Erratum of paper entitled On the Validity of Dempster's Fusion Rule and its Interpretation as a Generalization of Bayesian Fusion Rule

Jean Dezert
Department of Information Processing and Systems
The French Aerospace Lab - ONERA
Palaiseau, France.
jean.dezert@onera.fr

Albena Tchamova
Institute of Information \& Communication Technologies Bulgarian Academy of Sciences Sofia, Bulgaria.
tchamova@bas.bg

Abstract

In this erratum we correct a mathematical mistake included in the paper entitled On the Validity of Dempster's Fusion Rule and its Interpretation as a Generalization of Bayesian Fusion Rule published in 2014 in [1]. In taking into account this mathematical correction the Bayesian fusion rule is associative in contrary to what is claimed in the original version of our paper. The comments in our paper remain valid for pages 223 to 238 . Corrections in several pages from page 239 to the end of our paper must be done as explained next in this erratum.

In [1] page 239, the general formulas ${ }^{1} \#(34)-\#(36)$ are incorrect. The correct formulas are presented here.
Based on conditional statistical independence assumption $P\left(Z_{1}, Z_{2} \mid X\right)=P\left(Z_{1} \mid X\right) P\left(Z_{2} \mid X\right)$, we have

$$
\begin{equation*}
P\left(X \mid Z_{1} \cap Z_{2}\right)=\frac{P\left(Z_{1} \cap Z_{2} \mid X\right) P(X)}{P\left(Z_{1} \cap Z_{2}\right)}=\frac{P\left(Z_{1} \mid X\right) P\left(Z_{2} \mid X\right) P(X)}{P\left(Z_{1} \cap Z_{2}\right)}=\frac{\frac{P\left(X \mid Z_{1}\right) P\left(Z_{1}\right)}{P(X)} \frac{P\left(X \mid Z_{2}\right) P\left(Z_{2}\right)}{P(X)} P(X)}{\sum_{i=1}^{N} P\left(X=x_{i}, Z_{1} \cap Z_{2}\right)} \tag{1}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
P\left(X \mid Z_{1} \cap Z_{2}\right)=\frac{1}{\sum_{i=1}^{N} \frac{P\left(X=x_{i} \mid Z_{1}\right) P\left(X=x_{i} \mid Z_{2}\right)}{P\left(X=x_{i}\right)}} \frac{P\left(X \mid Z_{1}\right) P\left(X \mid Z_{2}\right)}{P(X)} \tag{2}
\end{equation*}
$$

The formula (2) corresponds to formula \#(24) of our original paper [1]. This formula (2) can be rewritten in a symmetrical form as follows

$$
\begin{equation*}
P\left(X \mid Z_{1} \cap Z_{2}\right)=\frac{1}{K^{\prime}\left(Z_{1}, Z_{2}\right)} \cdot \frac{P\left(X \mid Z_{1}\right)}{\sqrt{P(X)}} \cdot \frac{P\left(X \mid Z_{2}\right)}{\sqrt{P(X)}}=\frac{1}{K^{\prime}\left(Z_{1}, Z_{2}\right)} \cdot \frac{P\left(X \mid Z_{1}\right)}{P^{\frac{1}{2}}(X)} \cdot \frac{P\left(X \mid Z_{2}\right)}{P^{\frac{1}{2}}(X)} \tag{3}
\end{equation*}
$$

where the normalization constant $K^{\prime}\left(Z_{1}, Z_{2}\right)$ is given by:

$$
\begin{equation*}
K^{\prime}\left(Z_{1}, Z_{2}\right) \triangleq \sum_{i=1}^{N} \frac{P\left(X=x_{i} \mid Z_{1}\right)}{\sqrt{P\left(X=x_{i}\right)}} \cdot \frac{P\left(X=x_{i} \mid Z_{2}\right)}{\sqrt{P\left(X=x_{i}\right)}}=\sum_{i=1}^{N} \frac{P\left(X=x_{i} \mid Z_{1}\right)}{P^{\frac{1}{2}}\left(X=x_{i}\right)} \cdot \frac{P\left(X=x_{i} \mid Z_{2}\right)}{P^{\frac{1}{2}}\left(X=x_{i}\right)} \tag{4}
\end{equation*}
$$

