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Abstract—This paper presents two new theoretical contri-
butions for reasoning under uncertainty: 1) the Total Belief
Theorem (TBT) which is a direct generalization of the Total
Probability Theorem, and 2) the Generalized Bayes’ Theorem
drawn from TBT. A constructive justification of Fagin-Halpern
belief conditioning formulas proposed in the nineties is also given.
We also show how our new approach and formulas work through
simple illustrative examples.
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I. INTRODUCTION

This paper presents new theoretical results for reasoning
under uncertainty with belief functions (BF) introduced by
Shafer in [1] in Dempster-Shafer Theory (DST). The first
important result is the Total Belief Theorem (TBT) which is
a generalization of the Total Probability Theorem (TPT) for
the belief functions framework. From TBT, one can provide
a solid justification of Fagin-Halpern (FH) belief conditioning
formulas [3]–[5] which are generalizations of the classical con-
ditional probability formulas. These theoretical results allow
us to establish rigorously the Generalized Bayes’ Theorem
(GBT). The belief conditioning problem is challenging, not
new, and one of the two main methods usually adopted by
users working with BF is : 1) Shafer’s belief conditioning
method based on Dempster’s rule of combination [1], or
2) the belief conditioning method consistent with imprecise
probability calculus bounds [2], [6], [7] based on the lower and
upper probability interpretation of belief functions popularized
by Fagin and Halpern [3]. In this paper we focus on the second
approach of belief conditioning because Dempster’s rule of
combination presents serious problems as reported in [8]–[16].
Smets did also attempt to generalize Bayes’ Theorem (BT) and
did propose his own GBT [17] on the basis of conditional
embedding, conjunctive merging and Shafer’s conditioning.
Unfortunately, Smets’ approach remains doubtful as reported
in [18]. Our new GBT establishment is obtained by a direct
constructive manner from TBT. It does not need extra as-
sumptions nor some underlying ad-hoc construction principles.
Also, we prove that our TBT and GBT presented in this work
are fully consistent with classical TPT and BT as soon as the
belief functions are Bayesian.

This paper starts with a brief review of very basics of
Probability Theory, including the Total Probability Theorem

(TPT) and Bayes’ Theorem (BT) in Section II because this
helps to have a better understanding of the generalizations we
propose. A brief review of belief functions is given in Section
III, followed by classical Shafer’s and Fagin-Halpern’s belief
conditioning methods respectively in Sections IV and V. In
Section VI, we present the decomposition of the set of focal
elements of any basic belief assignment (BBA) that allows
us to establish formally the TBT and its generalization on
Cartesian product space. The Section VII presents and justifies
the new belief conditioning formulas drawn from TBT which
are fully consistent with Fagin-Halpern conditioning formulas.
This section also presents the generalization of Bayes’ theorem
in the framework of belief functions. We illustrate our new
theoretical results with a quite simple GBT example in Section
VIII to show how to make derivations of GBT and to prove
that Shafer’s conditioning results are inconsistent with GBT.
Section IX concludes this paper.

II. TOTAL PROBABILITY THEOREM & BAYES’ FORMULA

A. Total Probability Theorem

In probability theory, the elements θi of the space Θ are
experimental outcomes. The subsets of Θ are called events
and the event {θi} consisting of the single element θi is an
elementary event. The space Θ is called the sure event and
the empty set ∅ is the impossible event. We assign to each
event A a number P (A) in [0, 1], called the probability of A,
which satisfies the three Kolmogorov’s conditions: 1) P (∅) =
0; 2) P (Θ) = 1; and 3) if A ∩ B = {∅}, then P (A ∪ B) =
P (A)+P (B). These conditions are the axioms of the theory of
probability [20]. The fundamental Theorem of the probability
theory is the Total Probability Theorem (TPT), also called a
the law of total probability, see [20] which can be stated as
follows.

Total Probability Theorem (TPT): Consider an event B and
any partition1 {A1, A2, . . . , Ak} of the space Θ. Then

P (B) = P (B ∩A1) + P (B ∩A2) + . . .+ P (B ∩Ak) (1)

B. Conditional probability and Bayes’ formula
Starting from TPT formula (1) and assuming P (B) > 0, we get

for any i ∈ {1, . . . , k} after dividing each side of (1) by P (B) and

1A partition of Θ is a collection of exclusive subsets of Θ whose union
equals Θ.



rearranging terms the equality

P (Ai ∩B)

P (B)
= 1−

∑
j=1,...,k

j 6=i

P (Aj ∩B)

P (B)
= 1− P (Āi ∩B)

P (B)
(2)

which allows us to define the conditional probability P (Ai|B) by2

P (Ai|B) , P (Ai ∩B)/P (B) (3)

Similarly, by considering an event Ai of Θ and the partition {B, B̄}
of Θ, the TPT formula P (Ai) = P (Ai ∩B) + P (Ai ∩ B̄) applies,
and by dividing it by P (Ai) (assuming P (Ai) > 0), one gets

P (Ai ∩B)

P (Ai)
= 1− P (Ai ∩ B̄)

P (Ai)
(4)

which allows to define the conditional probability P (B|Ai) by

P (B|Ai) , P (Ai ∩B)/P (Ai) (5)

From (3) and (5), one deduces the equality

P (Ai ∩B) = P (Ai|B)P (B) = P (B|Ai)P (Ai) (6)

From equality (6) and assuming P (B) > 0 and P (Ai) > 0, we get

P (Ai|B) = P (B|Ai)P (Ai)/P (B) (7)

P (B|Ai) = P (Ai|B)P (B)/P (Ai) (8)

Using (1) and noting that P (Ai ∩B) = P (B|Ai)P (Ai), we get

P (B) =

k∑
i=1

P (B|Ai)P (Ai) (9)

Substituting (9) in (7), we obtain Bayes’ Theorem (BT) formula stated
mathematically as the following equation

P (Ai|B) =
P (B|Ai)P (Ai)∑k
i=1 P (B|Ai)P (Ai)

(10)

One can verify that the conditional probability defined by (3)
satisfies the three axioms of the Theory of Probability [20].

Previously, Ai and B were events (subsets) of the same space Θ.
If Ai ⊆ Θ1 and B ⊆ Θ2 with Θ1 6= Θ2, which corresponds to a
so-called combined experiment [20], similar conditioning formulas
can also be established by working in the Cartesian product space
Θ , Θ1 × Θ2 whose elementary elements are all the ordered pairs
(xp, yq) with xp ∈ Θ1 and yq ∈ Θ2. The two experiments are viewed
as a single combined one whose outcomes are pairs (xp, yq). In this
space Θ = Θ1 × Θ2, xp is not an elementary element but a subset
of n elements of Θ, i.e. {xp} = {(xp, y1), . . . , (xp, yn)}. Similarly,
yq is not an elementary element but a subset of m elements of Θ,
i.e. {yq} = {(x1, yq), . . . , (xm, yq)}. If Ai ⊆ Θ1 and B ⊆ Θ2, then
Ai × B = {(xp, yq)|xp ∈ A; yq ∈ B} ⊆ Θ. If one forms Ai ×Θ2

and Θ1×B one sees that Ai×B = (Ai×Θ2)∩(Θ1×B) = (Θ1×
B)∩ (Ai×Θ2). Because the event Ai×Θ2 occurs in the combined
experiment if the event Ai of the experiment 1 occurs no matter what
the outcome of experiment 2 is, one has P (Ai×Θ2) = P1(Ai) where
P1(Ai) is the probability of event Ai in the experiment 1. Similarly,
the event Θ1×B occurs if B occurs in experiment 2 no matter what
the outcome of experiment 1 is, so that P (Θ1×B) = P2(B) where
P2(B) is the probability of event B in the experiment 2. Considering
a partition {A1, A2, . . . , Ak} of Θ1 and a subset (event) B ⊆ Θ2,
and based on set theory and property of Cartesian product, one can
establish also TPT formula

P (Θ1 ×B) =
∑

i=1,...,k

P ((Θ1 ×B) ∩ (Ai ×Θ2))

2the notation , means equal by definition

and Bayes’ formula

P (Ai ×Θ2|Θ1 ×B) =
P (Θ1 ×B|Ai ×Θ2)P (Ai ×Θ2)∑k
i=1 P (Θ1 ×B|Ai ×Θ2)P (Ai ×Θ2)

That is why, for notation convenience (and notation abuse), we can
just use classical formulas even when working with different sets of
experimental outcomes Θ1 and Θ2. One just has to keep in mind that
in this case Ai must be understood as Ai ×Θ2 and B as Θ1 ×B.

