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Abstract—In his Mathematical Theory of Evidence published
in 1976, Shafer did propose belief and plausibility conditioning
formulas based on Dempster’s rule of combination. It turns out
that the proof given by Shafer for belief conditioning is incorrect
and in this paper we present the correct proof of Shafer’s belief
conditioning formula.
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I. INTRODUCTION

In his Mathematical Theory of Evidence published in 1976

[1], Glenn Shafer did propose belief and plausibility condition-

ing formulas based on Dempster’s rule of combination. It turns

out that the proof of Theorem 3.6 given by Shafer in [1] (p. 66)

for belief conditioning is incorrect and we will explain why.

In this paper we present the correct proof of Shafer’s belief

conditioning formulas. This paper must not be considered as a

support for Shafer’s belief conditioning approach because we

recommend Fagin-Halpern conditioning approach [2] instead

(see our paper [3] for justification). It is only a clarification

of correct obtaining of Shafer’s conditioning formulas, no less

no more.

II. BASICS OF BELIEF FUNCTIONS

Based on Dempster’s works [4], [5], Shafer did introduce

Belief Functions (BF) to model the epistemic uncertainty and

to reason under uncertainty [1]. Shafer’s theory of evidence is

often called Demspter-Shafer Theory (DST) in the literature.

We consider a finite discrete frame of discernement (FoD)

Θ = {θ1, . . . , θn}, with n > 1, and where all exhaustive

and exclusive elements of Θ represent the set of the potential

solutions of the problem under concern. The set of all subsets

of Θ is the power-set of Θ denoted by 2Θ. The number of

elements (i.e. the cardinality) of 2Θ is 2|Θ|. A basic belief

assignment (BBA) associated with a given source of evidence

is defined as the mapping m(·) : 2Θ → [0, 1] satisfying the

conditions m(∅) = 0 and
∑

A∈2Θ m(A) = 1. The quantity

m(A) is the mass of belief of subset A committed by the

source of evidence (SoE). A focal element X of a BBA m(·)
is an element of 2Θ such that m(X) > 0. Note that the empty

set ∅ is not a focal element of a BBA because m(∅) = 0
(closed-world assumption of Shafer’s model for the FoD). The

set of all focal elements (i.e. the core) of m(·) is denoted

FΘ(m) � {X ⊆ Θ|m(X) > 0} = {X ∈ 2Θ|m(X) > 0},

and the set of focal elements of m(·) included in A ⊆ Θ is

denoted FA(m) � {X ∈ FΘ(m)|X ∩ A = X}. Belief and

plausibility functions are defined by1

Bel(A) =
∑

X∈2Θ

X⊆A

m(X)

=
∑

X∈FΘ(m)
X⊆A

m(X) =
∑

X∈FA(m)

m(X) (1)

Pl(A) =
∑

X∈2Θ

X∩A�=∅

m(X)

=
∑

X∈FΘ(m)
X∩A�=∅

m(X) = 1− Bel(Ā). (2)

When all elements of FΘ(m) are only singletons, m(·)
is called a Bayesian BBA [1] and its corresponding Bel(·)
and Pl(·) functions are homogeneous to a same (subjective)

probability measure P (·). The vacuous BBA representing a

totally non informative source of evidence is characterized by

the BBA m(Θ) = 1. According to Shafer’s Theorem 1 (see [1]

page 39, with its proof on page 51), the belief functions can

be characterized without referencing to a BBA. The quantities

m(·) and Bel(·) are one-to-one, and the BBA m(·) is obtained

from Bel(·) by Möbius inverse formula (see [1], p. 39).

In DST, Shafer [1] did propose to combine s ≥ 2 distinct

sources of evidence represented by BBAs m1(.), . . . ,ms(.)
over the same FoD Θ with Dempster’s rule (i.e. the normalized

conjunctive rule). Mathematically Dempster’s rule of combi-

nation of s ≥ 2 BBAs is defined by mDS
12...s(∅) = 0, and for

any X �= ∅ ∈ 2Θ

mDS
12...s(X) = [m1 ⊕ . . .⊕ms](X)

� mCR
12...s(X)/(1−mCR

12...s(∅)) (3)

where mCR
12...s(X) �

∑
X1,...,Xs∈2Θ

X1∩X2∩...∩Xs=X

∏s
i=1 mi(Xi) is the

conjunctive rule (CR) of combination. The term mCR
12...s(∅)

reflects the amount of dissonance between the sources [6].

