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Abstract. In this paper, we present a measure of Information Content
(IC) of Basic Belief Assignments (BBAs), and we show how it can be
easily calculated. This new IC measure is interpreted as the dual of the
effective measure of uncertainty (i.e. generalized entropy) of BBAs de-
veloped recently.
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1 Introduction

Information quality (IQ) evaluation is of major importance for information pro-
cessing and for helping the decision-making under uncertainty. In [1], the authors
introduced the Accessibility, Interpretability, Relevance, and Integrity concepts
as main attributes to describe the information quality in the context of assurance
and belief networks, but unfortunately they present only general concepts with-
out explicit formulas to evaluate quantitatively these attributes. In several recent
books devoted to IQ [2–5], the authors proposed different models and methods
of IQ evaluations. Recently in [6], Bouhamed et al. proposed a quantitative IQ
evaluation using the possibility theory framework, which could be extended to
the belief functions theory framework with further investigations. In this latter
work, the information quantity component being necessary for the IQ evalua-
tion is based on Gini’s entropy rather than classical Shannon entropy. From the
examination of these aforementioned references (and some references therein),
it is far from obvious to make a clear justified choice among all these methods,
especially when we model the uncertain information by belief functions (BF).
What is clear however is that several distinct factors (or components) must be
taken into account in the IQ evaluation mechanism. In this paper we focus on
one of these components which is the Information Content (IC) component that
we consider as the very (if not the most) essential component for IQ evaluation
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and indispensable for developing an effective IQ evaluation method in future
research works.

It is worth noting that we do not address directly the whole IQ evaluation
problem in this work but to provide a mathematical solution for measuring the
IC of any Basic Belief Assignments (BBA) in the belief functions (BF) frame-
work. Our new IC measure is interpreted as the dual of an effective Measure of
Uncertainty (MoU) developed recently [7]. We show how to calculate the IC of
a BBA, and we also discuss the notion of information gain and information loss
in the BF context. In our opinion, we cannot define a measure of Information
Content independently of a Measure of Uncertainty (MoU) because they must
be strongly related to each other. Actually these measures are two different sides
of a same abstract coin we would say. On one side (the uncertainty side), more
uncertainty content we have harder is the decision or choice to make, and on
the other side (the information side) more information content we have easier
and stronger is the decision or choice to make. This very simple and natural
basic principle will be clarified mathematically next. So, the measure of infor-
mation content of a BBA must reflect somehow the easiness and strength in the
choice of an element of the frame of discernment drawn from the BBA (i.e. in
the decision-making). This paper is organized as follows. After a brief recall of
basics of belief functions in section 2, we recall the effective MoU adopted in
this work in section 3. Section 4 defines the measure of information content of
a BBA and the information granules vector. Section 5 introduces the notions of
information gain and information loss. Conclusions and perspectives appear in
the last section.

2 Belief functions

The belief functions (BF) were introduced by Shafer [8] for modeling epistemic
uncertainty, reasoning about uncertainty and combining distinct sources of ev-
idence. The answer of the problem under concern is assumed to belong to a
known finite discrete frame of discernement (FoD) Θ = {θ1, . . . , θN} where all
elements (i.e. members) of Θ are exhaustive and mutually exclusive. The set
of all subsets of Θ (including empty set ∅, and Θ) is the power-set of Θ de-
noted by 2Θ. The number of elements (i.e. the cardinality) of the power-set
is 2|Θ|. A (normalized) basic belief assignment (BBA) associated with a given
source of evidence is a mapping mΘ(·) : 2Θ → [0, 1] such that mΘ(∅) = 0 and∑
X∈2Θ m

Θ(X) = 1. A BBA mΘ(·) characterizes a source of evidence related
with a FoD Θ. For notation shorthand, we can omit the superscript Θ in mΘ(·)
notation if there is no ambiguity on the FoD we work with4. The quantity m(X)
is called the mass of belief for X. The element X ∈ 2Θ is called a focal element
(FE) of m(·) if m(X) > 0. The set of all focal elements of m(·) is denoted5 by
FΘ(m) , {X ∈ 2Θ|m(X) > 0}.