III. BASICS OF BELIEF FUNCTIONS

Based on Dempster’s works [2], [19], Shafer did introduce Belief
Functions (BF) to model the epistemic uncertainty3 and to reason
under uncertainty [1]. We consider a finite discrete frame of dis-
cernement (FoD) Θ = {θ1, θ2, . . . , θn}, with n > 1, and where
all exhaustive and exclusive elements of Θ represent the set of the
potential solutions of the problem under concern. The set of all
subsets of Θ is the power-set of Θ denoted by 2Θ. The number of
elements (i.e. the cardinality) of 2Θ is 2|Θ|. A basic belief assignment
(BBA) associated with a given source of evidence is defined as the
mapping m(·) : 2Θ → [0, 1] satisfying the conditions m(∅) = 0
and

∑
A∈2Θ m(A) = 1. The quantity m(A) is the mass of belief of

subset A committed by the source of evidence (SoE). A focal element
X of a BBA m(·) is an element of 2Θ such that m(X) > 0. Note that
the empty set ∅ is not a focal element of a BBA because m(∅) = 0
(closed-world assumption of Shafer’s model for the FoD). The set of
all focal elements of m(·) is denoted

FΘ(m) , {X ⊆ Θ|m(X) > 0} = {X ∈ 2Θ|m(X) > 0} (11)

The set of focal elements of m(·) included in A ⊆ Θ is denoted

FA(m) , {X ∈ FΘ(m)|X ∩A = X} (12)

Note that if A ⊆ B ⊆ Θ, then FA(m) ⊆ FB(m). Also,
∀A,B ⊆ Θ one has FA∩B(m) = FA(m) ∩ FB(m), but
FA∪B(m) 6= FA(m) ∪ FB(m) in general. The set FΘ(m) can
always be partitioned as {FA(m),FĀ(m),FA∗(m)} where4

FA∗(m) , FΘ(m)−FA(m)−FĀ(m) (13)
= {X ∈ FΘ(m)|X ∩A 6= ∅ and X ∩ Ā 6= ∅} (14)

represents the set of focal elements of m(·) which are not subsets of
A and not subsets of Ā , Θ − {A} = {X|X ∈ Θ and X /∈ A},
where Ā is the complement of A in Θ and the minus symbol denotes
the set difference operator.

Belief and plausibility functions are defined by5

Bel(A) =
∑

X∈2Θ

X⊆A

m(X) =
∑

X∈FΘ(m)
X⊆A

m(X) =
∑

X∈FA(m)

m(X)

(15)
Pl(A) =

∑
X∈2Θ

X∩A6=∅

m(X) =
∑

X∈FΘ(m)
X∩A 6=∅

m(X) = 1− Bel(Ā). (16)

The width U(A∗) = Pl(A) − Bel(A) of the belief interval
[Bel(A), P l(A)] is called the uncertainty on A committed by the
SoE. It represents the imprecision on the (subjective) probability of
A granted by the SoE which provides the BBA m(·). The uncertainty
U(A∗) can also be expressed directly as

U(A∗) =
∑

X∈FA∗ (m)

m(X) (17)

3Also called sometimes the cognitive uncertainty by some authors.
4For notation convenience, we use A∗ to denote focal elements of m(·)

which are not in A, nor in Ā.
5By convention, a sum of non existing terms (if it occurs in formulas

depending on the given BBA) is always set to zero.



It is worth noting that U(Ā∗) = Pl(Ā)−Bel(Ā) = (1−Bel(A))−
(1− Pl(A)) = Pl(A)−Bel(A) = U(A∗), or equivalently

U(Ā∗) =
∑

X∈FĀ∗ (m)

m(X) (18)

where FĀ∗(m) , FΘ(m)−FĀ(m)−FA(m) = FA∗(m).

When all elements of FΘ(m) are only singletons, m(·) is called a
Bayesian BBA [1] and its corresponding Bel(·) and Pl(·) functions
are homogeneous to a same (subjective) probability measure P (·). In
this case FA∗(m) = FĀ∗(m) = ∅. According to Shafer’s Theorem 1
below, see [1] page 39 with its proof on page 51, the belief functions
can be characterized without referencing to a BBA.

Theorem 1: If Θ is a FoD, then a function Bel : 2Θ 7→ [0, 1] is a
belief function if and only if it satisfies the following conditions:
• B1) Belief in impossible event is zero, that is Bel(∅) = 0.
• B2) Belief in the certain event is one, that is Bel(Θ) = 1.
• B3) For every positive integer n and every collection A1,. . . ,

An of subsets of Θ

Bel(A1 ∪ . . . ∪An) ≥
∑

I⊂{1,...,n}
I 6=∅

(−1)|I|+1Bel(∩
i∈I
Ai) (19)

Quantities m(·) and Bel(·) are one-to-one, and for any A ⊆ Θ the
BBA m(·) is obtained from Bel(·) by Möbius inverse formula (see
[1], p.39)

m(A) =
∑

B⊆A⊆Θ

(−1)|A−B|Bel(B) (20)

Shafer [1] did propose to combine s ≥ 2 distinct sources of
evidence represented by BBAs m1(.), . . . ,ms(.) over the same FoD
with Dempster’s rule (i.e. the normalized conjunctive rule). However
Dempster’s rule has been strongly disputed from both theoretical and
practical standpoints as reported in [16], [21], [22]. In particular,
the high (or even very low) conflict level between the sources
can be totally ignored by Dempster’s rule which is a very serious
problem [15]. Also, Shafer’s conditioning (based on Dempster’s rule)
is inconsistent with the probabilistic conditioning (see next section).

IV. SHAFER’S CONDITIONING

A. Shafer’s conditioning formulas
Shafer’s conditioning formulas are established in Theorem 3.6 p.

66 of [1] from Dempster’s rule of combination of the original BBA
m(·) with the BBA mB(B) = 1 focused on B. We review them
for convenience. For A,B ⊆ Θ with Pl(B) > 0, Bel(A|B) and
Pl(A|B) are given by

Bel(A|B) = (Bel(A ∪ B̄)−Bel(B̄))/(1−Bel(B̄)) (21)

Pl(A|B) = Pl(A ∩B)/P l(B) (22)

The expression (21) of Bel(A|B) is equivalent to

Bel(A|B) = (Pl(B)− Pl(B ∩ Ā))/P l(B) (23)

because one has always (from definition of belief functions) Pl(B) =
1−Bel(B̄) and the numerator of (21) can be written as

Bel(A ∪ B̄)−Bel(B̄) = Pl(B)− Pl(B ∩ Ā)

If A = ∅, Bel(∅|B) = Pl(∅|B) = 0, and if A = Θ,
Bel(Θ|B) = Pl(Θ|B) = 1. Also, if B = Θ, Bel(A|Θ) = Bel(A)
and Pl(A|Θ) = Pl(A). Note that if B = A in (22)–(23), we get
Bel(A|A) = Pl(A|A) = 1 which fits with the common sense.