The formulas \#(24) \#(33) of [1] are correct.
If we generalize the formula (1) for $s>2$ conditioning terms, we obtain the following expression

$$
\begin{align*}
P\left(X \mid Z_{1} \cap Z_{2} \cap \ldots \cap Z_{s}\right) & =\frac{P\left(Z_{1} \cap Z_{2} \cap \ldots \cap Z_{s} \mid X\right) P(X)}{P\left(Z_{1} \cap Z_{2} \cap \ldots \cap Z_{s}\right)}=\frac{P\left(Z_{1} \mid X\right) P\left(Z_{2} \mid X\right) \ldots P\left(Z_{s} \mid X\right) P(X)}{P\left(Z_{1} \cap Z_{2} \cap \ldots \cap Z_{s}\right)} \tag{5}\\
& =\frac{\frac{P\left(X \mid Z_{1}\right) P\left(Z_{1}\right)}{P(X)} \frac{P\left(X \mid Z_{2}\right) P\left(Z_{2}\right)}{P(X)} \ldots \frac{P\left(X \mid Z_{s}\right) P\left(Z_{s}\right)}{P(X)} P(X)}{\sum_{i=1}^{N} P\left(X=x_{i}, Z_{1} \cap Z_{2} \cap \ldots \cap Z_{s}\right)} \tag{6}
\end{align*}
$$

which can be written as

$$
\begin{equation*}
P\left(X \mid Z_{1} \cap Z_{2} \cap \ldots \cap Z_{s}\right)=\frac{1}{\sum_{i=1}^{N} \frac{\left.P\left(X=x_{i} \mid Z_{1}\right) P\left(X=x_{i} \mid Z_{2}\right)\right) \ldots P\left(X=x_{i} \mid Z_{s}\right)}{P^{s-1}\left(X=x_{i}\right)}} \frac{P\left(X \mid Z_{1}\right) P\left(X \mid Z_{2}\right) \ldots P\left(X \mid Z_{s}\right)}{P^{s-1}(X)} \tag{7}
\end{equation*}
$$

[^0]or equivalently as
\[

$$
\begin{equation*}
P\left(X \mid Z_{1} \cap \ldots \cap Z_{s}\right)=\frac{1}{K\left(X, Z_{1}, \ldots, Z_{s}\right)} \cdot \prod_{k=1}^{s} P\left(X \mid Z_{k}\right) \tag{8}
\end{equation*}
$$

\]

where the coefficient $K\left(X, Z_{1}, \ldots, Z_{s}\right)$ is defined by

$$
\begin{equation*}
K\left(X, Z_{1}, \ldots, Z_{s}\right) \triangleq P^{s-1}(X) \sum_{i=1}^{N} \frac{\left(\prod_{k=1}^{s} P\left(X=x_{i} \mid Z_{k}\right)\right)}{P^{s-1}\left(X=x_{i}\right)} \tag{9}
\end{equation*}
$$

The formula \#(34) of [1] must be replaced by the formula (9) above.
The symmetrized form of Eq. (7) is:

$$
\begin{equation*}
P\left(X \mid Z_{1} \cap \ldots \cap Z_{s}\right)=\frac{1}{K^{\prime}\left(Z_{1}, \ldots, Z_{s}\right)} \cdot \prod_{k=1}^{s} \frac{P\left(X \mid Z_{k}\right)}{\sqrt[s]{P^{s-1}(X)}}=\frac{1}{K^{\prime}\left(Z_{1}, \ldots, Z_{s}\right)} \cdot \prod_{k=1}^{s} \frac{P\left(X \mid Z_{k}\right)}{P^{\frac{s-1}{s}}(X)} \tag{10}
\end{equation*}
$$

with the normalization constant $K^{\prime}\left(Z_{1}, \ldots, Z_{s}\right)$ given by:

$$
\begin{equation*}
K^{\prime}\left(Z_{1}, \ldots, Z_{s}\right) \triangleq \sum_{i=1}^{N} \prod_{k=1}^{s} \frac{P\left(X=x_{i} \mid Z_{k}\right)}{\sqrt[s]{P^{s-1}\left(X=x_{i}\right)}}=\sum_{i=1}^{N} \prod_{k=1}^{s} \frac{P\left(X=x_{i} \mid Z_{k}\right)}{P^{\frac{s-1}{s}}\left(X=x_{i}\right)} \tag{11}
\end{equation*}
$$

Hence the incorrect expression \#(35) of $P\left(X \mid Z_{1} \cap \ldots \cap Z_{s}\right)$ in [1] must be replaced by the formula (10) above, and the incorrect expression \#(36) of $K^{\prime}\left(Z_{1}, \ldots, Z_{s}\right)$ must be replaced by the formula (11).

