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Abstract—This paper presents two new theoretical contri-
butions for reasoning under uncertainty: 1) the Total Belief
Theorem (TBT) which is a direct generalization of the Total
Probability Theorem, and 2) the Generalized Bayes’ Theorem
drawn from TBT. A constructive justification of Fagin-Halpern
belief conditioning formulas proposed in the nineties is also given.
We also show how our new approach and formulas work through
simple illustrative examples.
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I. INTRODUCTION

This paper presents new theoretical results for reasoning
under uncertainty with belief functions (BF) introduced by
Shafer in [1] in Dempster-Shafer Theory (DST). The first
important result is the Total Belief Theorem (TBT) which is
a generalization of the Total Probability Theorem (TPT) for
the belief functions framework. From TBT, one can provide
a solid justification of Fagin-Halpern (FH) belief conditioning
formulas [3]-[5] which are generalizations of the classical con-
ditional probability formulas. These theoretical results allow
us to establish rigorously the Generalized Bayes’ Theorem
(GBT). The belief conditioning problem is challenging, not
new, and one of the two main methods usually adopted by
users working with BF is : 1) Shafer’s belief conditioning
method based on Dempster’s rule of combination [1], or
2) the belief conditioning method consistent with imprecise
probability calculus bounds [2], [6], [7] based on the lower and
upper probability interpretation of belief functions popularized
by Fagin and Halpern [3]. In this paper we focus on the second
approach of belief conditioning because Dempster’s rule of
combination presents serious problems as reported in [8]-[16].
Smets did also attempt to generalize Bayes’ Theorem (BT) and
did propose his own GBT [17] on the basis of conditional
embedding, conjunctive merging and Shafer’s conditioning.
Unfortunately, Smets’ approach remains doubtful as reported
in [18]. Our new GBT establishment is obtained by a direct
constructive manner from TBT. It does not need extra as-
sumptions nor some underlying ad-hoc construction principles.
Also, we prove that our TBT and GBT presented in this work
are fully consistent with classical TPT and BT as soon as the
belief functions are Bayesian.

This paper starts with a brief review of very basics of
Probability Theory, including the Total Probability Theorem
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(TPT) and Bayes’ Theorem (BT) in Section II because this
helps to have a better understanding of the generalizations we
propose. A brief review of belief functions is given in Section
III, followed by classical Shafer’s and Fagin-Halpern’s belief
conditioning methods respectively in Sections IV and V. In
Section VI, we present the decomposition of the set of focal
elements of any basic belief assignment (BBA) that allows
us to establish formally the TBT and its generalization on
Cartesian product space. The Section VII presents and justifies
the new belief conditioning formulas drawn from TBT which
are fully consistent with Fagin-Halpern conditioning formulas.
This section also presents the generalization of Bayes’ theorem
in the framework of belief functions. We illustrate our new
theoretical results with a quite simple GBT example in Section
VIII to show how to make derivations of GBT and to prove
that Shafer’s conditioning results are inconsistent with GBT.
Section IX concludes this paper.

II. TOTAL PROBABILITY THEOREM & BAYES’ FORMULA
A. Total Probability Theorem

In probability theory, the elements 6; of the space O are
experimental outcomes. The subsets of © are called events
and the event {6;} consisting of the single element 6; is an
elementary event. The space O is called the sure event and
the empty set () is the impossible event. We assign to each
event A a number P(A) in [0, 1], called the probability of A,
which satisfies the three Kolmogorov’s conditions: 1) P(})) =
0;2) P(©) =1; and 3) if AN B = {0}, then P(AUB) =
P(A)+P(B). These conditions are the axioms of the theory of
probability [20]. The fundamental Theorem of the probability
theory is the Total Probability Theorem (TPT), also called a
the law of total probability, see [20] which can be stated as
follows.