4 However, we will keep mΘ(·) notation when very necessary.
5 , means equal by definition.
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The belief and the plausibility of X are defined for any X ∈ 2Θ by [8]

Bel(X) =
∑

Y ∈2Θ|Y⊆X

m(Y ) (1)

Pl(X) =
∑

Y ∈2Θ|X∩Y 6=∅

m(Y ) = 1− Bel(X̄). (2)

where X̄ , Θ \ {X} is the complement of X in Θ.
One has always 0 ≤ Bel(X) ≤ Pl(X) ≤ 1, see [8]. For X = ∅, Bel(∅) = 0

and Pl(∅) = 0, and for X = Θ one has Bel(Θ) = 1 and Pl(Θ) = 1. Bel(X) and
Pl(X) are often interpreted as the lower and upper bounds of unknown prob-
ability P (X) of X, that is Bel(X) ≤ P (X) ≤ Pl(X). To quantify the uncer-
tainty (i.e. the imprecision) of P (X) ∈ [Bel(X), P l(X)], we use the notation
u(X) ∈ [0, 1] defined by

u(X) , Pl(X)−Bel(X) (3)

The quantity u(X) = 0 if Bel(X) = Pl(X) which means that P (X) is known
precisely, and one has P (X) = Bel(X) = Pl(X). One has u(∅) = 0 because
Bel(∅) = Pl(∅) = 0, and one has u(Θ) = 0 because Bel(Θ) = Pl(Θ) = 1. If all
focal elements of m(·) are singletons of 2Θ the BBA m(·) is a Bayesian BBA
because ∀X ∈ 2Θ one has Bel(X) = Pl(X) = P (X) and u(X) = 0. Hence the
belief and plausibility of X coincide with a probability measure P (X) defined on
the FoD Θ. The vacuous BBA characterizing a totally ignorant source of evidence
is defined bymv(X) = 1 forX = Θ, andmv(X) = 0 for allX ∈ 2Θ different from
Θ. This particular BBA has played a major role in the establishment of a new
effective measure of uncertainty of BBA defined in [7].

3 Generalized entropy of a BBA

In [9] we did analyze in details forty-eight measures of uncertainty (MoU) of
BBAs by covering 40 years of research works on this topic. Some of these MoUs
capture only a particular aspect of the uncertainty inherent to a BBA (typically,
the non-specificity and the conflict). Other MoUs propose a total uncertainty
measure to capture jointly several aspects of the uncertainty. Unfortunately, most
of these MoUs fail to satisfy four very simple reasonable and essential desiderata,
and so they cannot be considered as really effective and useful. Actually only
six MoUs can be considered as effective from the mathematical sense presented
next, but unfortunately they appear as conceptually defective and disputable,
see discussions in [9]. That is why, a better effective measure of uncertainty
(MoU), i.e. generalized entropy of BBAs has been developed and presented in
[7]. The mathematical definition of this new effective entropy is given by

U(m) =
∑
X∈2Θ

s(X) (4)
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with
s(X) , −m(X)(1− u(X)) log(m(X)) + u(X)(1−m(X)) (5)

The quantity −(1− u(X)) log(m(X)) = (1− u(X)) log(1/m(X)) entering in
s(X) in (5) is the surprisal6 log(1/m(X)) of X discounted by the confidence (1−
u(X)) one has on the precision of P (X). The term −m(X)(1− u(X)) log(m(X))
is the weighted discounted surprisal of X. The term u(X)(1−m(X)) entering
in (5) corresponds to the imprecision of P (X) discounted by (1 − m(X)) be-
cause the greater m(X) the less one should take into account the imprecision
u(X) in the MoU. The quantity s(X) is the uncertainty contribution related
to element X (named the entropiece of X) in the MoU U(m). This entropiece
s(X) involves m(X) and the imprecision u(X) = Pl(X) − Bel(X) about the
unknown probability of X in a subtle interwoven manner. The cardinality of X
is indirectly taken into account in the derivation of s(X) thanks to u(X) which
requires the derivation of Pl(X) and Bel(X) functions depending on the car-
dinality of X. Because u(X) ∈ [0, 1] and m(X) ∈ [0, 1] one has s(X) ≥ 0, and
U(m) ≥ 0. The quantity U(m) is expressed in nats because we use the natural
logarithm. U(m) can be expressed in bits by dividing the U(m) value in nats by
log(2) = 0.69314718.... This measure of uncertainty U(m) is a continuous func-
tion in its basic belief mass arguments because it is a summation of continuous
functions. In formula (5), we always take m(X) log(m(X)) = 0 when m(X) = 0
because limm(X)→0+ m(X) log(m(X)) = 0 which can be proved using L’Hôpital
rule [11]. Note that for any BBA m, one has always s(∅) = 0 because m(∅) = 0
and u(∅) = Pl(∅)−Bel(∅) = 0− 0 = 0. For the vacuous BBA, one has s(Θ) = 0
because mv(Θ) = 1 and u(Θ) = Pl(Θ)−Bel(Θ) = 1− 1 = 0.

