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Abstract—For ground surveillance applications, the wireless
sensor networks play a strategic role in military operations. In
this paper, we explore the problem of tracking multiple targets
observed in the sensors fields based on onboard algorithms under
survivability system constraints. The surveillance system consists
of a number of sensor nodes scattered in a region in order to
detect and track targets in a cluttered environment. The targets
can move on and off the road under several possible motion
models. We study a Multiple Target Tracking (MTT) algorithm
that fits with operational needs and offers good track continuity
performance. The performances of this multiple sensors ground
target tracking algorithm are evaluated on a complex and realistic
scenario.

Index Terms—Wireless Ground Sensor Network, Multiple
Ground Target Tracking, IMM algorithm

I. INTRODUCTION

The goal of the work presented in this paper is to study
and develop in the next years an operational wireless sensor
networks (WSN) which consists of large number of smart
heterogeneous sensors with onboard sensing, processing and
wireless communication capabilities for the French Ministry
of Defense (MOD). The future operational WSN must satisfy
severe exigencies in term of survivability (few months), low
communications (to be undetectable by communication inter-
ception system), and real-time tactical situation assessment for
large surveillance areas. The use of WSN network must also
be easy and remotely controllable and have a low cost. The
system must be easy to deploy, implemented by a limited
number of operators with a minimum training through a
simple human machine interface (HMI) for its exploitation
and for decision-making support. Finally, the system must be
modular, flexible and dynamically configurable (depending on
the environment, the threat and mission). The main system
characteristics of such system are:

« cfficiency: the system must provide highest performances,

o modularity and operational flexibility;

o reliability: failures must be detected, isolated and re-
moved,

« real-time use: information must be received and processed
in real- time for the operational need;

 survivability: besides camouflage and discretion of the
means deployed, optimizing the energy and the network
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resistance to aggression is a serious concern for the
operational credibility;
« affordability.

Components (both sensors and communications devices)
must have low energy consumptions, to be able to work
in a remote mode, in an outdoor environment and to fulfill
discretion constraints required to work in unattended operating
modes. The system must be easy to deploy and be able to adapt
to various natures of terrain and topographies.

Our demonstrator allows to study on automatic data process-
ing to correlate detection and to generate only one alert on each
target, being tracked as times goes on. It will allow us to eval-
uate several schemes for the data collection and fusion process
and to demonstrate the necessity of taking into account high-
level information (typically geographic information, as traffic
lanes, intersections, areas without terrain obscuration,...) for
deployment and exploitation of the system.

Several processing levels are considered in this work:

« local processing of raw data at the sensor level: it can
provide a detection alert on the presence of a target,
and eventually some attributes about the target (as target
location and type);

« additional processing on raw data (as basic image pro-
cessing on sensor nodes);

o data fusion on a sensor node from a set of informa-
tion collected from other sensors (target kinematics (e.g.
tracks), classifications, their number, etc).

In this paper, we study the problem of tracking multiple
moving objects observed through a WSN with limited sensing
abilities. The aim is to adapt and evaluate a conventional
multiple target tracking algorithm in order to maintain high
track continuity performance to provide a reliable situation
assessment. For this goal, we use heterogeneous sensors to
compensate the low amount of data available (due to the
weak sensor area coverage) by a better information quality
on the data (both in precision of location and in classification
information). The proposed data sensor processing presented
in this work allows to meet the operational constraints. The
originality resides in the application context and not in the
algorithm itself.



Several papers have been published on operational sen-
sor processing applied to WSN. For example, Ekman and
Palson described in [1] a modified particle filter (PF) [2] to
track a single vehicle through the WSN. A similar approach
can be found in [3]. Despite of the well known estimation
performances due to the generation of the particles on the
road network, we haven’t selected a PF algorithm because
we need to track several targets in the sensor network with
severe processing constraints due to hardware solution used
in our demonstrator to preserve the power of a fusion node.
In fact, because PF approach uses more CPU than Kalman
filter (KF), extended Kalman filter (EKF) or unscented Kalman
filter (UKF), we cannot use it in our specific context if one
wants to make the surveillance system operational during a
long period of time. Parmar and Zaveri in [4] have done
similar studies and achieved the same conclusions. They did
focus their study of the data association for MTT in WSN
and of the need to limit the power to maintain the WSN
in activity during a long time. However, in future work, if
the hardware performances improvements allow to satisfy the
power constraint, the use of PF will become feasible. In fact,
Oh and al. described in [5] a complete PF algorithm (called
MCMCDA algorithm) applied for tracking multiple targets
in a WSN with communication constraints. To improve the
MTT algorithm performance, we introduce in this work the
geographic information in the tracking process as proposed by
Ulmke and Koch in [6]. Since we are interested by tracking
both ground vehicles (that can move on and off the road),
aerial vehicles that are not constrained on the road, and
pedestrians as well, we have to consider on-road tracking
as well as an off-road tracking algorithms. For doing this,
we have adapted the MTT ground target tracking algorithm
described in [7] for our WSN tracking demonstrator.