In reversing the roles played by A and B and switching the
notations in previous expressions, the following formulas also hold
(assuming Pl(A) > 0)

Bel(B|A) = (Pl(A)− Pl(A ∩ B̄))/P l(A) (24)

Pl(B|A) = Pl(B ∩A)/P l(A) (25)

From (22) and (25), one deduces that

Pl(A ∩B) = Pl(A|B)Pl(B) = Pl(B|A)Pl(A)

Hence, the following formula applies for conditional plausibilities
when Pl(B) > 0

Pl(A|B) = Pl(B|A)Pl(A)/P l(B) (26)

Shafer’s formula (25) is similar to conditional probabilities (3)
when replacing plausibility by probability. So, at first glance it seems
appealing. In the sequel we show why this is not the case.

B. Drawback of Shafer’s conditioning
The main drawback of Shafer’s conditioning is that the bounds

of belief interval [Bel(A|B), P l(A|B)] obtained by (21)-(22) are in
general incompatible with lower and upper bounds of the conditional
probability P (A|B). This problem makes Shafer’s conditioning based
on Dempster’s rule very disputable and cast doubts on pertinence
(validity) of Shafer’s conditioning results when used in applications.
This serious problem has already been reported and addressed by
several authors [3], [6], [7], [11] with some examples. To easily show
this incompatibility of Shafer’s conditioning with probability calculus
we present briefly the famous Ellsberg urn example [23].

Example 1 (Ellsberg urn): We consider an urn with red (R) balls,
black (B) and yellow (Y) balls. One knows that 1/3 of balls are
red balls and 2/3 or balls are black and yellow balls. So the a
priori information about the chance to pick a ball in the urn can
be represented by a (parametric) probability mass function P (·)

P (R) = 1/3 P (B) = 2/3− x P (Y ) = x

where x is an unknown number/parameter in [0, 2/3]. Therefore,
P (B) and P (Y ) are unknown but their bounds are known. In fact,
this problem can be seen as a problem of imprecise probabilities
where P (R) + P (B) + P (Y ) = 1 with

P (R) ∈ [1/3, 1/3] P (B) ∈ [0, 2/3] P (Y ) ∈ [0, 2/3]

Now let’s suppose that someone picks a ball at random in the
urn and tell us that the color of the ball is not black, i.e. the event
B̄ = R ∪ Y has occurred. How do we must revise (update) our
prior probabilities with this new information? The correct answer to
this question is obtained by computing the conditional probabilities
P (R|B̄), P (B|B̄) and P (Y |B̄) and by analyzing their bounds. This
is done using the fact that P (B̄) = P (R ∪ Y ) = P (R) + P (Y ) −
P (R ∩ Y ) = P (R) + P (Y ) = (1/3) + x. Indeed, P (R ∩ Y ) = 0
because the events R and Y are mutually exclusive. So, we get

P (R|B̄) =
P (R ∩ (R ∪ Y ))

P (R ∪ Y )
=

P (R)

(1/3) + x
=

1/3

(1/3) + x

P (B|B̄) =
P (B ∩ (R ∪ Y ))

P (R ∪ Y )
=

P (∅)
(1/3) + x

=
0

(1/3) + x

P (Y |B̄) =
P (Y ∩ (R ∪ Y ))

P (R ∪ Y )
=

P (Y )

(1/3) + x
=

x

(1/3) + x

If x = 0, then P (R|B̄) = 1 and P (Y |B̄) = 0. If x = 2/3, then
P (R|B̄) = 1/3 and P (Y |B̄) = 2/3. Therefore after conditioning
we get

P (R|B̄) ∈ [1/3, 1] P (B|B̄) ∈ [0, 0] P (Y |B̄) ∈ [0, 2/3]

Let’s examine what we get with Shafer’s conditioning. The problem
is modeled using the a priori BBA m(·) defined on the FoD Θ =
{R,B, Y } with m(R) = 1/3 and m(B∪Y ) = 2/3 which gives the
belief intervals [Bel(R), P l(R)] = [1/3, 1/3], [Bel(B), P l(B)] =
[0, 2/3] and [Bel(Y ), P l(Y )] = [0, 2/3]. With Shafer’s conditioning



formulas and noting that Pl(R) = 1/3, Pl(B) = 2/3, Pl(Y ) =
2/3, and Pl(R ∪ Y ) = 1, we get

Bel(R|B̄) =
Pl(R ∪ Y )− Pl((R ∪ Y ) ∩ (B ∪ Y ))

Pl(R ∪ Y )
=

1− Pl(Y )

1
= 1/3

Bel(B|B̄) =
Pl(R ∪ Y )− Pl((R ∪ Y ) ∩ (R ∪ Y ))

Pl(R ∪ Y )
=

1− Pl(R ∪ Y )

1
= 0

Bel(Y |B̄) =
Pl(R ∪ Y )− Pl((R ∪ Y ) ∩ (R ∪ B))

Pl(R ∪ Y )
=

1− Pl(R)

1
= 2/3

Pl(R|B̄) =
Pl(R ∩ (R ∪ Y ))

Pl(R ∪ Y )
=

Pl(R)

Pl(R ∪ Y )
= 1/3

Pl(B|B̄) =
Pl(B ∩ (R ∪ Y ))

Pl(R ∪ Y )
=

Pl(∅)
1

= 0

Pl(Y |B̄) =
Pl(Y ∩ (R ∪ Y ))

Pl(R ∪ Y )
=

Pl(Y )

Pl(R ∪ Y )
= 2/3

Hence with Shafer’s conditioning we get results incompatible with
the real bounds of conditional probabilities because

[Bel(R|B̄), P l(R|B̄)] = [1/3, 1/3] 6= [1/3, 1]

[Bel(B|B̄), P l(B|B̄)] = [0, 0]

[Bel(Y |B̄), P l(Y |B̄)] = [2/3, 2/3] 6= [0, 2/3]

V. FAGIN-HALPERN CONDITIONING

Fagin and Halpern (FH) proposed in [3], [4] to define the condi-
tional belief as the lower envelope (i.e. the infimum) of a family
of conditional probability functions to make belief conditioning
consistent with imprecise conditional probability calculus.

A. Fagin-Halpern conditioning formulas
Assuming Bel(B) > 0, Fagin and Halpern proposed the following

conditional formulas (FH formulas for short)

Bel(A|B) = Bel(A ∩B)/(Bel(A ∩B) + Pl(Ā ∩B)) (27)

Pl(A|B) = Pl(A ∩B)/(Pl(A ∩B) +Bel(Ā ∩B)) (28)

They prove in [3] that Bel(A|B) given by (27) satisfies the
three conditions of Theorem 1 and so FH belief conditioning is
an appealing solution for BF conditioning. However, it is quite
obscure how Fagin and Halpern did obtain (construct) FH formulas.
A justification has been given by Sundberg and Wagner in [7] (p.
268) but it is not very easy to follow. In this paper, we justify clearly
and directly the establishment of FH formulas from the simple and
direct consequence of the Total Belief Theorem (TBT).