Total Probability Theorem (TPT): Consider an event B and
any partition' {A;, Ag, ..., Az} of the space ©. Then

P(B)=P(BNA)+PBNA)+...+P(BNAx) (1)

B. Conditional probability and Bayes’ formula

Starting from TPT formula (1) and assuming P(B) > 0, we get
for any ¢ € {1,..., k} after dividing each side of (1) by P(B) and

A partition of © is a collection of exclusive subsets of © whose union
equals ©.



rearranging terms the equality

P(A;NB) _ P(A;NB) P(A; N B)
P(B) ! _j}: . P(B) 1= P(B) @
#i

which allows us to define the conditional probability P(A;|B) by?
P(A;|B) £ P(A; N B)/P(B) 3)

Similarly, by considering an event A; of © and the partition { B, B}
of ©, the TPT formula P(A;) = P(A; N B) + P(A; N B) applies,
and by dividing it by P(A;) (assuming P(A;) > 0), one gets

P(AiﬂB)ilip(AiﬂB) @
P(Ai) P(A:)
which allows to define the conditional probability P(B|A;) by
P(B|A;) £ P(Ai N B)/P(A;) ®)

From (3) and (5), one deduces the equality

P(A;NB) = P(A;|B)P(B) = P(B|A;)P(A;) (6)

From equality (6) and assuming P(B) > 0 and P(A4;) > 0, we get

P(Ai|B) = P(B|Ai)P(A:)/ P(B) @)

P(B|A;) = P(Ai|B)P(B)/P(Ai) ®

Using (1) and noting that P(A; N B) = P(B|A;)P(A;), we get

k

P(B) =Y P(B|Ai)P(4)) ©)
i=1

Substituting (9) in (7), we obtain Bayes’ Theorem (BT) formula stated
mathematically as the following equation

P(B|Ai) P(Ai)
Sioi P(BIA)P(A)

One can verify that the conditional probability defined by (3)
satisfies the three axioms of the Theory of Probability [20].

P(Ai|B) = (10)

Previously, A; and B were events (subsets) of the same space O.
If A; C ©; and B C O3 with ©; # ©2, which corresponds to a
so-called combined experiment [20], similar conditioning formulas
can also be established by working in the Cartesian product space
© £ ©; x O3 whose elementary elements are all the ordered pairs
(xp,yq) With z, € O and y, € Oz. The two experiments are viewed
as a single combined one whose outcomes are pairs (zp,yq). In this
space © = ©1 X O2, x, is not an elementary element but a subset
of n elements of ©, i.e. {zp} = {(p,¥1),- .., (Tp,Yn)}. Similarly,
Yq is not an elementary element but a subset of m elements of O,
ie. {yq} ={(z1,9q);- -, (Tm,yq) }. f A; C ©1 and B C O, then
Ai X B ={(zp,yq)|zp € A;y, € B} C ©. If one forms A; x O3
and ©1 X B one sees that A; x B = (4; x ©2)N (01 x B) = (01 X
B)N (A; x ©3). Because the event A; X ©2 occurs in the combined
experiment if the event A; of the experiment 1 occurs no matter what
the outcome of experiment 2 is, one has P(A4; x©2) = P;(A;) where
Py (A;) is the probability of event A; in the experiment 1. Similarly,
the event ©1 x B occurs if B occurs in experiment 2 no matter what
the outcome of experiment 1 is, so that P(©; X B) = P»(B) where
P»(B) is the probability of event B in the experiment 2. Considering
a partition {A1, Az, ..., Ax} of ©1 and a subset (event) B C O,
and based on set theory and property of Cartesian product, one can
establish also TPT formula

P(©1xB)= >

i=1,...,k

P((@l X B) n (A»L X 92))

2the notation £ means equal by definition

and Bayes’ formula
P(®1 X BlAz X @z)P(A»L X @2)
SF L P(©1 x B|A; x ©2)P(A; x O2)

P(AZ X ®2|@1 X B) =

That is why, for notation convenience (and notation abuse), we can
just use classical formulas even when working with different sets of
experimental outcomes ©; and ©2. One just has to keep in mind that
in this case A; must be understood as A; x ©2 and B as ©1 x B.