Dempster’s rule is commutative and associative and preserves

1By convention, a sum of non existing terms (if it occurs in formulas
depending on the given BBA) is always set to zero.
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the neutrality of vacuous BBA in the fusion process. This

rule has been disputed from both theoretical and practical

standpoints, see [7]–[13] for discussions. In this paper we

do not focus on Dempster’s rule, but only on Shafer’s belief

conditioning formulas based on Demspter’s rule.

A. Shafer’s conditioning formulas

In this section we present briefly Shafer’s belief condition-

ing approach as proposed by Shafer in [1]. Suppose that the

effect of a new evidence on the frame of discernment Θ is

to establish a particular subset B ⊂ Θ with certainty. Then

Bel2 defined by Bel2(A) = 1 if B ⊂ A and Bel2(A) = 0
if B �⊂ A will give a degree of belief one to the proposition

corresponding to B and to every proposition implied by it [1],

p.66. Shafer established the following important theorem2 for

conditional belief and plausibility.

Theorem 3.6 [1], p. 67: Suppose Bel2 is defined by above two

equations, and Bel1 is another belief function over Θ. Then

Bel1 and Bel2 are combinable if and only if Bel1(B̄) < 1. If

Bel1 and Bel2 are combinable, let Bel1(·|B) denote Bel1 ⊕
Bel2, and let Pl1 and Pl1(·|B) denote the upper probability

functions for Bel1 and Bel1⊕Bel2, respectively. Then for all

A ⊂ Θ,

Bel1(A|B) =
Bel1(A ∪ B̄)−Bel1(B̄)

1−Bel1(B̄)
(4)

Pl1(A|B) =
Pl1(A ∩B)

Pl1(B)
(5)

Shafer’s proof of this theorem is in [1] (see pages 71–72), but

we reproduce it here for convenience for a better identification

of the mistake in this proof.

Shafer’s Proof of Theorem 3.6 (as given in [1]): Bel1(B̄) <
1 if and only if B overlaps the core of Bel1, and since

B is the core of Bel2, this is indeed equivalent to Bel1
being combinable with Bel2. Denote the basic probability

assignments of Bel1, Bel2 and Bel1 ⊕Bel2 by m1, m2 and

m. Since B is the only focal element of Bel2, and m2(B) = 1,

Dempster’s rule yields

m(A) =

∑
i

Ai∩B=A

m1(Ai)

1− ∑
i

Ai∩B=∅
m1(Ai)

=

∑
C

B∩C=A

m1(C)

1−Bel1(B̄)
(6)

2In his theorem Shafer uses the notation P ∗ for upper probability instead
of P l used generally in the literature to denote the plausibility function.

and

Bel1(A|B) =
∑
D⊂A

m(D) =

∑
D

∅�=D⊂A

∑
C

B∩C=D

m1(C)

1−Bel1(B̄)
(7)

=

∑
C

∅�=B∩C⊂A

m1(C)

1−Bel1(B̄)
(8)

=

∑
C⊂A∪B̄
C �⊂B

m1(C)

1−Bel1(B̄)
(9)

=
Bel1(A ∪ B̄)−Bel1(B̄)

1−Bel1(B̄)
(10)

Hence

Pl1(A|B) = 1−Bel1(Ā|B) (11)

=
1−Bel1(B̄)−Bel1(Ā ∪ B̄) +Bel1(B̄)

1−Bel1(B̄)
(12)

=
1−Bel1(A ∩B)

1−Bel1(B̄)
=

Pl1(A ∩B)

Pl1(B)
. � (13)

III. WHY SHAFER’S PROOF IS INCORRECT

Although Shafer’s formulas (4)-(5) are correct3, we show

why Shafer’s proof is incorrect. To obtain the final expression

of Bel1(A|B) given by (10), Shafer goes from (8) to (9) in

the proof of Theorem 3.6. So, Shafer implicitly assumes that

the following equality is valid

∑
C

∅�=B∩C⊂A

m1(C) =
∑

C⊂A∪B̄
C �⊂B

m1(C) (14)

In fact, (14) is wrong as shown in the next simple counter-

example. Hence, the Shafer’s proof for Bel1(A|B) is incor-

rect. This mistake casts doubts on the correctness of formulas

in Theorem 3.6. However, we show in the next section that

formulas given in Theorem 3.6 are in fact correct and we give

in this paper their correct proofs. It is quite easy to verify that

3if one accepts Shafer’s standpoint for belief conditioning based on Dem-
spster’s rule.
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(9) is not equal to (10) because4

