010 26 19 16 35

U2001 17 23 11 21

U2002 17 16 12 15

U2003 28 22 20 48

U2004 41 56 28 28

U2005 14 20 15 4

U2006 46 46 45 20

U2007 29 44 37 39

U2008 11 14 16 26

U2009 46 68 41 42

U2010 30 30 30 30

7.3 Results of WPP Obtained with Fast BF-ICrA

The test problems S2001 to S2010 andU2001 toU2010 are considered as objects, and
algorithms ACO1, ACO2, ACO3 and ACO4 as criteria. We did apply the fast BF-
ICrA approach to identify the relation between the proposed ACO hybrid algorithms.
The hybrid algorithms are compared based on the obtained results according to the
number of iterations (Table11), and according to the computation time (Table12).

Based on the values of Table11, we get the distances between ACO algorithms
reported in matrix Di t

≈PCR6(θ) with fast PCR6 rule, and the matrix Di t
Aver.(θ) when

using the simple averaging rule of combination.

Di t
≈PCR6(θ) =





0.3181 0.4419 0.4218 0.4867
0.4419 0.3743 0.4812 0.4925
0.4218 0.4812 0.3316 0.4802
0.4867 0.4925 0.4802 0.3575





Di t
Aver.(θ) =





0.3736 0.4018 0.4253 0.4885
0.4018 0.3450 0.4372 0.4834
0.4253 0.4372 0.3933 0.4791
0.4885 0.4834 0.4791 0.3792




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Table 12 Computation time needed to achieve the best solution
Algo type ACO1 ACO2 ACO3 ACO4

S2001 1.20 0.94 0.96 2.29

S2002 3.94 8.62 6.22 14.75

S2003 5.19 5.79 11.93 3.06

S2004 3.06 16.66 7.00 6.11

S2005 0.63 1.312 0.396 0.90

S2006 2.48 2.12 2.64 0.59

S2007 6.78 4.82 6.78 6.60

S2008 6.38 1.87 10.42 8.59

S2009 4.68 5.31 4.48 5.70

S2010 1.45 1.25 1.28 10.43

U2001 3.10 4.48 2.00 2.50

U2002 1.98 1.18 0.92 0.93

U2003 2.14 2.41 1.54 1.88

U2004 3.08 3.35 3.12 3.47

U2005 1.55 2.76 2.06 1.056

U2006 10.92 11.8 4.36 7.05

U2007 4.22 6.55 3.54 3.27

U2008 0.89 1.48 1.19 1.77

U2009 6.48 8.72 7.10 7.21

U2010 3.74 3.88 3.69 10.00

The analysis of values of Di t
≈PCR6(θ) matrix shows clearly that none of these

algorithms are close of each others because their distances aremuch bigger than zero.
This is because the BBAs of the Inter-Criteria matrix K are in fact quite ambiguous
(i.e. the focal elements θ and θ̄ have comparable mass values), even if there is only
a little mass committed to uncertainty θ ∪ θ̄ . However, ACO4 is more distant of
other algorithms which indicates a different behavior compared to ACO1, ACO2 and
ACO3, as already mentioned in [24]. The averaging fusion rule makes the distances
values more close which makes the separability of criteria even more difficult to
identify.

Based on the numerical values of Table12, we get the distances between ACO
algorithms reported in matrix Dsec

≈PCR6(θ) with fast PCR6 rule, and the matrix
Dsec

Aver.(θ) when using the simple averaging rule of combination.

Dsec
≈PCR6(θ) =





0.3021 0.4452 0.4186 0.4603
0.4452 0.3509 0.4747 0.4807
0.4186 0.4747 0.3600 0.4798
0.4603 0.4807 0.4798 0.3595




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Dsec
Aver.(θ) =





0.3841 0.4030 0.4034 0.4276
0.4030 0.3215 0.3976 0.4108
0.4034 0.3976 0.3475 0.4156
0.4276 0.4108 0.4156 0.3378





Based on the values of Dsec
≈PCR6(θ) matrix, one sees also that there is no clear

clustering of the different ACO algorithms because the distances values are much
bigger than zero, however one can also reasonably infer that ACO4 shows a different
behavior compared to ACO1, ACO2 and ACO3, as inferred in the previous analysis
based on input values of Table11. The difference comes from deleting of infeasible
solutions and constructing new solutions from beginning. Thus the new constructed
solutions can be very different from previous ones and as a consequence the change
of the pheromone can be significant. In summary, even there are some numerical
differences when the hybrid algorithms are compared based on minimal number of
iterations and based on computation time, our conclusions of (fast) BF-ICrA are
consistent.

8 Conclusions

The fast Belief Function based Inter-Criteria Analysis method, using the canonical
decomposition of basic belief assignments defined on a dichotomous frame of dis-
cernment was applied, tested and analysed in this paper for two applications: (1)
for evaluating the Multiple-Objective Ant Colony Optimization (MO-ACO) algo-
rithm for Wireless Sensor Networks (WSN) deployment, and (2) for evaluating the
Multiple-Objective Ant Colony Optimization (MO-ACO) algorithm for the Work-
force Planning Problem (WPP).

For our first application (WSN deployment), based on the BF-ICrA outcomes we
have shown a very high correlation with fast PCR6 rule for the ACO1, ACO3 and
ACO9 group, for the ACO4, ACO5 and ACO6 group, and for the ACO7, ACO8 and
ACO10 group of algorithms in Example 1 (case of size 350 × 350) as intuitively
expected. This is because the considered ACO algorithms can solve the problem
with good solution quality in Example 1. These high correlations were not observed
in the other two cases for Example 2 (case of size 500 × 500) and 3 (case of size
700 × 700) because only few ACO algorithms perform actually very well for these
examples. So, if we considered results in case of larger problem sizes, the BF-ICrA
results show that the number of ants has the significant influence on the obtained
results, as already pointed out in [22].

For our second application (WPP), based on the fast BF-ICrA results we have
shown that the third variant of ACO approach, i.e. ACO4 (ACO restart) has a quite
distinct behavior with respect to the methods ACO1, ACO2 and ACO3.
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