The set {s(X), X ∈ 2Θ} of the entropieces values s(X) can be represented
by an entropiece vector s(mΘ) = [s(X), X ∈ 2Θ]T , where any order of elements
X of the power set 2Θ can be chosen. For simplicity, we suggest to use the
classical N -bits representation (if |Θ| = N) with the increasing order - see the
next example.

This measure of uncertainty U(m) is effective because it can be proved (see
proofs in [7]) that it satisfies the following four essential properties:

1. U(m) = 0 for any BBA m(·) focused on a singleton X of 2Θ.
2. U(mΘ

v ) < U(mΘ′

v ) if |Θ| < |Θ′|.
3. U(m) = −

∑
X∈Θm(X) log(m(X)) if the BBA m(·) is a Bayesian BBA.

Hence, U(m) reduces to Shannon entropy [12] in this case.
4. U(m) < U(mv) for any non-vacuous BBA m(·) and for the vacuous BBA
mv(·) defined with respect to the same FoD.

The proof of the three first properties is quite simple to make. The proof of the
last property is much more difficult. As explained in [7], we do not consider that
the sub-additivity property [13] of U(m) is a fundamental desideratum that an
effective MoU must satisfy in general. In fact the sub-additivity desideratum is
6 This terminology is not used by Shannon in his original paper but it has been
introduced by Tribus in [10] in the probabilistic context, and by analogy we adopt
Tribus’ terminology also for BBAs.
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incompatible with the fourth important property U(m) < U(mv) above which
stipulates that none non-vacuous BBA can be more uncertain (i.e. more ignorant
about the problem under consideration) than the vacuous BBA. Actually, it does
not make sense to have the entropy U(mΘ×Θ′

v ) of the vacuous joint BBA mΘ×Θ′

v

defined on the cartesian product space Θ×Θ′ smaller than (or equal to) the sum
U(mΘ

v )+U(mΘ′

v ) of entropies of vacuous BBAsmΘ
v andmΘ′

v defined respectively
on Θ and Θ′. There is no theoretical justification, nor intuitive reason for this
sub-additivity desideratum in the context of non-bayesian BBAs. Of course for
Bayesian BBAs, U(m) is equivalent to Shannon entropy which is in this case
sub-additive.

It can be also proved, see [7] for details, that the entropy of the vacuous BBA
mv related to a FoD Θ is equal to

U(mΘ
v ) = 2|Θ| − 2 (6)

This maximum entropy value U(mv) makes perfect sense because for this very
particular BBA there is no information at all about the conflicts between the
elements of the FoD. Actually for all X ∈ 2Θ \ {∅, Θ} one has u(X) = 1 because
[Bel(X), P l(X)] = [0, 1], and one has u(∅) = 0 and u(Θ) = 0. Hence, the sum
of all imprecisions of P (X) for all X ∈ 2Θ is exactly equal to 2|Θ| − 2 which
corresponds to U(mΘ

v ) as expected. Moreover, one has always U(mΘ
v ) > log(|Θ|)

which means that the vacuous BBA has always an entropy greater than the
maximum of Shannon entropy log(|Θ|) obtained with the uniform probability
mass function distributed on Θ.