The paper is organized as follows: in section II the WSN
is briefly presented. Section III describes the multiple motion
model algorithm constrained to geographic information. Sec-
tion IV is the extension of the algorithm to multiple target
tracking with classification fusion. Results from the study are
given in section V. Finally, concluding remarks are presented
in section VL

II. UNATTENDED GROUND SENSOR NETWORK

A. Network description

The good quality of communication between the sensor
nodes has a strong impact on the ability of WSN to fulfill
its task of surveillance. It is also very important that the
WSN can communicate with the Command and Control (C2)
station. The solution proposed in this paper is based on on-
the-shelf existing components. Its multi-cluster architecture is
represented in figure 1.

This architecture is structured in two levels:

o a set of clusters: sensor and fusion nodes connected
through a low energy, low Rate 802.15.4 wireless net-
work, managed by a gateway;
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Figure 1: Sensor network architecture.

« a backbone with higher rate gathering data from clusters
which guarantees the expected connectivity and allows
two-ways communications.

The main information transmitted on the network are the
following: data from sensor to sensor-nodes and to C2, state of
the components to sensor node and to C2, command to sensors
from C2 or sensor node to components, exchange between
sensor nodes to allow horizontal data fusion. Two categories
of sensors: low consumption sensors that can be kept in
operation to provide a continuous surveillance, and sensors
having higher consumption that can be activated in case of
presence of a target to acquire more detailed information on
it.

The sensor node receives data from other sensors, processes
them and transmits the local result to the fusion node. A set
of complementary sensors is selected in order to collect multi-
spectral information from the threats. These information will
be used in order to

« detect the presence of a target, or an event,

« provide a spatial location of the event: sensors provide at
current time ¢ a measurement z; (bearing 0y, elevation
¢, distance pjp and radial velocity pi) in the sensor
reference frame. Most sensors are able to give only partial
location: bearing and distance only for radars, bearing and
elevation for electro-optical sensors,

o classify the nature of event among the given set of classes
C'. The output of the classification process is a vector cy,
where each component is the likelihood of each target
class. Typically, we consider the following set of classes

C = {light-vehicle, heavy-vehicle, tracked-vehicle,

human, people, aerial targets }

The classification class (project requirement) is not conven-
tional because the class heavy-vehicle and tracked-vehicle are
not exclusives. As well as the class class human is include in
the people (human group) class. The human class is a singleton
of people class. That is why we have proposed at the sensor
level for light-vehicle and heavy-vehicle classes to discrim-
inate with sub-classes tracked-light-vehicle, wheeled-light-



vehicle and tracked-heavy-vehicle, wheeled-heavy-vehicle re-
spectively.

Different video algorithms have been studied at ONERA
and we have integrated one of them in the sensor node to
detect, localize and classify automatically the targets with the
previous considerations. The result of the processing (event,
detection and classification information) is emitted to the
fusion node. The same kind of process applies with acoustic
Sensors.

B. Sensor model

The generic sensor j observation model is given by:
7, = hi(x;) + b], 2)

where h7(-) is the observation function, xj, is the state of a
target (detailed in the next section), and bfc is a zero-mean
white Gaussian noise vector with a known covariance matrix
R;.. The observation function and the associated noise depends
on the type of sensor. We distinguish three observations
functions: hredar pacou poptro pmag gaggaciated respectively
to the radar, acoustic, optic and magnetic sensors.

hdar () = [pr O pr] B (xi) = [01]
hoPH(xi) = [0k ok W (xk) = [z k)

For the magnetic sensor, we use its own location in the TCF
in order to model a measurement because of its short range
detection (see table I).

