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Abstract. In this paper, we present a method to solve analytically the
simplest Entropiece Inversion Problem (EIP). This theoretical problem
consists in finding a method to calculate a Basic Belief Assignment
(BBA) from the knowledge of a given entropiece vector which quanti-
fies effectively the measure of uncertainty of a BBA in the framework of
the theory of belief functions. We give an example of the calculation of
EIP solution for a simple EIP case, and we show the difficulty to estab-
lish the explicit general solution of this theoretical problem that involves
transcendental Lambert’s functions.
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1 Introduction

In this paper, we suppose the reader to be familiar with the theory of Belief Func-
tions (BF) introduced by Shafer in [1], and we do not present in details the basics
of BF. We just recall that a frame of discernement (FoD) Θ = {θ1, θ2, . . . , θN}
is a finite exhaustive set of N > 1 mutually exclusive elements θi (i = 1, . . . , N),
and its power set (i.e. the set of all subsets) is denoted by 2Θ. A FoD represents
a set of potential solutions of a decision-making problem under consideration.
A Basic Belief Assignment (BBA)4 is a mapping m : 2Θ → [0, 1] with m(∅) = 0,
and

∑
X∈2Θ m(X) = 1.

A new effective entropy measure U(m) for any BBA m(·) defined on a FoD
Θ has been defined as follows [2]:

U(m) =
∑
X∈2Θ

s(X) (1)

where s(X) is named the entropiece of X, which is defined by

s(X) = −m(X)(1− u(X)) log(m(X)) + u(X)(1−m(X)) (2)

4 For notation convenience, we denote by m or m(·) any BBA defined implicitly on the
FoD Θ, and we also denote it as mΘ to explicitly refer to the FoD when necessary.
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with

u(X) = Pl(X)−Bel(X) =
∑

Y ∈2Θ|X∩Y 6=∅

m(Y )−
∑

Y ∈2Θ|Y⊆X

m(Y ). (3)

Pl(X) and Bel(X) are respectively the plausibility and the belief of the ele-
ment X of the power set of Θ, see [1] for details. u(X) quantifies the imprecision
of the unknown probability of X. The vacuous BBA characterizing the total
ignorant source of evidence is denoted by mv, and it is such that mv(Θ) = 1 and
mv(X) = 0 for any X ⊂ Θ.

This measure of uncertainty U(m) (i.e. entropy measure) is effective because
it satisfies the following four essential properties [2]:

1. U(m) = 0 for any BBA m(·) focused on a singleton X of 2Θ.
2. U(mΘ

v ) < U(mΘ′

v ) if |Θ| < |Θ′|.
3. U(m) = −

∑
X∈Θm(X) log(m(X)) if m(·) is a Bayesian5 BBA. Hence, U(m)

reduces to Shannon entropy [7] in this case.
4. U(m) < U(mv) for any non-vacuous BBA m(·) and for the vacuous BBA
mv(·) defined with respect to the same FoD.

The proof of the three first properties is quite simple to make, whereas the
proof of U(m) < U(mv) is much more difficult, see [2] for proofs and examples.
A detailed analysis of other (non-effective) entropy measures proposed in the
literature during the last four decades is done in [3].

The entropiece s(X) given by (2) corresponds to the contribution of X to
the whole uncertainty measure U(m). The entropiece s(X) involves m(X) and
the imprecision u(X) = Pl(X)−Bel(X) about the unknown probability of X
in a subtle interwoven manner named epistemic entanglement. The cardinality
of X is indirectly taken into account in the derivation of s(X) thanks to u(X)
which requires the derivation of Pl(X) and Bel(X) functions that depend on the
cardinality of X. Because u(X) ∈ [0, 1] and m(X) ∈ [0, 1] one has s(X) ≥ 0, and
U(m) ≥ 0. The quantity U(m) is expressed in nats because we use the natural
logarithm. U(m) can be expressed in bits by dividing the U(m) value in nats by
log(2) = 0.69314718.... This measure of uncertainty U(m) is a continuous func-
tion in its basic belief mass arguments because it is a summation of continuous
functions. In formula (2), we always take m(X) log(m(X)) = 0 when m(X) = 0
because limm(X)→0+ m(X) log(m(X)) = 0 which can be proved using L’Hôpital
rule [4]. Note that for any BBA m, one has always s(∅) = 0 because m(∅) = 0
and u(∅) = Pl(∅)−Bel(∅) = 0− 0 = 0. For the vacuous BBA, one has s(Θ) = 0
because mv(Θ) = 1 and u(Θ) = Pl(Θ)−Bel(Θ) = 1− 1 = 0.