The agreement $A_{s}(X)$ of order s, the global agreement $G A_{s}$, and the global conflict $G C_{s}$ for s sources must be also corrected as follows:

$$
\begin{gathered}
A_{s}\left(X=x_{i}\right) \triangleq \prod_{k=1}^{s} \frac{P\left(X=x_{i} \mid Z_{k}\right)}{\sqrt[s]{P^{s-1}\left(X=x_{i}\right)}} \\
G A_{s} \triangleq \sum_{i_{1}, \ldots, i_{s}=1 \mid i_{1}=\ldots=i_{s}}^{N} \frac{P\left(X=x_{i_{1}} \mid Z_{1}\right)}{\sqrt[s]{P^{s-1}\left(X=x_{i_{1}}\right)}} \cdots \frac{P\left(X=x_{i_{s}} \mid Z_{s}\right)}{\sqrt[s]{P^{s-1}\left(X=x_{i_{s}}\right)}} \\
G C_{s} \triangleq \sum_{i_{1}, \ldots, i_{s}=1}^{N} \frac{P\left(X=x_{i_{1}} \mid Z_{1}\right)}{\sqrt[s]{P^{s-1}\left(X=x_{i_{1}}\right)}} \cdots \frac{P\left(X=x_{i_{s}} \mid Z_{s}\right)}{\sqrt[s]{P^{s-1}\left(X=x_{i_{s}}\right)}}-G A_{s}
\end{gathered}
$$

The first consequence of this correction is that the property P1 stated in [1] page 242 must be corrected as (P1): The PMF $P(X)$ is a neutral element of Bayes fusion rule. Remark 2 and formula \#(45) on page 242 must be removed.

The remark 3 on page 242 of [1] is incorrect. Indeed, if we take $P\left(X \mid Z_{k}\right)=P(X)$ for $k=1, \ldots, s$ and based on the correct formula (10), we get actually

$$
\operatorname{Bayes}(P(X), P(X), \ldots, P(X) ; P(X))=P(X)
$$

and for any type of pmf $P(X)$ (i.e. uniform, and non-uniform pmf).
The property (P3) : The Bayes fusion rule is in general not associative stated in [1] on page 242 is incorrect and it must be corrected as (P3) : The Bayes fusion rule is associative.
Proof of the property P3 (Associativity of Bayes rule): The expression of $P\left(X \mid Z_{1} \cap \ldots \cap Z_{s-1}\right)$ is given by formula (10) when using $s-1$ conditioning terms. Hence we have

$$
\begin{equation*}
P\left(X \mid Z_{1} \cap \ldots \cap Z_{s-1}\right)=\frac{1}{K^{\prime}\left(Z_{1}, \ldots, Z_{s-1}\right)} \cdot \prod_{k=1}^{s-1} \frac{P\left(X \mid Z_{k}\right)}{P^{s-2}(X)} \tag{12}
\end{equation*}
$$

with the normalization constant $K^{\prime}\left(Z_{1}, \ldots, Z_{s-1}\right)$ given by

$$
\begin{equation*}
K^{\prime}\left(Z_{1}, \ldots, Z_{s-1}\right)=\sum_{i=1}^{N} \prod_{k=1}^{s-1} \frac{P\left(X=x_{i} \mid Z_{k}\right)}{P^{s-1}\left(X=x_{i}\right)} \tag{13}
\end{equation*}
$$