The different types of sensor that can be connected to a
sensor node are listed in table I below. The Volume indicates
the area coverage where the target can be found. This event
is emitted as well as measurement to the fusion node in
order to correlate this information with another volume, or a
sensor detection to get a localized detection in the topographic
coordinated frame (TCF).

3)

Sensor tvpe number | SENSOr node detection
yp output characteristic
. [ spherical
acoustic antenna 3 cn < 200 m
. . Volume spherical
acoustic beacon 4 i < 200 m
. spherical
magnetic 10 V(gl].clme < 2m
radar | 0. 5 Sectoral = 90°
Pk> Vk,Pk < 1000 m
mono,multi beam
PIR 8 [ < 200 m
micro-camera 4 [ Sectoral = 30° , 40°
UIR ck < 100,200 m
FIR short 1 0. P Sectoral = 10°
UIR+visible Ck < 100,200 m
JIM LR 1 O, Pk Sectoral = 10°
IR+visible ck < 100,200 m
Cham 4 [ Sectoral = 5°, to 50 °
visible Cck < 100,200 m

Table I: Types of sensors used in the demonstrator.

C. Localization step

The localization module is used to localize all sensors
and data in the TCF. For doing this, we need a calibration
of each sensor. Several calibration techniques will be tested
during the experimental trials, based on specific devices (GPS,
DGPS) allowing measurement of position and orientation of
individual components, on cooperative localization using range
or direction measurements between two sensors nodes, and on
specific methods for calibration of electro-optics sensors.

For the sensors providing only volume information, or
bearing detection, the localization module exploits all available
information on sensors and elementary detection to provide a
composite report z°°™P (k) in the TCF that will feed the data
fusion process. The sensors provide detections and information
on location of the target in their own reference frame. To work
in common TCF for situation assessment we always need a
calibration step.

For notation convenience, the measurements sequence at the
fusion node ZM! = {ZF~1m 7]} represents a possible set
of measurements generated by the target up to time k. Z*!
consists in a subsequence Z¥~1" of measurements up to time
k—1 and a validated measurement z;, available at time k from
sensor j associated with the track 7%!. At the current time
k, the track 7" is represented by a sequence of the state
estimates.

III. TARGET TRACKING WITH GEOGRAPHIC INFORMATION
A. Geographic Information System

The geographic information system (GIS) used in this
work contains the following information: the segmented road
network, the hydrographic network, the vegetation area, the
buildings area and DTED (Digital Terrain Elevation Data).
Only the network and elevation information (the DTED +
buildings height) are used in the first part of this study.

The road network is connected, and each road segment is
indexed by the road section it belongs to. A road section is
defined by a finite set of connected road segments delimited
by a road end or a junction. For the topographic information,
we use the database called: BD TOPO'. This GIS has a metric
precision on the road-segments locations.

At the beginning of a surveillance battlefield operation, a
TCF and its origin O are chosen in the manner that the axes
X, Y and Z are respectively oriented in the East, North and
Up local direction. The target tracking process is carried out in
the TCF. In addition, starting from the elevation terrain and the
sensor location at the current time, it is possible to compute
the perceivability P. at any referenced point for a sensor j.
In the sequel, P’(x,y,k) will denote the probability for the
sensor j to detect at time k a target at the location (z,y).

B. Context constraint tracking

The target state at the current time ¢, is defined in the local
horizontal plane of the TCF by the vector:

Xp = [Tr Tk Yk Z)k]T €]

ISee www.professionnels.ign.fr/bdtopo for a description of this GIS.



where (zp,yr) and (&g,¢r) define respectively the target
location and velocity in the local horizontal plane.

The dynamics of the target evolving on the road are modeled
by a first-order plant equation. The target state on the road
segment s is defined by xj where the target position (x},y;)
belongs to the road segment s and the corresponding heading
(&%,95) in its direction.