As proved in [2], the entropy of the vacuous BBA on the FoD Θ is equal to

U(mv) = 2|Θ| − 2 (4)

5 m is Bayesian BBA if it has only singletons as focal elements, i.e. m(θi) > 0 for some
θi ∈ Θ and m(X) = 0 for all non-singletons X of 2Θ.
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This maximum entropy value 2|Θ| − 2 makes perfectly sense because for the
vacuous BBA there is no information at all about the conflicts between the
elements of the FoD. Actually for all X ∈ 2Θ \ {∅, Θ} one has u(X) = 1 because
[Bel(X), P l(X)] = [0, 1], and one has u(∅) = 0 and u(Θ) = 0. Hence, the sum
of all imprecisions of P (X) for all X ∈ 2Θ is exactly equal to 2|Θ| − 2 which
corresponds to U(mv) as expected. Moreover, one has always U(mv) > log(|Θ|)
which means that the vacuous BBA has always an entropy greater than the
maximum of Shannon entropy log(|Θ|) obtained with the uniform probability
mass function distributed on Θ.

As a dual concept of this entropy measure U(m), we have defined in [8] the
measure of information content of any BBA by

IC(m) = U(mv)− U(m) = (2|Θ| − 2)−
∑
X∈2Θ

s(X) (5)

From the definition (5), one sees that for m 6= mΘ
v one has IC(m) > 0 because

U(m) < U(mv), and for m = mv one has IC(mv) = 0 (i.e. the vacuous BBA
carries no information), which is what we naturally expect.

Note that the information content IC(mΘ) of a BBA depends not only of
the BBA m(·) itself but also on the cardinality of the frame of discernment Θ
because IC(m) requires the knowledge of |Θ| = N to calculate the max entropy
value U(mv) = 2|Θ| − 2 entering in (5). This remark is important to understand
that even if two BBAs (defined on different FoDs) focus entirely on a same focal
element, their information contents are necessarily different. This means that
the information content depends on the context of the problem, i.e. the FoD.
The notions of information gain and information loss between two BBAs are
also mathematically defined in [8] for readers interested in this topic.

This paper is organized as follows. Section 2 defines the general entropiece
inversion problem (EIP). Section 3 describes the simplest entropiece inversion
problem (SEIP). An analytical solution of SEIP is proposed and it is applied on
a simple example also in section 3. The conclusion is made in section 4.

2 The general entropiece inversion problem (EIP)

The set {s(X), X ∈ 2Θ} of the entropieces values s(X) given by (2) can be
represented by an entropiece vector s(m) = [s(X), X ∈ 2Θ]T , where any order
of elements X of the power set 2Θ can be chosen. For simplicity, we suggest to
use the classical N -bits representation if |Θ| = N , with the increasing order (see
example in section 3). The general Entropiece Inversion Problem, or EIP for
short, is an interesting theoretical problem which can be easily stated as follows:

Suppose that if the entropiece vector s(m) known (estimated or given), is it
possible to calculate a BBA m(·) corresponding to this entropiece vector s(m)?
and how?

Also we would like to know if the derivation of m(·) from s(m) provides a
unique BBA solution, or not?
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This general entropiece inversion problem is a challenging mathematical
problem, and we do not know if a general analytical solution of EIP is pos-
sible, or not. We leave it as an open mathematical question for future research.
However, we present in this paper the analytical solution for the simplest case
where the FoD Θ has only two elements, i.e. when |Θ| = N = 2. Even in this
simplest case, the EIP solution is no so easy to calculate as it will be shown in
the next section. This is the main contribution of this paper.

The mathematical EIP addressed in this paper is not related (for now) to
any problem for the natural world and it cannot be confirmed experimentally
using data from nature because the entropy concept is not directly measurable,
but only computable from the estimation of probability p(·) or belief mass func-
tions m(·). So, why do we address this entropiece inversion problem? Because in
advanced information fusion systems we can imagine to have potentially access
to this type of information and it makes sense to assess the underlying BBA
provided by a source of evidence to eventually modify it in some fusion systems
for some aims. We could also imagine to make adjustments of entropieces values
to volontarly improve (or degrade) IC(m), and to generate the proper modified
BBA for some tasks. At this early stage of research work it is difficult to antici-
pate the practical interests of the calculation of solutions of the general EIP, but
to present its mathematical interest for now.