To calculate $P\left(X \mid\left(Z_{1} \cap \ldots \cap Z_{s-1}\right) \cap Z_{s}\right)$ from $P\left(X \mid Z_{1} \cap \ldots \cap Z_{s-1}\right)$ and $P\left(X \mid Z_{s}\right)$, we use Bayes formula with the conditional statistical independence assumption, and we get

$$
\begin{equation*}
P\left(X \mid\left(Z_{1} \cap \ldots \cap Z_{s-1}\right) \cap Z_{s}\right)=\frac{P\left(Z_{1} \cap \ldots \cap Z_{s-1} \mid X\right) P\left(Z_{s} \mid X\right) P(X)}{\sum_{i=1}^{N} P\left(Z_{1} \cap \ldots \cap Z_{s-1} \mid X=x_{i}\right) P\left(Z_{s} \mid X=x_{i}\right) P\left(X=x_{i}\right)} \tag{14}
\end{equation*}
$$

Because

$$
P\left(Z_{1} \cap \ldots \cap Z_{s-1} \mid X\right)=\frac{P\left(X \mid Z_{1} \cap \ldots \cap Z_{s-1}\right) P\left(Z_{1} \cap \ldots \cap Z_{s-1}\right)}{P(X)}
$$

and

$$
P\left(Z_{s} \mid X\right)=\frac{P\left(X \mid Z_{s}\right) P\left(Z_{s}\right)}{P(X)}
$$

The expression of $P\left(X \mid\left(Z_{1} \cap \ldots \cap Z_{s-1}\right) \cap Z_{s}\right)$ given by (14) can be rewritten as

$$
\begin{equation*}
P\left(X \mid\left(Z_{1} \cap \ldots \cap Z_{s-1}\right) \cap Z_{s}\right)=\frac{\frac{P\left(X \mid Z_{1} \cap \ldots \cap Z_{s-1}\right) P\left(Z_{1} \cap \ldots \cap Z_{s-1}\right)}{P(X)} \frac{P\left(X \mid Z_{s}\right) P\left(Z_{s}\right)}{P(X)} P(X)}{\sum_{i=1}^{N} \frac{P\left(X=x_{i} \mid Z_{1} \cap \ldots \cap Z_{s-1}\right) P\left(Z_{1} \cap \ldots \cap Z_{s-1}\right)}{P\left(X=x_{i}\right)} \frac{P\left(X=x_{i} \mid Z_{s}\right) P\left(Z_{s}\right)}{P\left(X=x_{i}\right)} P\left(X=x_{i}\right)} \tag{15}
\end{equation*}
$$

After simplification by $P\left(Z_{1} \cap \ldots \cap Z_{s-1}\right) P\left(Z_{s}\right)$ it comes

$$
\begin{equation*}
P\left(X \mid\left(Z_{1} \cap \ldots \cap Z_{s-1}\right) \cap Z_{s}\right)=\frac{\frac{P\left(X \mid Z_{1} \cap \ldots \cap Z_{s-1}\right)}{P(X)} \frac{P\left(X \mid Z_{s}\right)}{P(X)} P(X)}{\sum_{i=1}^{N} \frac{P\left(X=x_{i} \mid Z_{1} \cap \ldots \cap Z_{s-1}\right)}{P\left(X=x_{i}\right)} \frac{P\left(X=x_{i} \mid Z_{s}\right)}{P\left(X=x_{i}\right)} P\left(X=x_{i}\right)} \tag{16}
\end{equation*}
$$

After the simplification by $P(X)$ in the numerator of (16) and the simplification by $P\left(X=x_{i}\right)$ in the denominator of (16) it comes

$$
\begin{equation*}
P\left(X \mid\left(Z_{1} \cap \ldots \cap Z_{s-1}\right) \cap Z_{s}\right)=\frac{P\left(X \mid Z_{1} \cap \ldots \cap Z_{s-1}\right) \frac{P\left(X \mid Z_{s}\right)}{P(X)}}{\sum_{i=1}^{N} P\left(X=x_{i} \mid Z_{1} \cap \ldots \cap Z_{s-1}\right) \frac{P\left(X=x_{i} \mid Z_{s}\right)}{P\left(X=x_{i}\right)}} \tag{17}
\end{equation*}
$$