The event that the target is on road segment s is noted
e;, = {xx € s}. Given this event ej and according to a motion
model M, the estimation of the target state can be improved
by considering the road segment s. For a constant velocity
motion model, it follows:

xp =F (Ag) - x5y + T(Ag) - vy (5)

where A, is the sampling time, F*? is the state transition
matrix associated to the road segment s and adapted to a
motion model M,; vi’l is a white zero-mean Gaussian random
vector with covariance matrix sz chosen in such a way that
the standard deviation o4 along the road segment is higher
than the standard deviation o, in the orthogonal direction. It
is defined by:

2
Q" =Ry, - ((’Od ;)%) "Ry, 6)
where Ry, is the rotation matrix associated with the direction
05 defined in the plane (O, X,Y") of the road segment s. The
matrix T'(Ay) is defined in [8].

To improve the modeling for targets moving on a road
network, we have proposed in [9] to adapt the level of the
dynamic model’s noise based on the length of the road segment
s. The idea is to increase the standard deviation o,, defined
in (6) to take into account the error on the road segment
location. After the state estimation obtained by a Kalman filter,
the estimated state is then projected according to the road
constraint ej. This step is detailed in [10].

C. IMM under road segment constraint

Here we recall briefly the principle of the interacting
multiple model (IMM) taking into account the road network
constraints. The IMM is a well-known efficient maneuvering
target tracking algorithm [11] which combines estimated states
based on multiple models to get a better global state estimate.
The IMM is near optimal and has a reasonable complexity
which makes it very appealing in tracking applications. In
section III-B, a constrained motion model i to segment s,
noted /\/ls,’l, was defined. There isla distinction between the
definition of a motion model M) (i.e. motion model type,
noise,...) and the event M, " that the target is moving on the
road according the motion model ¢ at time k. Here we extend
the segment constraint to the different dynamic models (among
a set of r 4+ 1 motion models) that a target can follow. The
model indexed by r = 0 is the stop model. The transition
between the models is modelled as a Markovian process.
In general when the target moves from one segment to the
next, the set of dynamic models changes. In a conventional
IMM estimator [11], the likelihood function of a model ¢ is

given, for a track THL associated with the j-th measurement,
j€40,1,...,mg} by:

C=plzl MY 2RI i=0,1,.. 7 (7

where Z*~1" is the subsequence of measurements associated
with the track 7%,

Using the IMM estimator with a stop-motion model, we get
the likelihood function of the moving target mode for indexes

1€4{0,1,...,r} and for j € {0,1,...,my} by:
i =Pp - plz} | M, 2800y ®
-(1—=0,0)+ 1 —Pp)-d,0
The likelihood of the stopped target mode (i.e. r = 0) is:
AR = p{a M0, 28 = 65 ©

where d; 0 is the Kronecker function defined by d;0 = 1 if
j =0and d;0 = 0 otherwise.

The combined (global) likelihood function Ay of a track
including a stop-motion model is then given by:

Ay = ZA?C 'Nf«\kq

1=0

(10)

where Mi’\kq is the predicted model probabilities. The steps
of the IMM under road segment s constraint are the same as
for the classical IMM and it has been described in [9].

Here, one has used the IMM algorithm constrained to only
one road segment s. However, a road section is composed of
several road segments. When the target is making a transition
from one segment to another, the problem is to choose the
segments with the corresponding motion models that can better
fit the target dynamics. The choice of a segment implies the
construction of the directional process noise. That is why
the IMM motions model set varies with the road network
configuration and a variable-structure IMM (VS IMM) offers
a better solution for ground target tracking on road networks.
Such algorithm has been denoted VS IMMC (C standing for
Constrained) and presented in details in [12].

D. Perceivability probability in the target tracking process

To maintain track continuity for improving the situation
understanding and assessment for intelligence operation, we
propose to study the non-detection causes of the sensors thanks
to the knowledge one has (even partial) of the environment.
The goal is to modify the likelihood of a track if the asso-
ciated target is not detected, avoiding the stop-motion model
activation and the stop of the track. A Bayesian formulation
is proposed to introduce the target perceivability by the sensor
in the likelihood (8). Based on our previous works [13], we
introduce the event that the target associated with a track 77!
is perceivable, or not, by the sensor j.