3 The simplest entropiece inversion problem (SEIP)

3.1 Example

We consider a FoD Θ with only two elements, say Θ = {A,B}, where A and B
are mutually exclusive and exhaustive, and the following BBA

m(A) = 0.5, m(B) = 0.3, m(A ∪B) = 0.2

Because [Bel(∅), P l(∅)] = [0, 1] one has u(∅) = 0. Because [Bel(A), P l(A)] =
[0.5, 0.7], [Bel(B), P l(B)] = [0.3, 0.5], [Bel(Θ), P l(Θ)] = [1, 1], one has u(A) =
0.2, u(B) = 0.2, and u(Θ) = 0. Applying (2), one gets s(∅) = 0, s(A) ≈ 0.377258,
s(B) ≈ 0.428953 and s(Θ) ≈ 0.321887. Using the 2-bits representation with in-
creasing ordering6, we encode the elements of the power set as ∅ = 00, A = 01,
B = 10 and A ∪B = 11. The entropiece vector is

s(mΘ) =


s(∅)
s(A)
s(B)

s(A ∪B)

 ≈


0
0.3773
0.4290
0.3219

 (6)

If we use the classical 2-bits (here |Θ| = 2) representation with increasing
ordering (as we recommand) the first component of entropiece vector s(m) will

6 Once the binary values are converted into their digit value with the most significant
bit on the left (i.e the least significant bit on the right).
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be s(∅) which is always equal to zero for any BBA m, hence the first component
of s(m) is always zero and it can be dropped (i.e. removed of the vector rep-
resentation actually). By summing all the components of the entropiece vector
s(m) we obtain the entropy U(m) ≈ 1.128098 nats of the BBA m(·). Note that
the components s(X) (for X 6= ∅) of the entropieces vector s(m) are not inde-
pendent because they are linked to each other through the calculation of Bel(X)
and Pl(X) values entering in u(X).

3.2 Analytical solution of SEIP

Because we suppose Θ = {A,B}, the expression of three last components7 of
the entropiece vector s(m) are given by (2), and we have

s(A) = −m(A)(1− u(A)) log(m(A)) + u(A)(1−m(A))

s(B) = −m(B)(1− u(B)) log(m(B)) + u(B)(1−m(B))

s(A ∪B) = −m(A ∪B)(1− u(A ∪B)) log(m(A ∪B)) + u(A ∪B)(1−m(A ∪B))

Because u(A) = Pl(A)−Bel(A) = (m(A) +m(A∪B))−m(A) = m(A∪B),
u(B) = Pl(B) − Bel(B) = (m(B) + m(A ∪ B)) − m(B) = m(A ∪ B) and
u(A ∪B) = Pl(A ∪B)−Bel(A ∪B) = 1− 1 = 0, one gets the following system
of equations to solve

s(A) = −m(A)(1−m(A ∪B)) log(m(A)) +m(A ∪B)(1−m(A)) (7)

s(B) = −m(B)(1−m(A ∪B)) log(m(B)) +m(A ∪B)(1−m(B)) (8)

s(A ∪B) = −m(A ∪B) log(m(A ∪B)) (9)

The set of equations (7), (8) and (9) is called the EIP transcendental equation
system for the case |Θ| = 2.

The plot of function s(A∪B) = −m(A∪B) log(m(A∪B)) is given in Figure
1 for convenience. By derivating the function −m(A ∪B) log(m(A ∪B)) we see
that its maximum value is obtained for m(A ∪B) = 1/e ≈ 0.3679 for which

s(A ∪B) = −1

e
log(1/e) =

1

e
log(e) =

1

e

Therefore, the numerical value of s(A∪B) always belongs to the interval [0, 1/e].

Without loss of generality, we assume 0 < s(A ∪ B) ≤ 1/e because if s(A ∪
B) = 0 then one deduces directly without ambiguity that either m(A ∪ B) = 1
(which means that the BBA m(·) is the vacuous BBA) if s(A) = s(B) = 1, or
m(A∪B) = 0 otherwise. With the assumption 0 < s(A∪B) ≤ 1/e, the equation
(9) is of the general transcendental form

yey = a⇔ log(m(A ∪B))m(A ∪B) = −s(A ∪B) (10)

7 We always omit the 1st component s(∅) of entropiece vector s(m) which is always
equal to zero and not necessary in our analysis.



6 J. Dezert and F. Smarandache and A. Tchamova

Fig. 1. Plot of s(A ∪B) = −m(A ∪B) log(m(A ∪B)) (in red)
with X-axis = m(A ∪B) ∈ [0, 1], and y-axis = s(A ∪B) in nats.

by considering the known value as a = −s(A ∪ B) in [− 1
e , 0[, and the unknown

as y = log(m(A ∪B)).