Replacing $P\left(X \mid Z_{1} \cap \ldots \cap Z_{s-1}\right)$ by its expression given in (12), we have

$$
\begin{equation*}
P\left(X \mid\left(Z_{1} \cap \ldots \cap Z_{s-1}\right) \cap Z_{s}\right)=\frac{\left[\frac{1}{K^{\prime}\left(Z_{1}, \ldots, Z_{s-1}\right)} \cdot \prod_{k=1}^{s-1} \frac{P\left(X \mid Z_{k}\right)}{P^{\frac{s-2}{s-1}}(X)}\right] \frac{P\left(X \mid Z_{s}\right)}{P(X)}}{\sum_{i=1}^{N}\left[\frac{1}{K^{\prime}\left(Z_{1}, \ldots, Z_{s-1}\right)} \cdot \prod_{k=1}^{s-1} \frac{P\left(X=x_{i} \mid Z_{k}\right)}{P^{\frac{s-2}{s-1}}\left(X=x_{i}\right)}\right] \frac{P\left(X=x_{i} \mid Z_{s}\right)}{P\left(X=x_{i}\right)}} \tag{18}
\end{equation*}
$$

After simplification by the constant $K^{\prime}\left(Z_{1}, \ldots, Z_{s-1}\right)$ one gets

$$
\begin{equation*}
P\left(X \mid\left(Z_{1} \cap \ldots \cap Z_{s-1}\right) \cap Z_{s}\right)=\frac{\left[\prod_{k=1}^{s-1} \frac{P\left(X \mid Z_{k}\right)}{P^{\frac{s-2}{s-1}}(X)}\right] \frac{P\left(X \mid Z_{s}\right)}{P(X)}}{\sum_{i=1}^{N}\left[\prod_{k=1}^{s-1} \frac{P\left(X=x_{i} \mid Z_{k}\right)}{P^{\frac{s-2}{s-1}}\left(X=x_{i}\right)}\right] \frac{P\left(X=x_{i} \mid Z_{s}\right)}{P\left(X=x_{i}\right)}}=\frac{\frac{1}{P^{s-1}(X)} \prod_{k=1}^{s} P\left(X \mid Z_{k}\right)}{\sum_{i=1}^{N} \frac{1}{P^{s-1}\left(X=x_{i}\right)} \prod_{k=1}^{s} P\left(X=x_{i} \mid Z_{k}\right)} \tag{19}
\end{equation*}
$$

The formula (19) can be rewritten with an equivalent symmetrical form as

$$
\begin{equation*}
P\left(X \mid\left(Z_{1} \cap \ldots \cap Z_{s-1}\right) \cap Z_{s}\right)=\frac{\prod_{k=1}^{s} \frac{P\left(X \mid Z_{k}\right)}{P^{\frac{s-1}{s}}(X)}}{\sum_{i=1}^{N} \prod_{k=1}^{s} \frac{P\left(X=x_{i} \mid Z_{k}\right)}{P^{\frac{s-1}{s}}\left(X=x_{i}\right)}}=\frac{1}{K^{\prime}\left(Z_{1}, \ldots, Z_{s}\right)} \cdot \prod_{k=1}^{s} \frac{P\left(X \mid Z_{k}\right)}{P^{\frac{s-1}{s}}(X)} \tag{20}
\end{equation*}
$$

where $K^{\prime}\left(Z_{1}, \ldots, Z_{s}\right)=\sum_{i=1}^{N} \prod_{k=1}^{s} \frac{P\left(X=x_{i} \mid Z_{k}\right)}{P^{\frac{s-1}{s}}\left(X=x_{i}\right)}$.
Therefore, we have proved that expression of $P\left(X \mid\left(Z_{1} \cap \ldots \cap Z_{s-1}\right) \cap Z_{s}\right)$ given by (20) is equal to the expression of $P\left(X \mid Z_{1} \cap \ldots \cap Z_{s-1} \cap Z_{s}\right)$ given by (10). This proves the associativity of Bayes fusion rule, i.e. the validity of the property P3. Note that the equality $P\left(X \mid\left(Z_{1} \cap \ldots \cap Z_{s-1}\right) \cap Z_{s}\right)=P\left(X \mid Z_{1} \cap \ldots \cap Z_{s-1} \cap Z_{s}\right)$ does not depend on a particular choice of the intersection of $s-1$ subsets involved in the conditioning because the intersection operator is associative. Hence the conditioning terms $\left(Z_{1} \cap \ldots \cap Z_{s-1}\right) \cap Z_{s}$ and $Z_{1} \cap \ldots \cap Z_{s-1} \cap Z_{s}$ are equal. This implies that the two conditional probabilities must be necessary equal, which is proved by our previous derivations.