III. BASICS OF BELIEF FUNCTIONS

Based on Dempster’s works [2], [19], Shafer did introduce Belief
Functions (BF) to model the epistemic uncertainty’® and to reason
under uncertainty [1]. We consider a finite discrete frame of dis-
cernement (FoD) © = {61,0s,...,0,}, with n > 1, and where
all exhaustive and exclusive elements of © represent the set of the
potential solutions of the problem under concern. The set of all
subsets of © is the power-set of © denoted by 2°. The number of
elements (i.e. the cardinality) of 2° is 2!®!. A basic belief assignment
(BBA) associated with a given source of evidence is defined as the
mapping m(-) : 2° — [0,1] satisfying the conditions m () = 0
and > , ,e m(A) = 1. The quantity m(A) is the mass of belief of
subset A committed by the source of evidence (SoE). A focal element
X of a BBA my(-) is an element of 2° such that m(X) > 0. Note that
the empty set @) is not a focal element of a BBA because m(()) = 0
(closed-world assumption of Shafer’s model for the FoD). The set of
all focal elements of m(-) is denoted

Fo(m) 2 {X COm(X) >0} ={X €2°m(X) >0} (11)
The set of focal elements of m(-) included in A C © is denoted
Fa(m) 2 {X € Fo(m)| X NA= X} 12)

Note that if A C B C O, then Fa(m) C Fp(m). Also,

VA,B C © one has Fanp(m) = Fa(m) N Fg(m), but
Faur(m) # Fa(m) U Fg(m) in general. The set }'@( ) can
always be partitioned as {Fa(m), Fa(m), Fa«(m)} where*
Fa+(m) £ Fo(m) — Fa(m) — Fa(m) (13)
={XeFo(m)|XNA£0and XNA£0} (14)

represents the set of focal elements of m(-) which are not subsets of
A and not subsets of A £ © — {A} = {X|X € © and X ¢ A},
where A is the complement of A in © and the minus symbol denotes
the set difference operator.

Belief and plausibility functions are defined by’

Bel(A)= > m(X)= > mX)= >  mX)
Xe2© XeFo(m) XeFA(m)
XCA XCA
(15)
Pl(A)= > m(X)= >  m(X)=1-Bel(4). (16)
Xe2© XEFg(m)
XNA#D XNA#D

The width U(A*) = PI(A) — Bel(A) of the belief interval
[Bel(A), Pl(A)] is called the uncertainty on A committed by the
SoE. It represents the imprecision on the (subjective) probability of
A granted by the SoE which provides the BBA m(-). The uncertainty
U(A*) can also be expressed directly as

UA)= >

XeF px(m)

m(X) amn

3 Also called sometimes the cognitive uncertainty by some authors.
“#For notation convenience, we use A* to denote focal elements of m(-)
which are not in A, nor in A.

SBy convention, a sum of non existing terms (if it occurs in formulas
depending on the given BBA) is always set to zero.



It is worth noting that U (A*) = PI(A) — Bel( 1) = (1— Bel(A))—
(1= PI(A)) = PI(A) — Bel(A) = U(A"), or equivalently
U= > m(X) (18)
XEF 5% (m)
where F 4« (m) £ Fo(m) — Fz(m) — Fa(m) = Fax(m).

When all elements of Fg(m) are only singletons, m(-) is called a
Bayesian BBA [1] and its corresponding Bel(-) and PI(-) functions
are homogeneous to a same (subjective) probability measure P(-). In
this case Fa+(m) = F i+ (m) = (. According to Shafer’s Theorem 1
below, see [1] page 39 with its proof on page 51, the belief functions
can be characterized without referencing to a BBA.