Example 1 of entropy calculation: consider Θ = {θ1, θ2} and the BBA
mΘ(θ1) = 0.5,mΘ(θ2) = 0.3 andmΘ(θ1∪θ2) = 0.2, then one has [Bel(∅), P l(∅)] =
[0, 1] and u(∅) = 0, [Bel(θ1), P l(θ1)] = [0.5, 0.7], [Bel(θ2), P l(θ2)] = [0.3, 0.5],
and [Bel(Θ), P l(Θ)] = [1, 1]. Hence, u(θ1) = 0.2, u(θ2) = 0.2 and u(Θ) = 0.
Applying (5), one gets s(∅) = 0, s(θ1) ≈ 0.377258, s(θ2) ≈ 0.428953 and
s(Θ) ≈ 0.321887. Using the 2-bits representation with increasing ordering7, we
encode the elements of the power set as ∅ = 00, θ1 = 01, θ2 = 10 and θ1∪θ2 = 11.
The entropiece vector for this simple example is

s(mΘ) =


s(∅)
s(θ1)
s(θ2)

s(θ1 ∪ θ2)

 ≈


0
0.377258
0.428953
0.321887

 (7)

If we use the classical N-bits (here N = 2) representation with increasing
ordering (as we recommand) the first component of entropiece vector s(mΘ) will
be s(∅) which is always equal to zero for any BBA m, hence the first component
of s(mΘ) is always zero. By summing all the components of the entropiece vector
s(mΘ) we obtain the entropy U(mΘ) ≈ 1.128098 nats of the BBA mΘ(·). Note
that the components s(X) (for X 6= ∅) of the entropieces vector s(mΘ) are not
7 Once the binary values are converted into their digit value with the most significant
bit on the left (i.e the least significant bit on the right).
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independent because they are linked to each other through the calculation of
Bel(X) and Pl(X) values entering in u(X).

Example 2 of entropy calculation: for the vacuous BBA mΘ
v , and when

using the binary increasing encoding of elements of 2Θ, the first component s(∅)
and the last component s(Θ) of entropiece vector s(mΘ

v ) will always be equal to
zero, and all other components of s(mΘ

v ) will be equal to one. For instance, if
we consider Θ = {θ1, θ2} and the vacuous BBA mΘ

v (θ1) = 0, mΘ
v (θ2) = 0 and

mΘ
v (θ1 ∪ θ2) = 1, the corresponding entropiece vector s(mΘ

v ) is

s(mΘ
v ) =


s(∅)
s(θ1)
s(θ2)

s(θ1 ∪ θ2)

 =


0
1
1
0

 (8)

By summing all the components of the entropiece vector s(mΘ
v ) we obtain

the entropy value U(mΘ
v ) = 2 nats for this vacuous BBA mΘ

v (·), which is of
course in agreement with the formula (6).

4 Information content of a BBA

We consider a (non-empty) FoD of cardinality |Θ| = N , and we model our state
of knowledge about the problem under consideration by a BBA defined on 2Θ.
Without more knowledge than the FoD itself (and its cardinality N), we are
totally ignorant about the solution of the problem we want to solve, and of
course we have no clue for making a decision/choice among the elements of the
FoD. The BBA reflecting this total ignorant situation is the vacuous BBA mv(·),
whose maximal entropy is U(mv) = 2N − 2. In such case, we naturally expect
that the information content we have8 is zero when the uncertainty measure
is maximal. In the very opposite case, it is very natural to consider that the
information content of a BBA is maximal if the entropy value (the MoU value)
of a BBA m(·) is zero, meaning that we make a choice of one element of the
FoD without hesitation. Based on these very simple ideas, we propose to define
the information content of any BBA m(·) as the dual of the effective measure of
uncertainty, more precisely by

IC(mΘ) , U(mΘ
v )− U(mΘ) = (2|Θ| − 2)−

∑
X∈2Θ

s(X) (9)

where s(X) is the entropiece of the element X ∈ 2Θ given by (5), that is

s(X) , −(1− u(X))mΘ(X) log(mΘ(X)) + u(X)(1−mΘ(X))

and where u(X) is the level of imprecision of the probability P (X) given by

u(X) = PlΘ(X)−BelΘ(X) =
∑

Y ∈2Θ|X∩Y 6=∅

mΘ(Y )−
∑

Y ∈2Θ|Y⊆X

mΘ(Y ) (10)

8 aside of the value of N of course.
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From the definition (9), one sees that formΘ 6= mΘ
v one has IC(mΘ) > 0 because