Similarly, by switching notations and assuming Bel(A) > 0, the
previous FH formulas can be rewritten as

Bel(B|A) = Bel(A ∩B)/(Bel(A ∩B) + Pl(B̄ ∩A)) (29)

Pl(B|A) = Pl(A ∩B)/(Pl(A ∩B) +Bel(B̄ ∩A)) (30)

As we see, FH formulas are also consistent with Bayes’ formula
when the underlying BBA m(·) is Bayesian. Indeed if m(·) is
Bayesian, then Pl(A∩B) = Bel(A∩B) = P (A∩B), Pl(Ā∩B) =
Bel(Ā∩B) = P (Ā∩B) and Pl(B̄∩A) = Bel(B̄∩A) = P (B̄∩A)
and FH formulas become equivalent to

Bel(A|B) = Pl(A|B) = P (A∩B)/(P (A∩B)+P (Ā∩B)) (31)

Thanks to TPT formula (1), the denominator involved in these
formula is P (A ∩B) + P (Ā ∩B) = P (B), therefore

Bel(A|B) = Pl(A|B) = P (A ∩B)/P (B) = P (A|B) (32)

Similarly, one can also easily verify that

Bel(B|A) = Pl(B|A) = P (A ∩B)/P (A) = P (B|A) (33)

B. Advantage of Fagin-Halpern conditioning
The advantage of FH conditioning is its complete compatibility

with the conditional probability calculus [7], [25]. We show what
provides FH conditioning in the previous Ellsberg urn example.

Ellsberg urn example revisited: Applying FH conditioning formulas
with the conditioning event B̄ = R ∪ Y we obtain

Bel(R|B̄) =
Bel(R ∩ (R ∪ Y ))

Bel(R ∩ (R ∪ Y )) + Pl((B ∪ Y ) ∩ (R ∪ Y ))

=
Bel(R)

Bel(R) + Pl(Y )
=

1/3

(1/3) + (2/3)
= 1/3

Pl(R|B̄) =
Pl(R ∩ (R ∪ Y ))

Bel((B ∪ Y ) ∩ (R ∪ Y )) + Pl(R ∩ (R ∪ Y ))

=
Pl(R)

Bel(Y ) + Pl(R)
=

1/3

0 + (1/3)
= 1

Similarly, we can verify that Bel(B|B̄) = 0, Pl(B|B̄) = 0,
Bel(Y |B̄) = 0 and Pl(Y |B̄) = 2/3. Therefore with these condition-
ing formulas, we get the correct bounds of the imprecise conditional
probabilities

[Bel(R|B̄), P l(R|B̄)] = [1/3, 1]

[Bel(B|B̄), P l(B|B̄)] = [0, 0]

[Bel(Y |B̄), P l(Y |B̄)] = [0, 2/3]

One can also verify that Bel(∅|B̄) = 0, Bel(R ∪ B|B̄) = 1/3,
Bel(R∪Y |B̄) = 1, Bel(B∪Y |B̄) = 0 and Bel(R∪B∪Y |B̄) = 1.
Applying Möbius inverse formula (20) with Bel(·|B̄), one gets the
conditional BBA m(R|B̄) = 1/3 and m(R∪Y |B̄) = 2/3, whereas
with Shafer’s conditioning one gets m(R|B̄) = 1/3 and m(Y |B̄) =
2/3. One sees that with Shafer’s conditioning, because (B ∪ Y ) ∩
(R ∪ Y ) 6= ∅ the mass m(B ∪ Y ) = 2/3 is entirely transferred
(optimistically) to the most specific focal element Y included in B̄ =
R∪Y . With FH conditioning, the mass m(B∪Y ) = 2/3 is entirely
transferred (pessimistically, or cautiously) to the least specific focal
element R ∪ Y included in B̄ = R ∪ Y .

VI. TOTAL BELIEF THEOREM (TBT)
In this section, we extend TPT theorem to BF and we establish the

Total Belief Theorem (TBT) based on a decomposition of FΘ(m).

A. Decomposition of FΘ(m)

Let us consider a FoD Θ = {θ1, . . . , θ|Θ|} with |Θ| > 1 elements,
and a BBA m(·) defined on 2Θ with a given set of focal elements
FΘ(m). Considering any partition {A1, A2, . . . , Ak} of the FoD Θ,
then FΘ(m) can be obtained by the union of following subsets

FΘ(m) = FA1(m) ∪ . . . ∪ FAk (m) ∪ FA∗(m) (34)

where FAi(m) (i = 1, . . . , k) is the set of focal elements of m(·)
included in Ai, and FA∗(m) is the set of focal elements of m(·)
which are not included in Ai, i = 1, . . . , k. We use the notation
A∗ for representing the entity characterized by the focal set FA∗(m)
mathematically defined by

FA∗(m) , FΘ(m)−FA1(m)− . . .−FAk (m) (35)

The entity A∗ has in general no explicit form and it is used only for
notation convenience and conciseness. Because Ai for i = 1, . . . , k
are mutually exclusive (disjoint), the sets FAi(m) are also mutually
exclusive and therefore ∩i=1,...,k(FΘ(m) − FAi(m)) = FΘ(m) −
FA1(m)− . . .−FAk (m) because all possible intersections of focal
sets including FAi(m) ∩ FAj (m) for j 6= i equal the empty set.
Hence FA∗(m) can also be expressed as

FA∗(m) = ∩i=1,...,kF̄Ai(m) (36)



where F̄Ai(m) , FΘ(m)−FAi(m) = FĀi
(m)+FA∗i

(m) because
when partitioning Θ as {Ai, Āi} one has FA∗i

(m) , FΘ(m) −
FAi(m)−FĀi

(m).

Example 2: Consider Θ = {θ1, θ2, θ3, θ4, θ5} and a BBA m(·) de-
fined on 2Θ, with set of focal elements FΘ(m) = {X1, X2, . . . , X8}
chosen as follows: X1 = θ1, X2 = θ1 ∪ θ2, X3 = θ2 ∪ θ3,
X4 = θ3 ∪ θ4, X5 = θ4, X6 = θ4 ∪ θ5, X7 = θ1 ∪ θ3 ∪ θ5,
and X8 = θ5. Consider also the partition {A1, A2, A3} of Θ with
A1 = {θ1, θ2}, A2 = {θ3, θ4} and A3 = {θ5}. Therefore,

FA1(m) = {X1, X2} = {θ1, θ1 ∪ θ2}
FA2(m) = {X4, X5} = {θ3 ∪ θ4, θ4}
FA3(m) = {X8} = {θ5}
FA∗(m) = {X1, . . . , X8} − {X1, X2} − {X4, X5} − {X8}

= {X3, X6, X7} = {θ2 ∪ θ3, θ4 ∪ θ5, θ1 ∪ θ3 ∪ θ5}
F̄A1(m) = FΘ(m)− {X1, X2} = {X3, X4, X5, X6, X7, X8}
F̄A2(m) = FΘ(m)− {X4, X5} = {X1, X2, X3, X6, X7, X8}
F̄A3(m) = FΘ(m)− {X8} = {X1, X2, X3, X4, X5, X6, X7}

Applying (36), one gets

F̄A1(m) ∩ F̄A2(m) ∩ F̄A3(m) = {X3, X6, X7} = FA∗(m)

B. Total Belief Theorem (TBT)
Based on the previous decomposition of FΘ(m) according to any

partition {A1, . . . , Ak} of the FoD Θ, the following TBT holds.