At time tj, the target state probability is represented by the
following exhaustive and exclusive events:

O} = {target is perceivable by sensor j}

(1)

Oi = {target is unperceivable by sensor j} (12)



Here, O, denotes the event that target can be detected by
the sensor. By introducing the events (11) and (12) in the
conventional IMM, we obtain a new formulation of the like-
lihood function. But the perceivability event does not take in
account the non-detection due to the target stop. In the VS
IMMC, we have for each motion model aside r + 1 motions
models (Vi € {0, ...,7}) the likelihoods function defined in
(7) for a track 7%!. We recall that the track 7% represents
the estimated states of the measurement sequence VA=
{ZF=1n 7]} with z] the detection of sensor j the current
time ¢;. Now, according to the total probability theorem, we
introduce the event that the target is detected (i.e. {d =1} )
or not (i.e. {d =0} ) and the events O; and O;. We obtain
from (7) (Vi € {0, ...,r}):

i =plz.d=1,00|Z" 1" Mty
+p{z,,d=1,00|ZF 1", Mp*}

+plal.d = 0,042 M)
+p{z],d=0,0}|Z"1" M;®)

However, an unperceivable target can’t be detected. So the
event {d =1, Ofc} is equal to the empty set (). According to
Kirubarajan’s approach [14], we distinguish the stop-motion
model noted M, ,8 ** from the set of motion models. The event
{M*,d = 1} is equal to (), because the stop-motion model
must not be activated if there is at least one detection. By

using Bayes’ rule, we get the new expression of the likelihood
function (Vi € {0, ...,7}) as follows:

Aj = (1—3640) Pp

p{z| 7517, ME®, Oy - P{OJ|Z 1, M)

+ (1= Pp)-ba0- P{O|ZF 1" M>*}

+ 040 (1 — P{O]|Z*= 1, Mp*Yy
where 04, is the Kronecker function equal to unity if there
is no detection (d = 0). The probability to obtain at least
one measurement is equal to the detection probability (i.e.
P{d =1|ZF"1" M;* Oi} = (1 — da,) - Pp) in opposition
to obtain no measurement (i.e. P{d = 0|Z*~1" M,”* Oi} =
(1 =dq,0) - (1= Pp)).

The computation of the perception probability
P{Oj|Z*=1"} depends on each sensor type, and it is
computed at the location module. For instance, we use
the line of site of camera type sensor to compute the non
detection area due to terrain elevation with a ray tracing
method. For the acoustic sensor, we use attenuation signal
towards the ground nature and terrain elevation, etc. The
perception probability is computed using the function P/,
more precisely by

j | 7k—1,n 1,8\ __ i/ 1,8 0,5
P{O;|Z Mty = Pe](xk\k—vyk\k—l)

13)

(14)

(15)

where (xz’ﬁc_l,yi’li_l) are the location components in the
TCF of the predicted state )A{le k1" In futures works, we will
improve the computation of the perception probability using
also the target velocity estimate.

IV. MULTIPLE TARGET TRACKING
A. Multiple target type tracker

We briefly describe here the main steps of the VS IMMC
SB-MHT (Structured Branching - Multiple Hypotheses Track-
ing). More details can be found in chapter 16 of [8].
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Figure 2: SB-MHT logic flowchart in a fusion node.

1) The first functional block of the SB-MHT is shown in
figure 2. It consists of the track confirmation and the
track maintenance. When the new set Z* of measure-
ments is received, a standard gating procedure [8] is
applied in order to determine the valid measurement
reports for track pairings. The existing tracks are updated
with VS IMMC at first, and then extrapolated confirmed
tracks are formed. When the track is not updated with
reports, the stop-motion model is activated.

2) In order to palliate the association problem, we need a
probabilistic expression for the evaluation of the track
formation hypotheses that includes all aspects of the
data association problem. It is convenient to use the log-
likelihood ratio (LLR) as a score of a track 7% because
it can be expressed at current time k in the following
recursive form [8]:

Lipi=Ly_1n+ ALy, (16)

with
ALy, = log (i‘f’“) (17)

and
L(0) = log (M) (18)

where Ay, and A,; are respectively the false alarm
rate and the new target rate per unit of surveillance
volume. Ay is the global likelihood function described
in (10). After the track score calculation of the track
T*!, Wald’s Sequential Probability Ratio Test (SPRT) is
used to set up the track status either as deleted, tentative
or confirmed track. The tracks that fail the SPRT are
deleted, and the surviving tracks are kept for the next
stage.

3) The process of clustering is used to put altogether the
tracks that share common measurements. The clustering



limits the number of hypotheses to generate, and there-
fore it can drastically reduce the complexity of tracking
system. The result of the clustering is a list of tracks
that are interacting. The next step is to form hypotheses
of compatible tracks.