Unfortunately the solution of the transcendental equation (10) does not have
an explicit expression involving simple functions. Actually, the solution of this
equation is actually given by the Lambert’s W -function which is a multivalued
function (called also the omega function or product logarithm in mathematics)
[6]. It can however be calculated8 with a good precision by some numerical
methods - see [5] for details. The equation yey = a admits real solution(s)
only if a ≥ − 1

e . For a ≥ 0, the solution of yey = a is y = W0(a), and for
− 1
e ≤ a < 0 there are two possible real values of W (a) - see Figure 1 of [5] which

are denoted respectively y1 = W0(a) and y2 = W−1(a). The principal branch of
the Lambert’s function W (x) satisfying −1 ≤ W (x) is denoted W0(x), and the
branch satisfying W (x) ≤ −1 is denoted by W−1(x) by Corless et al. in [5]. In
our context because we have a ∈ [− 1

e , 0[, the solutions of yey = a are given by

y1 = W0(a) = W0(−s(A ∪B))

y2 = W−1(a) = W−1(−s(A ∪B))

Hence we get two possible solutions for the value of m(A ∪B), which are

m1(A ∪B) = ey1 = eW0(−s(A∪B)) (11)

m2(A ∪B) = ey2 = eW−1(−s(A∪B)) (12)

Of course, at least one of these solutions is necessarily correct but we do
not know which one. So, at this current stage, we must consider9 and the two
solutions m1(A ∪ B) and m1(A ∪ B) for m(A ∪ B) as acceptable, and we must

8 Lambert’s W -function is implemented in MatlabTM as lambertw function.
9 If the two masses values are admissible, that is ifm1(A∪B) ∈ [0, 1] and ifm2(A∪B) ∈

[0, 1]. If one of them is non-admissible it is eliminated.
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continue to solve equations (7) and (8) to determine the mass values m(A) and
m(B).

Let’s now determine m(A) at first by solving (7). Suppose we set the value
of m(A∪B) is known and taken either as m1(A∪B), or as m2(A∪B), then we
can rearrange the equation (7) as

−s(A)−m(A ∪B)

1−m(A ∪B)
= m(A)[log(m(A)) +

m(A ∪B)

1−m(A ∪B)
]

which can be rewritten as the general equation of the form

(y + a)ey = b (13)

by taking

y = log(m(A)) (14)

a =
m(A ∪B)

1−m(A ∪B)
(15)

b = −s(A)−m(A ∪B)

1−m(A ∪B)
(16)

The solution of (13) are given by [5]

y = W (bea)− a (17)

Once y is calculated by formula (17) and since y = log(m(A)) we obtain the
solution for m(A) given by

m(A) = ey = eW (bea)−a (18)

Similarly, the solution for m(B) will be given by

m(B) = ey = eW (bea)−a (19)

by solving the equation (y + a)ey = b with

y = log(m(B)) (20)

a =
m(A ∪B)

1−m(A ∪B)
(21)

b = −s(B)−m(A ∪B)

1−m(A ∪B)
(22)

We must however check if there is one solution only m(A) = eW0(be
a)−a, or in

fact two solutions m1(A) = eW0(be
a)−a and m2(A) = eW−1(be

a)−a, and similarly
for the solution for m(B). This depends on the parameters a and b with respect
to [−1/e, 0[ interval and [0,∞[.

We illustrate in the next subsection how to calculate the SEIP solution from
these analytical formulas for the previous exemple.
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3.3 SEIP solution of the previous example

We recall that we have for this example s(∅) = 0, s(A) ≈ 0.3773, s(B) ≈ 0.4290
and s(Θ) ≈ 0.3219. If we apply formulas (11)-(12) for this example, we have
a = −s(A ∪B) = −0.3219 and therefore

y1 = W0(−0.3219) = −0.5681

y2 = W−1(−0.3219) = −1.6094

Hence the two potential solutions for the mass m(A ∪B) are

m1(A ∪B) = ey1 ≈ 0.5666

m2(A ∪B) = ey2 = 0.2000

It can be easily verified that

−m1(A ∪B) log(m1(A ∪B)) = 0.3219 = s(A ∪B)

−m2(A ∪B) log(m2(A ∪B)) = 0.3219 = s(A ∪B)

We see that the second potential solution m2(A∪B) = 0.2000 is the solution
that corresponds to the original mass of A ∪ B of the BBA m(A ∪ B) of our
example.