Total Belief Theorem (TBT): Let’s consider a FoD Θ with |Θ| ≥
2 elements and a BBA m(·) defined on 2Θ with the set of focal
elements FΘ(m). For any chosen partition {A1, . . . , Ak} of Θ and
for any B ⊆ Θ, one has

Bel(B) =
∑

i=1,...,k

Bel(Ai ∩B) + U(A∗ ∩B) (37)

where FA∗(m) , FΘ(m)−FA1(m)− . . .−FAk (m) and

U(A∗ ∩B) ,
∑

X∈FA∗ (m)|X∈FB(m)

m(X). (38)

Proof of TBT: See appendix.

A∗ is a shorthand notation for the entity associated to the set of
focal elements FA∗(m) of the BBA m(·) involved in the summation
(38) of U(A∗ ∩ B). From (38), one sees that U(A∗ ∩ B) ∈ [0, 1].
If one applies TBT with B = Θ, we get for any chosen partition
{A1, . . . , Ak} of Θ,

∑
i=1,...,k Bel(Ai) + U(A∗) = 1 where

U(A∗) ,
∑

X∈FA∗ (m) m(X). This equality corresponds to TPT if
U(A∗) = 0 (i.e. there is no uncertainty on the value of probabilities
of Ai, i = 1, . . . , k). Note that if B = Θ and if the FoD Θ is simply
partitioned as {A , A1, Ā , A2}, then U(A∗∩B) = U(A∗∩Θ) =
U(A∗) = Pl(A)−Bel(A) = Pl(Ā)−Bel(Ā).

Corollary 1 of TBT: If m(·) is Bayesian, then TBT is consistent
with the Total Probability Theorem (TPT) because U(A∗ ∩ B) = 0
and Bel(·) is homogeneous to a probability measure.

In expressing Bel(B̄) with TBT and noting that Pl(B) = 1 −
Bel(B̄), one can also easily establish the following (not so elegant)
Total Plausibility Theorem (TPlT).

Total Plausibility Theorem (TPlT): For any partition {A1, . . . , Ak}
of Θ and any B ⊆ Θ, one has

Pl(B) =
∑

i=1,...,k

Pl(Āi ∪B) + 1− k − U(A∗ ∩ B̄) (39)

C. Example for TBT
Consider the FoD Θ = {θi, i = 1, . . . , 7} and FΘ(m) =

{X1, X2, . . . , X9} of a BBA m(·) defined over 2Θ as in Table I.
Consider also the partition {A1, A2, A3} of Θ with A1 , θ1 ∪ θ3 ∪
θ4∪θ7, A2 , θ2∪θ5 and A3 , θ6 and the subset B = θ4∪θ5∪θ6∪θ7

of Θ. The Table II summarizes the belief values of different subsets
of Θ which are needed to apply TBT.

Focal element X BBA m(X)
X1 = θ2 ∪ θ3 ∪ θ4 ∪ θ5 ∪ θ7 m(X1) = 0.01
X2 = θ1 ∪ θ2 ∪ θ3 ∪ θ4 m(X2) = 0.02
X3 = θ3 ∪ θ5 ∪ θ6 m(X3) = 0.03
X4 = θ4 ∪ θ7 m(X4) = 0.04
X5 = θ2 m(X5) = 0.20
X6 = θ6 ∪ θ7 m(X6) = 0.30
X7 = θ2 ∪ θ3 ∪ θ7 m(X7) = 0.20
X8 = θ1 ∪ θ4 ∪ θ6 m(X8) = 0.15
X9 = θ6 m(X9) = 0.05

Table I
FOCAL ELEMENTS AND THEIR MASSES.

Subsets of Θ Bel(·)
B = θ4 ∪ θ5 ∪ θ6 ∪ θ7 Bel(B) = 0.39
A1 = θ1 ∪ θ3 ∪ θ4 ∪ θ7 Bel(A1) = 0.04
A2 = θ2 ∪ θ5 Bel(A2) = 0.20
A3 = θ6 Bel(A3) = 0.05
A1 ∩B = θ4 ∪ θ7 Bel(A1 ∩B) = 0.04
A2 ∩B = θ5 Bel(A2 ∩B) = 0
A3 ∩B = θ6 Bel(A3 ∩B) = 0.05

Table II
BELIEF VALUES USED FOR THE DERIVATIONS.

In this example, one has

FB(m) = {X4, X6, X9} and FB̄(m) = {X5}
FA1(m) = {X4} and FĀ1

(m) = {X5, X9}
FA2(m) = {X5} and FĀ2

(m) = {X4, X6, X8, X9}
FA3(m) = {X9} and FĀ3

(m) = {X1, X2, X4, X5, X7}
FA∗(m) = FΘ(m)−FA1(m)−FA2(m)−FA3(m)

= {X1, X2, X3, X6, X7, X8}

Therefore, one has

U(A∗ ∩B) =
∑

X∈FA∗ (m)|X∈FB(m)

m(X) = m(X6) = 0.30

In applying TBT formula (37), one can easily verify

Bel(B) =
∑

i=1,...,3

Bel(B ∩Ai) + U(A∗ ∩B)

= 0.04 + 0 + 0.05 + 0.30 = 0.39

D. Generalization of TBT
As explained in Section II-B, we have to work in Cartesian product

space Θ = Θ1 × Θ2 if the partition {A1, . . . , Ak} is related to a
given FoD Θ1 and B is a subset of an other FoD Θ2. Because
{A1, . . . , Ak} is a partition of Θ1, then {A1 × Θ2, . . . , Ak × Θ2}
defines a partition of Θ = Θ1 × Θ2 and because Θ1 × B =
∪i=1,...,k((Θ1×B)∩ (Ai×Θ2)), one can always apply TBT in the
Cartesian space Θ. More precisely, one has

Bel(Θ1 ×B) =
∑

i=1,...,k

Bel(Ai ×B) + U(A∗ ×B)) (40)

and where U(A∗ ×B) , U((A∗ ×Θ2) ∩ (Θ1 ×B)).
This formula can be used if and only if one knows the joint BBA

m(·) (or equivalently the joint belief) defined over the powerset of
the Cartesian space Θ = Θ1 ×Θ2.



VII. CONDITIONAL BELIEF FUNCTIONS AND GBT
Before justifying FH conditioning from TBT and presenting the

Generalized Bayes’ Theorem for BF, we establish a useful lemma.

Lemma 1: Consider a FoD Θ with a given BBA m(·) defined over
Θ, for partition {Ai, Āi} of Θ and any B ⊆ Θ, one always has

0 ≤ U((Āi ∩B)
∗
)− U(A∗ ∩B) ≤ 1 (41)

where U((Āi ∩B)
∗
) =

∑
X∈F(Āi∩B)∗ (m) m(X) and U(A∗∩B) ,∑

X∈FA∗ (m)|X∈FB(m) m(X).

Proof of Lemma 1: See appendix.