Bel1(A ∪ B̄) =
∑

C⊂A∪B̄

m1(C)

=
∑

C⊂A∪B̄
C �⊂B

m1(C) +
∑

C⊂A∪B̄
C⊂B

m1(C)

=
∑

C⊂A∪B̄
C �⊂B

m1(C) +
∑

C⊂(A∪B̄)∩B

m1(C)

=
∑

C⊂A∪B̄
C �⊂B

m1(C) +
∑

C⊂(A∩B)∪(B̄∩B)

m1(C)

=
∑

C⊂A∪B̄
C �⊂B

m1(C) +
∑

C⊂(A∩B)∪∅
m1(C)

=
∑

C⊂A∪B̄
C �⊂B

m1(C) +
∑

C⊂(A∩B)

m1(C)

=
∑

C⊂A∪B̄
C �⊂B

m1(C) +Bel1(A ∩B)

Therefore, the numerators of (9) and (10) are different in

general because∑
C⊂A∪B̄
C �⊂B

m1(C) = Bel1(A ∪ B̄)−Bel1(A ∩B)

�= Bel1(A ∪ B̄)−Bel1(B̄)

Remark: One may argue that there is just a small typo

error in Shafer’s book, and in fact the incorrect ex-

pression
∑

C⊂A∪B̄
C �⊂B

m1(C) in (14), must be replaced by∑
C⊂A∪B̄
C �⊂B̄

m1(C). Even if one admits this possibility of typo

error in Shafer’s proof, it is not trivial to prove the (modi-

fied/corrected) equality∑
C

∅�=B∩C⊂A

m1(C) =
∑

C⊂A∪B̄
C �⊂B̄

m1(C) (15)

to get the final Shafer’s belief conditioning formula. That

is why we provide a complete exact and detailed proof of

Shafer’s belief conditioning formula in section IV.

A simple counter-example of Shafer’s proof

Consider the following FoD Θ = {θ1, . . . , θ7} satisfying

Shafer’s model. We consider and denote the focal elements of

m1(·) as follows A � {θ2, θ3, θ4, θ5, θ7} = θ2∪θ3∪θ4∪θ5∪θ7,

B � {θ1, θ2, θ3, θ4} = θ1 ∪ θ2 ∪ θ3 ∪ θ4, C1 � {θ3, θ5, θ6} =
θ3 ∪ θ5 ∪ θ6, C2 � {θ4, θ7} = θ4 ∪ θ7, C3 � θ2, and the

BBA m1(.) defined on the FoD Θ given by m1(A) = 0.1,

m1(B) = 0.1, m1(C1) = 0.2, m1(C2) = 0.3 and m1(C3) =
0.3. We consider the subset B = θ1 ∪ θ2 ∪ θ3 ∪ θ4 being

the conditioning term, characterized by the BBA m2(B) = 1,

4The denominators of (9) and (10) being equal, we just need to verify if
the numerators of (9) and (10) are equal, or not.

hence Bel2(B) = 1. Note that B̄ = Θ \ B = {θ5, θ6, θ7}
and Bel1(B̄) = 0 because there is no focal elements of m1(·)
included in B̄ = θ5 ∪ θ6 ∪ θ7.

• Let us calculate at first the sum S1 �
∑

C
∅�=B∩C⊂A

m1(C)

involved in (8). All focal elements C of m1(·) such that ∅ �=
B ∩C ⊂ A are the focal elements A, C1, C2 and C3 because

B ∩ A = θ2 ∪ θ3 ∪ θ4 �= ∅ and θ2 ∪ θ3 ∪ θ4 ⊂ A, B ∩
C1 = θ3 �= ∅ and θ3 ⊂ A, B ∩ C2 = θ4 �= ∅ and θ4 ⊂ A,

B ∩ C3 = θ2 �= ∅ and θ2 ⊂ A. The focal element C = B of

m1(·) is not involved in the sum S1 because if C = B, then

B ∩ C = B ∩B = B �⊂ A. Therefore, one gets

S1 = m1(A) +m1(C1) +m1(C2) +m1(C3)