U(mΘ) < U(mΘ
v ), and for mΘ = mΘ

v one has IC(mΘ
v ) = 0, which is what we

naturally expect.
It is worth mentioning that the information content IC(mΘ) of a BBA de-

pends not only of the BBA m(.) itself but also on the cardinality of the frame
of discernment9 Θ because IC(mΘ) requires the knowledge of |Θ| to calculate
the max entropy value U(mΘ

v ) = 2|Θ| − 2 entering in (9). This remark is very
important to understand that even if two BBAs (defined on different FoDs) focus
entirely on a same focal element, their information contents are necessarily dif-
ferent. For instance, if we consider the Bayesian BBA with mΘ(θ1) = 1 defined
on the FoD Θ = {θ1, θ2}, then

IC(mΘ) = U(mΘ
v )− U(mΘ) = (2|Θ| − 2)− 0 = 2 (nats)

whereas if we consider the Bayesian BBA with mΘ′
(θ1) = 1 defined on the larger

FoD Θ′ = {θ1, θ2, θ3} (for instance), then

IC(mΘ′
) = U(mΘ′

v )− U(mΘ′
) = (2|Θ

′| − 2)− 0 = 6 (nats)

So even if the decision θ1 that we would make based either onmΘ or onmΘ′
is the

same, these decisions must not be considered actually with the same strength,
and this is what reflects our information content measure.

From this very simple definition of information content, we can also define the
Normalized Information Content (NIC) (if needed later in some applications),
denoted by NIC(mΘ) by normalizing IC(mΘ) with respect to the maximal
value of entropy U(mΘ

v ) as

NIC(mΘ) ,
U(mΘ

v )− U(mΘ)

U(mΘ
v )

= 1− U(mΘ)

U(mΘ
v )

(11)

Hence we will have NIC(mΘ) ∈ [0, 1] and NIC(mΘ) = 0 for m = mv, and
NIC(mΘ) = 1 for U(m) = 0 which is obtained when m(·) is entirely focused on
a singleton θi ∈ Θ, that is mΘ(θi) = 1 for some i ∈ {1, 2, . . . , |Θ|}.

In fact, the (total) information content of a BBA IC(mΘ) is the sum of all
the information granules IG(X|mΘ) of elements X ∈ 2Θ carried by a BBA mΘ,
that is

IC(mΘ) =
∑
X∈2Θ

IG(X|mΘ) (12)

where

IG(X|mΘ) ,


0, if X = ∅
−s(X), if X = Θ

1− s(X) otherwise
(13)

9 That is why it is better, we think, to use the notation IC(mΘ) instead of IC(m).
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We can define the information granules vector10 IG(m) = [IG(X|mΘ), X ∈ 2Θ]T

by
IG(mΘ) , s(mΘ

v )− s(mΘ) (14)

One sees that the (total) information content IC(mΘ) of a BBA mΘ is just the
sum of all components IG(X|mΘ) of the information granules vector IG(m). The
information granules vector IG(m) is interesting and useful because it helps to
see the contribution of each element X in the whole measure of the information
content IC(mΘ) of a BBA mΘ.

Example 1 (continued): consider Θ = {θ1, θ2} and the BBA mΘ(θ1) = 0.5,
mΘ(θ2) = 0.3 and mΘ(θ1 ∪ θ2) = 0.2. The information granules vector IG(mΘ)
is given by

IG(mΘ) = s(mΘ
v )− s(mΘ) =


0
1
1
0

−


0
0.377258
0.428953
0.321887

 =


0

0.622742
0.571047
−0.321887

 (15)

By summing all the components of the information granules vector IG(mΘ) we
obtain the (total) information content IC(mΘ) = 0.871902 nats of the BBAmΘ,
which can of course be calculated direcltly also as

IC(mΘ) = U(mΘ
v )− U(mΘ) = 2− 1.128098 = 0.871902

However, the information granules vector IG(mΘ) is interesting to identify the
contribution of each element X in the whole measure of the information content.