A. Conditional belief and plausibility
We consider a partition {Ai, Āi} of the FoD Θ and a subset B

of Θ. Using TBT, one has

Bel(B) = Bel(Ai ∩B) +Bel(Āi ∩B) + U(A∗ ∩B) (42)

Hence

Bel(B)− U(A∗ ∩B) = Bel(Ai ∩B) +Bel(Āi ∩B) (43)

Moreover, since one has (by definition)

U((Āi ∩B)
∗
) = Pl(Āi ∩B)−Bel(Āi ∩B) (44)

from the equality (44), one gets

Bel(Āi ∩B) = Pl(Āi ∩B)− U((Āi ∩B)
∗
) (45)

Putting the expression of Bel(Āi ∩ B) above into (43) and
rearranging terms, one gets

Bel(B) + ∆(U) = Bel(Ai ∩ B) + Pl(Āi ∩ B) (46)

where ∆(U) , U((Āi ∩B)
∗
) − U(A∗ ∩ B), and ∆(U) ∈ [0, 1]

because of Lemma 1.
Assuming Bel(B) > 0, and dividing left and right sides of the

equality (46) by Bel(B) + ∆(U), one gets

1 =
Bel(Ai ∩B)

Bel(B) + ∆(U)
+

Pl(Āi ∩B)

Bel(B) + ∆(U)
(47)

Hence, the equality (47) suggests to define the conditional belief
Bel(Ai|B) and Pl(Āi|B) as follows

Bel(Ai|B) , Bel(Ai ∩B)/(Bel(B) + ∆(U)) (48)

Pl(Āi|B) , Pl(Āi ∩B)/(Bel(B) + ∆(U)) (49)

Using equality (46), the previous conditioning formulas can be
rewritten more concisely as

Bel(Ai|B) = Bel(Ai ∩B)/(Bel(Ai ∩B) + Pl(Āi ∩B)) (50)
Pl(Āi|B) = Pl(Āi ∩B)/(Bel(Ai ∩B) + Pl(Āi ∩B)) (51)

Replacing Āi by Ai in notations of formulas (49)–(51) we get6

the following expressions for conditional plausibility Pl(Ai|B)

Pl(Ai|B) ,
Pl(Ai ∩B)

Bel(B) + U((Ai ∩B)∗)− U(A∗ ∩B)
(52)

Pl(Ai|B) =
Pl(Ai ∩B)

Bel(Āi ∩B) + Pl(Ai ∩B)
(53)

Formulas (50) and (53) coincide with FH formulas [4] originally
proposed from a very good intuition. In this work, we derive
them only from TBT by a direct constructive manner. Note that

6It is worth to note that one has always U(A∗ ∩ B) =∑
X∈FA∗ (m)|X∈FB(m)m(X) = U(Ā∗ ∩ B) because FA∗ (m) =

FΘ(m)−FAi
(m)−FĀi

(m) = FΘ(m)−FĀi
(m)−FAi

(m) = FĀ∗ (m).

Bel(Ai|B) given in (48) satisfies Bel(∅|B) = 0, Bel(Θ|B) = 1,
and Bel(Ai|B) ∈ [0, 1] conditions. To prove that Bel(Ai|B) defined
by (50) is a belief function one must also prove that it is an n-
monotone (n ≥ 2) Choquet’s capacity [24] on the finite set Θ, or
equivalently that the condition B3 of Theorem 1 holds for Bel(·|B).
The proof of B3 is difficult, but three different proofs have been
already given by Fagin and Halpern [3], Jaffray [6], and Sundberg
and Wagner [7], the latter one being the clearest of fashion.

B. Generalization of Bayes’ Theorem
Starting from (48) with ∆(U) , U((Āi ∩B)

∗
)−U(A∗∩B) and

replacing Bel(B) by the expression (37) of TBT, we get

Bel(Ai|B) =
Bel(Ai ∩B)∑

i=1,...,k Bel(Ai ∩B) + U((Āi ∩B)
∗
)

(54)

Similarly, in assuming Bel(Ai) > 0, Fagin-Halpern expression of
Bel(B|Ai) given by

Bel(B|Ai) =
Bel(B ∩Ai)

Bel(B ∩Ai) + Pl(B̄ ∩Ai)
(55)

is equivalent to the formula

Bel(B|Ai) =
Bel(B ∩Ai)

Bel(Ai) + U((B̄ ∩Ai)
∗
)− U(B∗ ∩Ai)

(56)

where

U((B̄ ∩Ai)
∗
) , Pl(B̄ ∩Ai)−Bel(B̄ ∩Ai) (57)

=
∑

X∈F(B̄∩Ai)∗ (m)

m(X) (58)

with F(B̄∩Ai)∗(m) = FΘ(m)−FB̄∩Ai
(m)−FB∪Āi

(m), and where

U(B∗ ∩Ai) ,
∑

X∈FB∗ (m)|X∈FAi
(m)

m(X) (59)

with FB∗(m) = FΘ(m)−FB(m)−FB̄(m).

From (56), one obtains

Bel(Ai∩B) = Bel(B|Ai)[Bel(Ai)+U((B̄ ∩Ai)
∗
)−U(B∗∩Ai)]

Replacing the above expression of Bel(Ai ∩B) into the formula
(54), we obtain the formula

Bel(Ai|B) =
Bel(B|Ai)q(Ai, B)∑k

i=1 Bel(B|Ai)q(Ai, B) + U((Āi ∩B)
∗
)

(60)

where the factor q(Ai, B) introduced here for notation conciseness
is defined by

q(Ai, B) , Bel(Ai) + U((B̄ ∩Ai)
∗
)− U(B∗ ∩Ai) (61)

This allows to establish the Generalized Bayes’ Theorem (GBT).

Generalized Bayes’ Theorem (GBT): For any partition
{A1, . . . , Ak} of a FoD Θ, any belief function Bel(·) : 2Θ 7→ [0, 1],
and any subset B of Θ with Bel(B) > 0, then one has for
i ∈ {1, . . . , k}

Bel(Ai|B) =
Bel(B|Ai)q(Ai, B)∑k

i=1 Bel(B|Ai)q(Ai, B) + U((Āi ∩B)
∗
)

(62)

U((Āi ∩B)
∗
) , Pl(Āi ∩B)−Bel(Āi ∩B)

where U((Āi ∩B)
∗
) ,

∑
X∈F(Āi∩B)∗ (m) m(X) =

Pl(Āi ∩ B) − Bel(Āi ∩ B), and where the factor q(Ai, B)
is defined by (61).

Lemma 2: GBT reduces to BT if Bel(·) is a Bayesian BF.

Proof: See appendix.



Remark: When Ai ⊆ Θ1 and B ⊆ Θ2 with Θ1 6= Θ2, we must
work in the Cartesian product space Θ = Θ1 × Θ2 and the GBT
formula is similar to (62) in replacing Ai by Ai × Θ2, and B by
Θ1 × B. The application of GBT formula is not easy in general
because it requires the knowledge of joint BBA m(·) defined over
2Θ1×Θ2 which is rarely known in practice. If the joint BBA m(·)
can be expressed (or approximated) as a function of two marginal
BBAs m1(·) and m2(·) (assumed to be known) defined respectively
over Θ1 and Θ2, then GBT formula should become tractable.

VIII. ILLUSTRATIVE EXAMPLE OF GBT
Consider Θ = {θi, i = 1, . . . , 7}, FΘ(m) = {X1, X2, . . . , X9}

and m(·) given in Table III.

Focal element X BBA m(X)
X1 = θ2 ∪ θ3 ∪ θ4 ∪ θ5 ∪ θ7 m(X1) = 0.01
X2 = θ1 ∪ θ2 ∪ θ3 ∪ θ4 m(X2) = 0.02
X3 = θ3 ∪ θ5 ∪ θ6 m(X3) = 0.03
X4 = θ4 ∪ θ7 m(X4) = 0.04
X5 = θ2 m(X5) = 0.20
X6 = θ6 ∪ θ7 m(X6) = 0.30
X7 = θ2 ∪ θ3 ∪ θ7 m(X7) = 0.20
X8 = θ1 ∪ θ4 ∪ θ6 m(X8) = 0.15
X9 = θ6 m(X9) = 0.05

Table III
FOCAL ELEMENTS AND THEIR MASSES.