Now, we examine what would be the values of m(A) and m(B) given respec-
tively by (18) and (19) by taking either m(A ∪ B) = m1(A ∪ B) = 0.5666 or
m(A ∪B) = m2(A ∪B) = 0.20.

– Let’s examine the 1st possibility with the potential solution

m(A ∪B) = m1(A ∪B) = 0.5666

For determining m(A), we have to solve (y + a)ey = b with the unknown
y = log(m(A)) and with

a =
m(A ∪B)

1−m(A ∪B)
≈ 0.5666

1− 0.5666
= 1.3073

b = −s(A)−m(A ∪B)

1−m(A ∪B)
≈ −0.3773− 0.5666

1− 0.5666
= 0.4369

Hence, bea = 0.4368 · e1.3073 ≈ 1.6148.
Applying formula (18), one gets10

m1(A) = eW0(be
a)−a = 0.5769

m2(A) = eW−1(be
a)−a = −0.0216 + 0.0924i

10 Using lambertw Matlab function.
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For determing m(B) we have to solve (y + a)ey = b with the unknown
y = log(m(B)) and with

a =
m(A ∪B)

1−m(A ∪B)
≈ 0.5666

1− 0.5666
= 1.3073

b = −s(B)−m(A ∪B)

1−m(A ∪B)
≈ −0.4290− 0.5666

1− 0.5666
= 0.3176

Hence, bea = 0.3176 · e1.3073 ≈ 1.1739.
Applying formula (19), one gets

m1(B) = eW0(be
a)−a = 0.5065

m2(B) = eW−1(be
a)−a = −0.0204 + 0.0657i

One sees that there is no effective choice for the values of m(A) and m(B)
if we suppose m(A ∪B) = m1(A ∪B) = 0.5666 because if one takes as real
values solutions m(A) = m1(A) = 0.5769 and m(B) = m1(B) = 0.5065 one
would get

m(A) +m(B) +m(A ∪B) = 0.5769 + 0.5065 + 0.5666 = 1.65

which is obviously greater than one. This generates an improper BBA.

– Let’s consider the 2nd possibility with the potential solution

m(A ∪B) = m2(A ∪B) = 0.20

For determinating m(A), we have to solve (y + a)ey = b with the unknown
y = log(m(A)) and with

a =
m(A ∪B)

1−m(A ∪B)
=

0.20

1− 0.20
= 0.25

b = −s(A)−m(A ∪B)

1−m(A ∪B)
≈ −0.3773− 0.20

1− 0.20
= −0.2216

Hence, bea = −0.2216 · e0.25 ≈ −0.2845.

m1(A) = eW0(be
a)−a = 0.5000

m2(A) = eW−1(be
a)−a = 0.1168

For determinating m(B) we have to solve (y + a)ey = b with the unknown
y = log(m(B)) and with

a =
m(A ∪B)

1−m(A ∪B)
≈ 0.20

1− 0.20
= 0.25

b = −s(B)−m(A ∪B)

1−m(A ∪B)
≈ −0.4290− 0.20

1− 0.20
= −0.2862
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Hence, bea = −0.2862 · e0.25 ≈ −0.3675.

Applying formula (19), one gets

m1(B) = eW0(be
a)−a = 0.3000

m2(B) = eW−1(be
a)−a = 0.2732

Based on this 2nd possibility for potential solution m(A ∪ B) = 0.20, one
sees that the only possible effective choice of mass values m(A) and m(B)
is to take m(A) = m1(A) = 0.50 and m(B) = m1(B) = 0.30 which gives
the proper sought BBA such that m(A) + m(B) + m(A ∪ B) = 1 which
exactly corresponds to the orignal BBA that has been used to generate the
entropiece vector s(m) for this example.

In summary, for the case |Θ| = 2 it is always possible to calculate the BBA
m(·) from the knowledge of the entropiece vector, and the solution of SEIP is
obtained by analytical formulas.

3.4 Remark

In the very particular case where s(A ∪B) = 0 the equation (9) reduces to

−m(A ∪B) log(m(A ∪B)) = 0 (23)

which has two possible solutions m(A ∪B) = m1(A ∪B) = 1, and m(A ∪B) =
m2(A ∪B) = 0.