= 0.1 + 0.2 + 0.3 + 0.3 = 0.9

Hence, based on (8) which is the correct expression obtained

from (7), one gets the correct value of Shafer’s belief condi-

tioning

Bel1(A|B) = S1/(1−Bel1(B̄)) = 0.9/(1− 0) = 0.9

• Let us calculate the sum S2 �
∑

C⊂A∪B̄
C �⊂B

m1(C) involved

in (9). First note that A∪ B̄ = θ2 ∪ θ3 ∪ θ4 ∪ θ5 ∪ θ6 ∪ θ7 and

the focal elements C of m1(·) such that C ⊂ (A ∪ B̄) and

C �⊂ B are the three focal elements A, C1 and C2 because

A ⊂ A ∪ B̄ and A �⊂ B, C1 = θ3 ∪ θ5 ∪ θ6 ⊂ A ∪ B̄ and

C1 �⊂ B, C2 = θ4 ∪ θ7 ⊂ A ∪ B̄ and C2 �⊂ B. The focal

element B = θ1 ∪ θ2 ∪ θ3 ∪ θ4 of m1(·) is not included in

A∪ B̄ = θ2 ∪ θ3 ∪ θ4 ∪ θ5 ∪ θ6 ∪ θ7 because, in this example,

B is not included in A, and of course because B ∩ B̄ = ∅.

The focal element C3 = θ2 of m1(·) is included in A ∪ B̄ =
θ2 ∪ θ3 ∪ θ4 ∪ θ5 ∪ θ6 ∪ θ7 but C3 = θ2 is also included in

B = θ1 ∪ θ2 ∪ θ3 ∪ θ4, so that the condition C3 �⊂ B is not

satisfied. Based on these remarks, one gets for S2

S2 = m1(A) +m1(C1) +m1(C2) = 0.1 + 0.2 + 0.3 = 0.6

We can verify that the value of S2 corresponds to the value

obtained with the correct formula (??), because Bel1(A∪B̄) =
m1(A) +m1(C1) +m1(C2) +m1(C3) = 0.9 and Bel1(A ∩
B) = m1(C3) = 0.3 so that S2 = Bel1(A ∪ B̄)− Bel1(A ∩
B) = 0.9− 0.3 = 0.6. Hence, based on (9), one would get an

incorrect value of Shafer’s belief conditioning

Bel1(A|B) = S2/(1−Bel1(B̄)) = 0.6/(1− 0) = 0.6

Clearly, this counter-example shows that S1 �= S2 and

proves that the equality (14) is incorrect. This simple counter

examples illustrates that the proof of Theorem 3.6 given by

Shafer is incorrect.
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IV. CORRECT PROOF OF FORMULAS OF THEOREM 3.6

Starting from Dempster’s rule we have m(∅) = 0 and for

all A �= ∅ ∈ 2Θ,

m(A) = [m1 ⊕m2](A) =

∑
X1,X2∈2Θ

X1∩X2=A

m1(X1)m2(X2)

1− ∑
X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)

(16)

Because in conditioning by B �= ∅, m2(·) is defined by

m2(X2) = 1 if X2 = B and m2(X2) = 0 otherwise, the

previous expression reduces for A �= ∅ to

m(A) =

∑
X1∈2Θ

∅�=X1∩B=A

m1(X1)

1− ∑
X1∈2Θ

X1∩B=∅

m1(X1)
=

∑
X1∈2Θ

∅�=X1∩B=A

m1(X1)

1−Bel1(B̄)
(17)

because Bel1(B̄) =
∑

X1∈2Θ

X1⊆B̄

m1(X1) =
∑

X1∈2Θ

X1∩B=∅

m1(X1).

Using the definition of the belief function, Bel1(A|B) for B �=
∅ is given by

Bel1(A|B) =
∑

Y ∈2Θ

Y⊆A

m(Y )

=
∑
Y ∈2Θ

Y⊆A

∑
X1∈2Θ

∅�=X1∩B=Y

m1(X1)

1−Bel1(B̄)

=

∑
Y ∈2Θ

Y⊆A

∑
X1∈2Θ

∅�=X1∩B=Y

m1(X1)

1−Bel1(B̄)

=

∑
X1∈2Θ

∅�=X1∩B⊆A

m1(X1)

1−Bel1(B̄)
(18)

Note that equation (18) is the same as Shafer’s equation (8)

using slight modified notations5 for better presentation in the

sequel.