4) For each cluster, multiple compatible hypotheses are
formed to represent the different compatible tracks sce-
narios. Each hypothesis is evaluated according to the
track score function associated to the different tracks.
Then, a technique is required to find the set of hypothe-
ses that represents the most likely tracks collection. The
unlikely hypotheses and associated tracks are deleted by
a pruning method, and only the N7y, best hypotheses
are kept in the system.

5) For each track, the a posteriori probability is computed,
and a classical N-Scan pruning approach [8] is used to
delete the most unlikely tracks. With this approach the
most likely tracks are selected to reduce the number
of tracks. However, the N-Scan technique combined
with the constraint implies that other tracks hypotheses
(i.e. constrained on other road segments) are arbitrary
deleted. To avoid this problem, we modify the N-Scan
pruning approach in order to select the Ny best tracks
on each NV road sections.

6) The SPRT is used to delete the unlikely hypotheses
among the Vi hypotheses. The tracks are then updated
and projected on the road network. In order to reduce
the number of tracks to keep in the memory of the
computer, a merging technique (selection of the most
probable tracks which have common measurements) is
also implemented.

B. Classification fusion

In a fusion node, the target type tracker presented in [15]
is used to improve the performance of the data association
in the SB-MHT. The principle consists to update the posterior
class probability vector at each scan time ¢, with the classifier
output. The classifier gives the probability vector Sj; of a
track 7%! given by:

_ C?g & Bk—l,n

]
Ci; ﬂk—l,n

Br,1 (19)

where ¢, is the likelihood vector of the 4" sensor classifier

output, 8;_1 p is the prior probability provided by the previous
updated track 7*~1" and ® is the Schur-Hadamard product.
The initial classification vector is given by:
J
C
Bo= =
Zn:l c‘;C (’ﬂ)

In assuming the independence of the kinematic and classifi-
cation observations, the augmented logarithm likelihood ratio
ALz’ ; is the sum of the logarithm kinematic-likelihood ALy ;
ratio given in (17), and the logarithm of classification ratio
AL; ;- The recursive form of the track score (16) is then given
by

(20)

Ly = Lg—1n+ AL, (21

with

ALY, = ALy + AL, (22)

where ALy is defined in (17).
The log-likelihood ratio of the classification belonging to
the track 7" versus belonging to a false or new target is:

jl
Cy kal,n
S Bt

Cy Be
where e defines an extraneous target. If the track is not
associated to a measurement at the current time ¢; we have
ALf, =0.

Finally, the updated target type ¢x; of the track 7% is

chosen as the maximum probability of updated classification
vector (19).

AL, = log( (23)

V. PERFORMANCE EVALUATION

To evaluate the performance of the proposed fusion process
for WSN, we have simulated a realistic complex scenario.
The goal of this evaluation is to prove the capability of our
MTT algorithm to be implemented in a fusion node on-board
prototype, and to provide measures of performance (MOP)
of the tracking. For this, we have compared the proposed
algorithm with and without the road network information
respectively named Algorithm 1 and Algorithm 2.

To compute the performance metrics, an important step is
to decide at each time which track to compare with which
target. In addition, this decision is made in the presence of
closely spaced targets and false measurements.The assignment
is required to be unique, i.e. at most one track can be
associated with one target at any time, and at most one target
can be associated with one track. To solve this assignment,
Munkres algorithm has been used. The tracks not associated
or correlated to a target despite the assignment are considered
as false tracks. The MOP that have been used in this study
are the following:

¢ Root Square Error (RSE). The root square error is the
most well-known MOP. It provides an information on the
track precision in location and velocity.

e Track Length Ratio (TLR). The track length ratio is a
ratio between the track length associated to a target with
the length of the target trajectory. It informs on the track
continuity performances

In our scenario, we have considered 20 targets moving on a
chosen operational area. The targets are maneuvering on and
off the road network. We distinguish several target types (as
tank, jeep, soldiers, civilian pedestrians, etc). Our simulator
constrained the maneuvers by taking into account the target
type. We have had soldiers (targets number 11, 12, 13), and
ground vehicles (targets number 14, 15, 19) that move on the
battlefield in a close formation. The figure 3 shows the targets
trajectories on the area of interest. In this scenario, we also
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Figure 4: Sensor locations and coverages.

consider terrain masks, due to buildings, vegetation and terrain
elevation.