If m(A ∪ B) = 1, then it means that necessarily the BBA is the vacuous
BBA, and so m(A) = m(B) = 0, u(A) = Pl(A)−Bel(A) = 1, u(B) = Pl(B)−
Bel(B) = 1. Therefore11

s(A) = −m(A)(1− u(A)) log(m(A)) + u(A)(1−m(A))

= −m(A)(1−m(A ∪B)) log(m(A)) +m(A ∪B)(1−m(A))

= 0(1− 1) log(0) + 1(1− 0) = 1

s(B) = −m(B)(1− u(B)) log(m(B)) + u(B)(1−m(B))

= −m(B)(1−m(A ∪B)) log(m(B)) +m(A ∪B)(1−m(B))

= 0(1− 1) log(0) + 1(1− 0) = 1

So the choice of m(A∪B) = m1(A∪B) = 1 is the only possible if the entropiece
vector is s(m) = [110]T .

11 We use the formal notation log(0) even if log(0) is −∞ because in our derivations
we have always a 0 log(0) product which is equal to zero due to L’Hôpital’s rule [4].
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If s(A) < 1, or if s(B) < 1 (or both) then we must choose m(A ∪ B) =
m2(A ∪B) = 0, and in this case we have to solve the equations

s(A) = −m(A)(1− u(A)) log(m(A)) + u(A)(1−m(A))

= −m(A)(1−m(A ∪B)) log(m(A)) +m(A ∪B)(1−m(A))

= −m(A) log(m(A))

s(B) = −m(B)(1− u(B)) log(m(B)) + u(B)(1−m(B))

= −m(B)(1−m(A ∪B)) log(m(B)) +m(A ∪B)(1−m(B))

= −m(B) log(m(B))

The possible solutions of equation s(A) = −m(A) log(m(A)) are given by

m1(A) = eW0(−s(A)) (24)

m2(A) = eW−1(−s(A)) (25)

and the possible solutions of equation s(B) = −m(B) log(m(B)) are given by

m1(B) = eW0(−s(B)) (26)

m2(B) = eW−1(−s(B)) (27)

In this particular case where s(A ∪ B) = 0, and s(A) < 1 or s(B) < 1, we
have to select the pair of possible solutions among the four possible choices

(m(A),m(B)) = (m1(A),m1(B)),

(m(A),m(B)) = (m1(A),m2(B)),

(m(A),m(B)) = (m2(A),m1(B)),

(m(A),m(B)) = (m2(A),m2(B)).

The judicious choice of pair (m(A),m(B)) must satisfy the proper BBA con-
straint m(A)+m(B)+m(A∪B) = 1, where m(A∪B) = 0 because s(A∪B) = 0
in this particular case.

For instance, if we consider Θ = {A,B} and the following (bayesian) BBA

m(A) = 0.6,m(B) = 0.4,m(A ∪B) = 0

The entropiece vector s(m) is

s(m) =

 s(A)
s(B)

s(A ∪B)

 ≈
0.3065

0.3665
0

 (28)

Hence from s(m) we can deduce m(A ∪ B) = 0 because we cannot consider
m(A ∪B) = 1 as a valid solution because s(A) < 1 and s(B) < 1. The possible
solutions of equation s(A) = −m(A) log(m(A)) are

m1(A) = eW0(−s(A)) = eW0(−0.3065) = 0.6000

m2(A) = eW−1(−s(A)) = eW−1(−0.3065) = 0.1770
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and the possible solutions of equation s(B) = −m(B) log(m(B)) are

m1(B) = eW0(−s(B)) = eW0(−0.3665) = 0.4000

m2(B) = eW−1(−s(B)) = eW−1(−0.3665) = 0.3367

One sees that the only effective (or judicious) choice for m(A) and m(B) is
to take m(A) = m1(A) = 0.60 and m(B) = m1(B) = 0.40, which coincides with
the original bayesian BBA that has been used to generate the entropiece vector
s(m) = [0.3065, 0.3665, 0]T .

4 Conclusion

In this paper we have introduced for the first time the entropiece inversion
problem (EIP) which consists in calculating a basic belief assignment from the
knowledge of a given entropiece vector which quantifies effectively the measure of
uncertainty of a BBA in the framework of the theory of belief functions. The gen-
eral analytical solution of this mathematical problem is a very challenging open
problem because it involves transcendental equations. We have shown however
how it is possible to obtain an analytical solution for the simplest EIP involving
only two elements in the frame of discernment. Even in this simplest case the
analytical solution of EIP is not easy to obtain because it requires a calculation
of values of the transcendental Lambert’s functions. Even if no general analyt-
ical formulas are found for the solution of general EIP, it would be interesting
to develop numerical methods to approximate the general EIP solution, and to
exploit it in future advanced information fusion systems.
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