Because m1(·) is a normalized BBA, one has for all B ∈ 2Θ

∑
X1∈2Θ

X1∩B=∅

m1(X1) +
∑

X1∈2Θ

X1∩B �=∅

m1(X1) = 1 (19)

Also, for any A ∈ 2Θ and in partitioning 2Θ in the subsets

{Y ∈ 2Θ|Y ⊆ A} and {Y ∈ 2Θ|Y �⊆ A}, the following

5We have also replaced symbol ⊂ by ⊆ for clarity.

equality also always holds

∑
Y ∈2Θ

Y⊆A

[ ∑
X1∈2Θ

X1∩B∩Y=∅

m1(X1) +
∑

X1∈2Θ

X1∩B∩Y �=∅

m1(X1)
]

+
∑

Y ∈2Θ

Y �⊆A

[ ∑
X1∈2Θ

X1∩B∩Y=∅

m1(X1) +
∑

X1∈2Θ

X1∩B∩Y �=∅

m1(X1)
]
= 1

(20)

This equality can be rewritten equivalently as

∑
X1∈2Θ

(X1∩B=∅)⊆A

m1(X1) +
∑

X1∈2Θ

(X1∩B �=∅)⊆A

m1(X1)

+
∑

X1∈2Θ

(X1∩B=∅)�⊆A

m1(X1) +
∑

X1∈2Θ

(X1∩B �=∅)�⊆A

m1(X1) = 1 (21)

The second term of the left hand side of (21) corresponds to

the numerator of Bel1(A|B) given in (18). We can express it

as

∑
X1∈2Θ

(X1∩B �=∅)⊆A

m1(X1) = 1−
∑

X1∈2Θ

(X1∩B=∅)⊆A

m1(X1)

−
∑

X1∈2Θ

(X1∩B=∅)�⊆A

m1(X1)−
∑

X1∈2Θ

(X1∩B �=∅) �⊆A

m1(X1)

Because∑
X1∈2Θ

(X1∩B=∅)⊆A

m1(X1)+
∑

X1∈2Θ

(X1∩B=∅)�⊆A

m1(X1) =
∑

X1∈2Θ

X1∩B=∅

m1(X1)

one gets∑
X1∈2Θ

(X1∩B �=∅)⊆A

m1(X1) = 1−
∑

X1∈2Θ

X1∩B=∅

m1(X1)

−
∑

X1∈2Θ

(X1∩B �=∅)�⊆A

m1(X1)

= 1−Bel1(B̄)− Pl1(Ā ∩B)

The last previous equality comes from the fact that

Bel1(B̄) =
∑

X1∈2Θ

X1⊆B̄

m1(X1) =
∑

X1∈2Θ

X1∩B=∅

m1(X1)

Pl1(Ā ∩B) =
∑

X1∈2Θ

X1∩B∩Ā�=∅

m1(X1) =
∑

X1∈2Θ

(X1∩B �=∅) �⊆A

m1(X1)

Therefore, the numerator of Bel1(A|B) given in (18) equals

1 − Pl1(Ā ∩ B) − Bel1(B̄). Because Pl1(Ā ∩ B) = 1 −
Bel1(Ā ∩B) = 1 − Bel1(A ∪ B̄), one finally gets for the

numerator of Bel1(A|B)∑
X1∈2Θ

(X1∩B �=∅)⊆A

m1(X1) = Bel1(A ∪ B̄)−Bel1(B̄) (22)
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and the final expression of Bel1(A|B) is given by

Bel1(A|B) = (Bel1(A∪B̄)−Bel1(B̄))/(1−Bel1(B̄)) (23)

This expression coincides with the final expression (10) given

by Shafer in his flawed proof. The derivation of Pl1(A|B)
given in Shafer’s proof is correct since we have proved that

the expression of Bel1(A|B) is correct.

V. CONCLUSION

In this paper we have shown why the proof of belief

conditioning formulas given by Shafer is wrong and we have

illustrated this incorrectness with a simple counter-example.

After the identification of the mistake in Shafer’s proof, we

have provided the correct proof of final expressions of Shafer’s

belief conditioning formulas. For readers interested in belief

conditioning, we provide a solid justification against the belief

conditioning method proposed by Shafer in our companion

paper [3]. Our criticism of Shafer’s conditioning approach is

based on the Total Belief Theorem and Generalized Bayes’

Theorem.
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