Sensors? are put at strategic locations (at some road intersec-
tions, or in order to get a maximum detection area) to ensure
infrastructure protection mission. Radar, video and acoustic
sensors generate false alarms (figure4).

To obtain our MOP we use only one simulation because our
software is for operational vocation and is unable to integrated
several simulations. The table II shows the Root Square Error
(RSE) and the Track Length Ratio (TLR) of the algorithm
1 (by tacking into account road network information) and
algorithm 2 (without road network information). Globally, we
observe mitigated results on the track precision. In fact, we
work with in-situ sensors with metric precision, that is why
the improvement on the track precision, due to road network
constraint, is week. However, this constraint can provide
better prediction on the track when the target evolves in non-

2We are not allowed to give more details about sensors characteristics in
this paper.

Algorithm 1 Algorithm 2
Target number || RSE (in m) | TLR RSE (in m) | TLR
1 10.48 0.99 19.43 0.8
2 743 1 7.7 1
3 5.32 1 12 1
4 6.20 0.88 6.08 0.9
5 6.35 1 11.74 0.59
6 5.66 0.68 52 0.68
7 22.45 0.6 16.11 0.85
8 3.43 1 7.42 0.9
9 7.07 0.86 10.28 0.5
10 12.79 0.63 12.52 0.45
11 6.72 0.82 8.42 0.85
12 6.58 0.81 7.71 0.89
13 8.56 0.51 9.87 0.61
14 1.91 1 4.19 1
15 10.39 0.37 9.02 0.51
16 12.77 0.34 12.67 0.31
17 6.44 0.78 9.33 0.51
18 9.30 0.48 8.87 0.46
19 7.06 0.6 7.56 0.44
20 18.55 0.38 134 0.88

Table II: Synthetic MOP.

detection areas (terrain mask or sensor absence) as shown on
figures 5 and 6. The constraint contributes also to improve
track association for the crossing maneuvers (figure 7). The
cases where the algorithm 2 has a better TLR than algorithm
1 are due to the fact that the covariance is not constraint
and less directional. The covariances of each motion model
(necessary to the validation gating procedure) is more bigger
than the covariances of each constrained motion model of the
algorithm 1. The counterpart for algorithm 2 is the cluster
size, in the SB-MHT steps, which is is bigger because more
associations are done causing an increase of the computation
time. But, in a strong target maneuver case out of the sensor
coverage or in terrain mask, the algorithm 1 is more robust to
palliate the maneuver because the validation gate is larger. This
is the case with the target 20 at the middle of the scenario, the
target accelerates between 2 sensors area and the stop motion
model is activated for the algorithm 1 because no detection
is associated at the opposite of the algorithm 2 that succeeds
in track-to-target association. A solution to compensate this
weakness should be to compute a track segment association
algorithm to correlate new tracks with with lost tracks . In
addition, despite of the group class information given by video
and acoustic sensors, algorithms don’t arrive to track soldier’s
group. This is due to the heterogeneous measurement model.
A group is only one detection for the previous sensors brings
about a track initialisation. But with radar sensor a group can
be several detections due to resolution cell. An ambiguity
arises in track association if several heterogeneous sensor
detect a group resulting track lost. The on-boarded constraints
(not communicated in this paper) are satisfied.

VI. CONCLUSION

In this work devoted to the surveillance application, we
have presented well-known algorithms applied for wireless
sensor network with severe on-boarded constraints to satisfy



1800

1750 -8

1700

1650

1600

1800

1750

1700

1650

1600

1600

1500

1400

1300

1200

-400 -300

Figure 5: Track leaving the video coverage.
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Figure 7: Track crossing illustration.

operational requirements. We have described a multiple target
tracking algorithm in a fusion node and validated the archi-
tecture on a simulated scenario. The main weakness of this
approach is the lost of tracks when the targets evolve in close
formation. The next steps of our project are:

1) to test the fusion node in operational context with real

sensors and associated processing;

2) to develop an approach to initialise and track groups in

a heterogeneous sensor network;

3) to compare the performances with distributed and hi-

erarchical data fusion architecture in order to limit the
bandwidth;

4) to propose finally an approach to detect abnormal be-

haviour with a WSN.
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