Consider the partition {A1, A2, A3} of Θ with A1 = θ1∪θ3∪θ4∪θ7,
A2 = θ2∪θ5 and A3 = θ6, and the subset B = θ4∪θ5∪θ6∪θ7 of Θ
having belief Bel(B) = m(X4) +m(X6) +m(X9) = 0.39. Table
IV summarizes the BF values which are needed in the derivations.

Subsets X of Θ Bel(X) Pl(X)
X = B = θ4 ∪ θ5 ∪ θ6 ∪ θ7 Bel(B) = 0.39 Pl(B) = 0.80
X = A1 = θ1 ∪ θ3 ∪ θ4 ∪ θ7 Bel(A1) = 0.04 Pl(A1) = 0.75
X = A2 = θ2 ∪ θ5 Bel(A2) = 0.20 Pl(A2) = 0.46
X = A3 = θ6 Bel(A3) = 0.05 Pl(A3) = 0.53
X = A1 ∩B = θ4 ∪ θ7 Bel(X) = 0.04 Pl(X) = 0.72
X = A2 ∩B = θ5 Bel(X) = 0 Pl(X) = 0.04
X = A3 ∩B = θ6 Bel(X) = 0.05 Pl(X) = 0.53
X = Ā1 ∩B = θ5 ∪ θ6 Bel(X) = 0.05 Pl(X) = 0.54
X = Ā2 ∩B = θ4 ∪ θ6 ∪ θ7 Bel(X) = 0.39 Pl(X) = 0.80
X = Ā3 ∩B = θ4 ∪ θ5 ∪ θ7 Bel(X) = 0.04 Pl(X) = 0.75
X = A1 ∩ B̄ = θ1 ∪ θ3 Bel(X) = 0 Pl(X) = 0.41
X = A2 ∩ B̄ = θ2 Bel(X) = 0.20 Pl(X) = 0.43
X = A3 ∩ B̄ = ∅ Bel(X) = 0 Pl(X) = 0

Table IV
BELIEF AND PLAUSIBILITY VALUES USED FOR THE DERIVATIONS.

• Results with Fagin-Halpern conditioning formulas

Using (50) and (55) and the fact that Pl(Ai|B) = 1−Bel(Āi|B)
and Pl(B|Ai) = 1−Bel(B̄|Ai), we get the values of Tables V–VI.

Subsets of Θ Bel(Ai|B) Pl(Ai|B)
A1 Bel(A1|B) ≈ 0.0690 Pl(A1|B) ≈ 0.9351
A2 Bel(A2|B) = 0 Pl(A2|B) ≈ 0.0930
A3 Bel(A3|B) ≈ 0.0625 Pl(A3|B) ≈ 0.9298

Table V
Bel(Ai|B) AND Pl(Ai|B) WITH FAGIN-HALPERN CONDITIONING.

Subsets of Θ Bel(B|Ai) Pl(B|Ai)
A1 Bel(B|A1) ≈ 0.0889 Pl(B|A1) = 1
A2 Bel(B|A2) = 0 Pl(B|A2) ≈ 0.1667
A3 Bel(B|A3) = 1 Pl(B|A3) = 1

Table VI
Bel(B|Ai) AND Pl(B|Ai) WITH FAGIN-HALPERN CONDITIONING.

To verify GBT, one calculates Bel(Ai), U((B̄ ∩Ai)
∗
) and

U(B∗ ∩ Ai) for getting q(Ai, B), and U((Āi ∩B)
∗
). These val-

ues are given in Table VII. q(A1, B) = 0.45 is calculated by
q(A1, B) , Bel(A1)+U((B̄ ∩A1)

∗
)−U(B∗∩A1) = 0.45 because

Bel(A1) = 0.04, U((B̄ ∩A1)
∗
) = Pl(B̄ ∩A1)−Bel(B̄ ∩A1) =

0.41 and U(B∗ ∩ A1) =
∑

X∈FA1
(m)|X∈FB∗(m) m(X) = 0.

U((Ā1 ∩B)
∗
) = 0.49 is calculated by U((Ā1 ∩B)

∗
) = Pl(Ā1 ∩

B)−Be(Ā1 ∩B) = 0.54− 0.05 = 0.49, and other values of Table
VII are calculated similarly.

Subsets of Θ q(Ai, B) U((Āi ∩B)
∗
)

A1 0.45 0.49
A2 0.43 0.41
A3 0.05 0.71

Table VII
VALUES OF q(Ai, B) AND U((Āi ∩B)

∗
) FOR GBT FORMULA.

One verifies that GBT formula (62) works because we retrieve
correct values obtained with FH formula. Indeed, one has

Bel(A1|B) =
Bel(B|A1)q(A1, B)∑3

i=1 Bel(B|Ai)q(Ai, B) + U((Ā1 ∩B)
∗
)

≈ 0.0889 · 0.45

(0.0889 · 0.45) + (0 · 0.43) + (1 · 0.05) + 0.49

≈ 0.0690

Similarly, one can easily verify that one obtains Bel(A2|B) = 0 and
Bel(A3|B) ≈ 0.0625 with GBT.

• Results with Shafer’s conditioning formulas
With formulas (22)–(23), we get the values of Tables VIII–IX.

Subsets of Θ Bel(Ai|B) Pl(Ai|B)
A1 Bel(A1|B) = 0.3250 Pl(A1|B) = 0.9000
A2 Bel(A2|B) = 0 Pl(A2|B) = 0.0500
A3 Bel(A3|B) = 0.0625 Pl(A3|B) = 0.6625

Table VIII
Bel(Ai|B) AND Pl(Ai|B) WITH SHAFER’S CONDITIONING.

Subsets of Θ Bel(B|Ai) Pl(B|Ai)
A1 Bel(B|A1) ≈ 0.4533 Pl(B|A1) ≈ 0.9600
A2 Bel(B|A2) ≈ 0.0652 Pl(B|A2) ≈ 0.0870
A3 Bel(B|A3) = 1 Pl(B|A3) = 1

Table IX
Bel(B|Ai) AND Pl(B|Ai) WITH SHAFER’S CONDITIONING.

One sees that the conditional values are not coherent since they
do not verify GBT because we obtain in this example

Bel(A1|B) = 0.3250 (using (23))

6= Bel(B|A1)q(A1, B)∑3
i=1 Bel(B|Ai)q(Ai, B) + U((Ā1 ∩B)

∗
)

≈ 0.4533 · 0.45

(0.4533 · 0.45) + (0.0652 · 0.43) + (1 · 0.05) + 0.49

≈ 0.2642

Similarly, one can show that Bel(A2|B) = 0 (using (23)) 6=
0.0405 (using GBT) and Bel(A3|B) = 0.0625 (using (23)) 6=
0.0504 (using GBT). Hence, Ellsberg urn example and this example
show clearly that Dempster’s rule of combination used by Shafer to
establish his belief conditioning formulas does not provide coherent
and satisfactory results since they are inconsistent with lower and
upper bounds of imprecise conditional probabilities and they do not
satisfy GBT established directly by a constructive manner without
ad-hoc assumption.