5 Information gain and information loss

Once the IC measure is defined for a BBA, it is rather simple to define the
information gain and information loss of a BBA with respect to another one, both
defined on a same FoD Θ. Suppose that we have a first BBA mΘ

1 and a second
BBA mΘ

2 , then we can calculate by formula (9) their respective information
contents IC(mΘ

1 ) and IC(mΘ
2 ). The difference of information content measure

of mΘ
2 with respect to mΘ

1 is defined by11

∆IC(m2|m1) , IC(mΘ
2 )− IC(mΘ

1 ) (16)

If we replace IC(mΘ
2 ) and IC(mΘ

1 ) by their expressions according to (9), it
comes

∆IC(m2|m1) = [U(mΘ
v )−U(mΘ

2 )]−[U(mΘ
v )−U(mΘ

1 )] = U(mΘ
1 )−U(mΘ

2 ) (17)

10 We suppose for convenience that the elements X ∈ 2Θ are listed in increasing order
using the classical |Θ|-bits representation with the least significant bit on the right.

11 Similarly, we can define ∆IC(m1|m2) , IC(mΘ
1 )− IC(mΘ

2 ) = −∆IC(m2|m1).
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If ∆IC(m2|m1) = 0, the BBAs mΘ
1 and mΘ

2 have same measure of information
content. So, there is no gain and no loss in information content if one switches
frommΘ

1 tomΘ
2 or vice versa. ∆IC(m2|m1) = 0 does not mean that the decisions

based onmΘ
1 and onmΘ

2 are the same. It does only means that the decision based
on mΘ

1 must be as easy as the decision made based on mΘ
2 . It means that they

have the same informational strength. That’s it. If ∆IC(m2|m1) > 0, one has
IC(mΘ

2 ) > IC(mΘ
1 ), i.e. the BBA mΘ

2 is more informative than mΘ
1 . In this case

we get an information gain if one switches frommΘ
1 tomΘ

2 , and by duality we get
an uncertainty reduction by switching from mΘ

1 to mΘ
2 . It means that it must be

easier to make a decision based on mΘ
2 rather on mΘ

1 . If ∆IC(m2|m1) < 0, one
has IC(mΘ

2 ) < IC(mΘ
1 ), i.e. the BBA mΘ

2 is less informative than mΘ
1 . In this

case we get an information loss if one switches from mΘ
1 to mΘ

2 , and by duality
we get an uncertainty raise by switching from mΘ

1 to mΘ
2 . It means that it must

be easier to make a decision based on mΘ
1 rather on mΘ

2 .
As simple example, consider Θ = {θ1, θ2, θ3}. For the vacuous BBA one

has U(mΘ
v ) = 23 − 2 = 6 nats. Suppose at time k = 1 one has the BBA

mΘ
1 (θ1 ∪ θ2) = 0.2, mΘ

1 (θ1 ∪ θ3) = 0.3, mΘ
1 (θ1 ∪ θ2 ∪ θ3) = 0.5, then U(mΘ

1 ) ≈
5.1493 nats, and IC(mΘ

1 ) = U(mΘ
v )−U(mΘ

1 ) ≈ 0.8507 nats. Suppose that after
some information processing (belief revision, or fusion, etc) we come up with
the BBA mΘ

2 at time k = 2 defined by mΘ
2 (θ1) = 0.2 and mΘ

2 (θ1 ∪ θ3) = 0.8,
then U(mΘ

2 ) ≈ 0.5004 nats and IC(mΘ
2 ) = U(mΘ

v ) − U(mΘ
2 ) ≈ 5.4996 nats. In

this case, we get ∆IC(m2|m1) = 5.4996 − 0.8507 = 4.6489 which is positive.
Hence we get an information gain by switching from mΘ

1 to mΘ
2 thanks to the

information processing applied.

6 Conclusions

In this paper we have introduced a measure of information content (IC) for any
basic belief assignment (BBA). This IC measure based on an effective measure
of uncertainty of BBAs is quite simple to calculate, and it reflects somehow
the informational strength and easiness ability to make a decision based on
any belief mass function. We have also shown how it is possible to identify
the contribution of each focal element of the BBA to this information content
measure thanks to the information granule vector. This new IC measure is also
interesting because it allows to well quantify the information loss or gain between
two BBAs, and thus as perspectives we could use it to quantify precisely and
compare the performances of information processing using belief functions (like
fusion rules, belief conditioning, etc). We hope that this new theoretical IC
measure will open interesting tracks for forthcoming research works on reasoning
about uncertainty with belief functions.
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