With the correct formulas (10)-(11), the numerical application for example 1 on page 243 of [1] gives

$$
\left\{\begin{array}{l}
P\left(X=x_{1} \mid Z_{1} \cap Z_{2} \cap Z_{3}\right)=\frac{1}{K_{123}} \frac{0.1}{\sqrt[3]{0.2^{2}}} \frac{0.5}{\sqrt[3]{0.2^{2}}} \frac{0.6}{\sqrt[3]{0.2^{2}}}=0.7273 \\
P\left(X=x_{2} \mid Z_{1} \cap Z_{2} \cap Z_{3}\right)=\frac{1}{K_{123}} \frac{0.9}{\sqrt[3]{0.8^{2}}} \frac{0.5}{\sqrt[3]{0.8^{2}}} \frac{0.4^{2}}{\sqrt[3]{\sqrt{0.8^{2}}}}=0.2727
\end{array}\right.
$$

where the normalization constant $K_{123}=K^{\prime}\left(Z_{1}, Z_{2}, Z_{3}\right)$ is given by (11) for $s=3$, i.e.

$$
K_{123}=\frac{0.1}{\sqrt[3]{0.2^{2}}} \frac{0.5}{\sqrt[3]{0.2^{2}}} \frac{0.6}{\sqrt[3]{0.2^{2}}}+\frac{0.9}{\sqrt[3]{0.8^{2}}} \frac{0.5}{\sqrt[3]{0.8^{2}}} \frac{0.4}{\sqrt[3]{0.8^{2}}}=1.0312
$$

This corrected result shows that Bayes fusion rule is actually associative because one has

$$
\left\{\begin{array}{l}
P\left(X \mid\left(Z_{1} \cap Z_{2}\right) \cap Z_{3}\right)=P\left(X \mid Z_{1} \cap Z_{2} \cap Z_{3}\right) \\
P\left(X \mid Z_{1} \cap\left(Z_{2} \cap Z_{3}\right)\right)=P\left(X \mid Z_{1} \cap Z_{2} \cap Z_{3}\right) \\
P\left(X \mid Z_{2} \cap\left(Z_{1} \cap Z_{3}\right)\right)=P\left(X \mid Z_{1} \cap Z_{2} \cap Z_{3}\right)
\end{array}\right.
$$

As consequence, the property (P 4) on page 245 of [1], although being correct, is not necessary.
On page 250 of [1], the sentence:
Indeed, in Bayes rule one divides each posterior source $m_{i}\left(x_{j}\right)$ by $\sqrt[s]{m_{0}\left(x_{j}\right)}, i=1,2, \ldots s$, whereas the prior source $m_{0}($. is combined in a pure conjunctive manner by $D S$ rule with the bba's $m_{i}(),. i=1,2, \ldots s$, as if $m_{0}($.$) was a simple additional$ source.
must be corrected as:
Indeed, in Bayes rule one divides each posterior source $m_{i}\left(x_{j}\right)$ by $\sqrt[s]{m_{0}^{s-1}\left(x_{j}\right)}, i=1,2, \ldots s$, whereas the prior source $m_{0}($. is combined in a pure conjunctive manner by $D S$ rule with the bba's $m_{i}(),. i=1,2, \ldots s$, as if $m_{0}($.$) was a simple additional$ source.

This erratum concerns also some incorrect formulas appearing in a preliminary version of [1] presented in 2013, see [2].

References

[1] J. Dezert, A. Tchamova, On the validity of Dempster's fusion rule and its interpretation as a generalization of Bayesian fusion rule, International Journal of Intelligent Systems, Special Issue: Advances in Intelligent Systems, Vol. 29, Issue 3, pp. 223-252, March 2014.
[2] J. Dezert, A. Tchamova, D. Han, J.-M. Tacnet, Why Dempster's fusion rule is not a generalization of Bayes fusion rule, Proc. of Fusion 2013 Int. Conference on Information Fusion, Istanbul, Turkey, July 9-12, 2013.

[^0]: ${ }^{1}$ For avoiding confusion with formula number in this erratum, we denote the formula number appearing in the original paper [1] by \#($\left.x x\right)$, where $x x$ the number under concern.