IX. CONCLUSION

This paper has presented new important results: the Total Belief
Theorem (TBT), the justification of Fagin-Halpern conditioning from
TBT, and the Generalized Bayes’ Theorem (GBT). Our theoretical
results allowed us to establish rigorously the Generalized Bayes’
Theorem by a direct constructive manner from TBT. It does not
need extra assumptions nor some underlying ad-hoc construction
principles. Also, we prove that our TBT and GBT are fully consistent
with classical TPT and Bayes Theorem as soon as the belief functions
are Bayesian. That way this achievement could be an excellent



ground for working in belief function framework. From Ellsberg’s
urn example and an illustrative example we have shown that Shafer’s
conditioning based on Dempster’s rule provides results inconsistent
with lower and upper bounds of imprecise conditional probabilities,
and inconsistent with GBT. These new results should allow to
reconcile practitioners of Bayesian reasoning with those of evidential
reasoning.

APPENDIX

A. Proof of TBT

Bel(B) =
∑

X∈FΘ(m)|X⊆B

m(X)

=
∑

X∈FA1
(m)|X∈FB(m)

m(X) + . . .

+
∑

X∈FAk
(m)|X∈FB(m)

m(X)

+
∑

X∈FA∗ (m)|X∈FB(m)

m(X)

= Bel(A1 ∩B) + . . .+Bel(Ak ∩B)

+
∑

X∈FA∗ (m)|X∈FB(m)

m(X)

=
∑

i=1,...,k

Bel(Ai ∩B) + U(A∗ ∩B)

where U(A∗ ∩B) ,
∑

X∈FA∗ (m)|X∈FB(m) m(X).

B. Proof of Lemma 1
For notation convenience, we denote

∆(U) , U((Āi ∩B)
∗
)− U(A∗ ∩B)

= [Pl(Āi ∩B)−Bel(Āi ∩B)]

− [Bel(Ai ∩B) +Bel(Āi ∩B)−Bel(B)]

= Pl(Āi ∩B)−Bel(Āi ∩B) +Bel(B)

−Bel(Ai ∩B)−Bel(Āi ∩B)

To prove that ∆(U) ≥ 0, one needs to prove equivalently that
Pl(Āi∩B)−Bel(Āi∩B)+Bel(B) ≥ Bel(Ai∩B)+Bel(Āi∩B).
Using TBT, one has Bel(B) = Bel(Ai∩B)+Bel(Āi∩B)+U(A∗∩
B), and replacing expression of Bel(B) in the previous inequality,
one must verify if the following equality is satisfied

Pl(Āi∩B)−Bel(Āi∩B)+Bel(Ai∩B)+Bel(Āi∩B)+U(A∗∩B)

≥ Bel(Ai ∩B) +Bel(Āi ∩B)

After simplification, we have to check if inequality below holds

Pl(Āi ∩B) + U(A∗ ∩B) ≥ Bel(Āi ∩B).

Because Pl(Āi ∩ B) = Bel(Āi ∩ B) + U((Āi ∩B)
∗
), one has to

check if Bel(Āi∩B)+U((Āi ∩B)
∗
)+U(A∗∩B) ≥ Bel(Āi∩B).

After simplification (omitting both Bel(Āi ∩ B) in left and right
side of the previous inequality), one just has to prove the inequality
U((Āi ∩B)

∗
) + U(A∗ ∩B) ≥ 0 in order to prove that ∆(U) ≥ 0.

Because U((Āi ∩B)
∗
) ∈ [0, 1] and U(A∗∩B) ∈ [0, 1], the previous

inequality always holds which proves that U((Āi ∩B)
∗
)−U(A∗ ∩

B) ≥ 0. Moreover because U(A∗ ∩ B) ∈ [0, 1], then −U(A∗ ∩
B) ∈ [−1, 0], and because U((Āi ∩B)

∗
) ∈ [0, 1] one deduces that

∆(U) = U((Āi ∩B)
∗
)− U(A∗ ∩B) ≤ 1.

C. Proof of Lemma 2
If Bel(·) : 2Θ 7→ [0, 1] is a Bayesian belief function, then all

focal elements of its corresponding BBA m(·) are singletons of
2Θ. In this case Bel(·) and Pl(·) functions coincide and therefore
one has U((Āi ∩B)

∗
) = Pl(Āi ∩ B) − Bel(Āi ∩ B) = 0 and

U((B̄ ∩Ai)
∗
) = Pl(B̄∩Ai)−Bel(B̄∩Ai) = 0. Any focal element

(singleton) of m(·) is either a subset of B or a subset of B̄ of the
FoD Θ. Therefore, FB∗(m) = ∅, which implies U(B∗∩Ai) = 0, so
that q(Ai, B) = Bel(Ai). The GBT formula (62) with in this case
q(Ai, B) = Bel(Ai) and U((Āi ∩B)

∗
) = 0 reduces to the formula

Bel(Ai|B) = Bel(B|Ai)Bel(Ai)/
∑k

i=1 Bel(B|Ai)Bel(Ai).
This coincides with formula (10) since Bel(·) (being a Bayesian
belief function) is homogeneous to a probability measure P (·). This
completes the proof that GBT formula is consistent with Bayes’
Theorem formula when the Belief function is Bayesian.

REFERENCES

[1] G. Shafer, A Mathematical Theory of Evidence, Princeton Press, 1976.
[2] A. Dempster, Upper and lower probabilities induced by a multivalued

mapping, Ann. of Math. Stat., (38):325-339, 1967.
[3] R. Fagin, J.Y. Halpern, A new approach to updating beliefs, UAI Conf.

Proc., 317-325, 1991.
[4] J.Y. Halpern, R. Fagin, Two views of belief: belief as generalized

probability and belief as evidence, Art. Intel., (54): 275-317, 1992.
[5] J.Y. Halpern, Reasoning about uncertainty, MIT Press, 2003.
[6] J.-Y. Jaffray, Bayesian updating and belief functions, IEEE Trans. on

SMC, (22):1144-1152, 1992.
[7] C. Sunberg, C. Wagner, Generalized finite differences and Bayesian

conditioning of Choquet capacities, Adv. in Appl. Math. (13), 1992.
[8] P. Diaconis, S.L. Zabell, Updating subjective probability, J. of Amer.

Stat. Soc., (77):822-830, 1982.
[9] L. Zadeh, A Mathematical Theory of Evidence (book review), AI

Magazine, (5):81-83, 1984.
[10] J. Lemmer, Confidence factors, empiricism and the Dempster-Shafer

theory of evidence, Proc. of 1st UAI Conf., pp. 16–176, 1985.
[11] P.K. Black, Is Shafer general Bayes?, 3rd UAI Workshop, USA, 1987.
[12] P. Wang, A defect in Dempster-Shafer theory, UAI Conf. Proc., 1994.
[13] A. Gelman, The boxer, the wrestler, and the coin flip: a paradox of robust

Bayesian inference and belief functions, Amer. Stat. (60):146-150, 2006.
[14] J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan 1988.
[15] J. Dezert, P. Wang, A. Tchamova, On the validity of Dempster-Shafer

theory, Fusion 2012 Proc., Singapore, July 9–12, 2012.
[16] J. Dezert, A. Tchamova, On the validity of Dempster’s fusion rule and

its interpretation as a generalization of Bayesian fusion rule, Int. J. of
Intell. Syst., (29):223-252, 2014.

[17] P. Smets, Belief functions: the disjunctive rule of combination and the
generalized Bayesian theorem, IJAR, Vol. 9, No. 1, pp. 1–35, 1993.

[18] D. Dubois, T. Denoeux, Conditioning in Dempster-Shafer Theory:
Prediction vs. Revision, Belief 2012 Conf. Proc., Compiègne, May 2012.
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