Theorem 1: If © is a FoD, then a function Bel : 2° +— [0,1] is a
belief function if and only if it satisfies the following conditions:
e BI1) Belief in impossible event is zero, that is Bel((})) = 0.
e B2) Belief in the certain event is one, that is Bel(©) = 1.
e B3) For every positive integer n and every collection Aj,...,
A, of subsets of ©
> (1

Bel(A1U...UA,) >
Ic{1,...,n}

10

T14+1 _
)T Bel(A) - (19)

Quantities m(-) and Bel(-) are one-to-one, and for any A C © the
BBA m(+) is obtained from Bel(-) by Mdbius inverse formula (see

(11, p-39)
> (-1 PIBel(B)

BCACO

m(A) = (20)

Shafer [1] did propose to combine s > 2 distinct sources of
evidence represented by BBAs m1(.), ..., ms(.) over the same FoD
with Dempster’s rule (i.e. the normalized conjunctive rule). However
Dempster’s rule has been strongly disputed from both theoretical and
practical standpoints as reported in [16], [21], [22]. In particular,
the high (or even very low) conflict level between the sources
can be totally ignored by Dempster’s rule which is a very serious
problem [15]. Also, Shafer’s conditioning (based on Dempster’s rule)
is inconsistent with the probabilistic conditioning (see next section).

IV. SHAFER’S CONDITIONING

A. Shafer’s conditioning formulas

Shafer’s conditioning formulas are established in Theorem 3.6 p.
66 of [1] from Dempster’s rule of combination of the original BBA
m(-) with the BBA mp(B) = 1 focused on B. We review them
for convenience. For A, B C © with PI(B) > 0, Bel(A|B) and
PI(A|B) are given by

Bel(A|B) = (Bel(AU B) — Bel(B))/(1 — Bel(B)) (21)
PI(A|B) = PI(AN B)/PI(B) (22)

The expression (21) of Bel(A|B) is equivalent to
Bel(A|B) = (PI(B) — PI(Bn A))/Pl(B) (23)

because one has always (from definition of belief functions) Pi(B) =
1 — Bel(B) and the numerator of (21) can be written as

Bel(AU B) — Bel(B) = PI(B) — PI(B N A)
If A = 0, Bel(0|B) = PI(0]|B) = 0, and if A = O,
Bel(©|B) = PI(O|B) = 1. Also, if B = O, Bel(A|©) = Bel(A)

and PI(A|©) = PI(A). Note that if B = A in (22)-(23), we get
Bel(A|A) = PI(A|]A) = 1 which fits with the common sense.

In reversing the roles played by A and B and switching the
notations in previous expressions, the following formulas also hold
(assuming PI(A) > 0)

Bel(BJ|A) = (PI(A) —

PI(AN B))/PI(A) (24)

PI(B|A) = PI(BN A)/Pl(A) (25)

From (22) and (25), one deduces that

PI(AN B) = PI(A|B)PI(B) = PI(B|A)PI(A)
Hence, the following formula applies for conditional plausibilities
when Pl(B) > 0
PI(A|B) = PI(B|A)PI(A)/PI(B) (26)
Shafer’s formula (25) is similar to conditional probabilities (3)
when replacing plausibility by probability. So, at first glance it seems
appealing. In the sequel we show why this is not the case.

B. Drawback of Shafer’s conditioning

The main drawback of Shafer’s conditioning is that the bounds
of belief interval [Bel(A|B), PI(A|B)] obtained by (21)-(22) are in
general incompatible with lower and upper bounds of the conditional
probability P(A|B). This problem makes Shafer’s conditioning based
on Dempster’s rule very disputable and cast doubts on pertinence
(validity) of Shafer’s conditioning results when used in applications.
This serious problem has already been reported and addressed by
several authors [3], [6], [7], [11] with some examples. To easily show
this incompatibility of Shafer’s conditioning with probability calculus
we present briefly the famous Ellsberg urn example [23].

Example 1 (Ellsberg urn): We consider an urn with red (R) balls,
black (B) and yellow (Y) balls. One knows that 1/3 of balls are
red balls and 2/3 or balls are black and yellow balls. So the a
priori information about the chance to pick a ball in the urn can
be represented by a (parametric) probability mass function P(-)
P(R)=1/3 P(B)=2/3—=xz PY)==z

where z is an unknown number/parameter in [0, 2/3]. Therefore,
P(B) and P(Y') are unknown but their bounds are known. In fact,
this problem can be seen as a problem of imprecise probabilities
where P(R) + P(B) + P(Y) =1 with

P(R)€[1/3,1/3]  P(B) < [0,2/3]

Now let’s suppose that someone picks a ball at random in the
urn and tell us that the color of the ball is not black, i.e. the event
B = RUY has occurred. How do we must revise (update) our
prior probabilities with this new information? The correct answer to
this question is obtained by computing the conditional probabilities
P(R|B), P(B|B) and P(Y|B) and by analyzing their bounds. This
is done using the fact that P(B) = P(RUY) = P(R) + P(Y) —

P(Y) €[0,2/3]

) et KR )=
Pirip) = DGO PO S
ra) - PECIOO) PO
PIB) = RO = (i 4e = W T

If z = 0, then P(R|B) = 1 and P(Y|B) = 0. If x = 2/3, then
P(R|B) = 1/3 and P(Y|B) = 2/3. Therefore after conditioning
we get

P(R|B) € [1/3,1] P(B|B) €10,0] [0,2/3]

Let’s examine what we get with Shafer’s conditioning. The problem
is modeled using the a priori BBA m(-) defined on the FoD © =
{R,B,Y} with m(R) = 1/3 and m(BUY') = 2/3 which glves the
belief intervals [Bel(R), PI(R)] = [1/3,1/3], [Bel(B), Pl(B)] =
[0,2/3] and [Bel(Y), PI(Y)] = [0,2/3]. With Shafer’s conditioning

P(Y|B) €



formulas and noting that PI{(R) =

1/3, PI(B) = 2/3, Pl(Y) =
2/3,and PI(RUY) =1, we get

Bel(r|B) = TUEYY) —;l((éiuyﬂ;) NBUY) _1- I:Z(y) s
Bel(B|B) = LUEYY) —;l((éiuyl)“) NRUY)) _1- Pl(lRUY) .
Bei(v|B) = PLEYY) *;l(g;iuy? N(EUBY 1P,
- PURN(RUY))  PUR) .
PI(R|B) = PIRUY) ~ PIRUY) =1/3
puBlE) ~ PUBORUY))  PIO) _
(BIB) = PI(RUY) 1
= P(YN(RUY))  PUY)
PI(Y|B) = PIRUY) = PIRUY) —2/3

Hence with Shafer’s conditioning we get results incompatible with
the real bounds of conditional probabilities because

[Bel(RIB), PURIB) = [1/3,1/3] # [1/3,1
[Bel(BIB), PI(BIB)] = [0,0]
[Bel(Y'|B), PI(Y|B)] = [2/3,2/3] #[0,2/3]

V. FAGIN-HALPERN CONDITIONING

Fagin and Halpern (FH) proposed in [3], [4] to define the condi-
tional belief as the lower envelope (i.e. the infimum) of a family
of conditional probability functions to make belief conditioning
consistent with imprecise conditional probability calculus.

A. Fagin-Halpern conditioning formulas

Assuming Bel(B) > 0, Fagin and Halpern proposed the following
conditional formulas (FH formulas for short)
Bel(A|B) =

Bel(AN B)/(Bel(AN B) + PI(ANB))  (27)

PI(A|B) = PI(AN B)/(PI(AN B) + Bel(AN B)) (28)

They prove in [3] that Bel(A|B) given by (27) satisfies the
three conditions of Theorem 1 and so FH belief conditioning is
an appealing solution for BF conditioning. However, it is quite
obscure how Fagin and Halpern did obtain (construct) FH formulas.
A justification has been given by Sundberg and Wagner in [7] (p.
268) but it is not very easy to follow. In this paper, we justify clearly
and directly the establishment of FH formulas from the simple and
direct consequence of the Total Belief Theorem (TBT).

Similarly, by switching notations and assuming Bel(A) > 0, the
previous FH formulas can be rewritten as

Bel(B|A) = Bel(AN B)/(Bel(AN B) + PI(BN A))  (29)

PI(B|A) = PI(AN B)/(PI(AN B) + Bel(BN A)) (30)
As we see, FH formulas are also consistent with Bayes’ formula
when the underlying BBA m(-) is Bayesian. Indeed if m(-) is
Bayesian, then PI(ANB) = Bel(ANB) = P(ANB), PI(ANB) =
Bel(ANB) = P(ANB) and PI(BNA) = Bel(BNA) = P(BNA)
and FH formulas become equivalent to
Bel(A|B) = PI(A|B) = P(ANB)/(P(ANB)+P(ANB)) (31)
Thanks to TPT formula (1), the denominator involved in these
formula is P(AN B) + P(AN B) = P(B), therefore

Bel(A|B) = PI(A|B) = P(ANB)/P(B) = P(A|B) (32
Similarly, one can also easily verify that
Bel(B|A) = PI(B|A) = P(AnB)/P(A) = P(B|A) (33)

B. Advantage of Fagin-Halpern conditioning

The advantage of FH conditioning is its complete compatibility
with the conditional probability calculus [7], [25]. We show what
provides FH conditioning in the previous Ellsberg urn example.

Ellsberg urn example revisited: Applying FH conditioning formulas
with the conditioning event B = RUY we obtain

Bel(RN (RUY))

Bel(R|B) = Bel(RN(RUY)) + PI((BUY)N(RUY))
_ Bel(R) _ 1/3 =1/3
Bel(R)+ PI(Y)  (1/3)+(2/3)
PI(RIB) PI(RN(RUY))

Bel(BUY)N(RUY))+ PI(RN(RUY))
PI(R) 13

~ Bel(Y)+ PI(R) 0+ (1/3)
Similarly, we can verify that Bel(B|B) = 0, PI(B|B) = 0,
Bel(Y|B) = 0 and PI(Y|B) = 2/3. Therefore with these condition-

ing formulas, we get the correct bounds of the imprecise conditional
probabilities

[Bel(R|B), PI(R|B)] = [1/3,1]
[Bel(B|B), l(BIJ?)] = [0,0]
[Bel(Y|B), PL(Y|B)] = [0,2/3]

One can also verify that Bel()|B) = 0, Bel(RU B|B) = 1/3,
Bel(RUY|B) = 1, Bel(BUY |B) = 0 and Bel(RUBUY|B) = 1.
Applying Mdbius inverse formula (20) with Bel(:|B), one gets the
conditional BBA m(R|B) = 1/3 and m(RUY|B) = 2/3, whereas
with Shafer’s conditioning one gets m(R|B) = 1/3 and m(Y|B) =
2/3. One sees that with Shafer’s conditioning, because (B UY') N
(RUY) # 0 the mass m(B UY) = 2/3 is entirely transferred
(optimistically) to the most specific focal element Y included in B =
RUY . With FH conditioning, the mass m(BUY") = 2/3 is entirely
transferred (pessimistically, or cautiously) to the least specific focal

element RUY included in B=RUY.

VI. TOTAL BELIEF THEOREM (TBT)

In this section, we extend TPT theorem to BF and we establish the
Total Belief Theorem (TBT) based on a decomposition of Fe(m).

A. Decomposition of Fo(m)

Let us consider a FoD © = {6,,...,0,¢,} with |©| > 1 elements,
and a BBA m(-) defined on 2° with a given set of focal elements
Fo(m). Considering any partition {A1, As, ..., Ax} of the FoD ©,
then Fo(m) can be obtained by the union of following subsets

Fo(m) = Fa,(m)U...UFa,(m)U Fa(m)

where Fa,(m) (i = 1,...,k) is the set of focal elements of m(-)
included in A;, and Fa=(m) is the set of focal elements of m(-)
which are not included in A;, ¢ = 1,...,k. We use the notation
A* for representing the entity characterized by the focal set Fa«(m)
mathematically defined by

Fas(m) & Fo(m) — Fa,(m) — ... — Fa,(m)

The entity A* has in general no explicit form and it is used only for
notation convenience and conciseness. Because A; fori =1,...,k
are mutually exclusive (disjoint), the sets F4,(m) are also mutually
exclusive and therefore N;—1,... x(Fo(m) — Fa,(m)) = Fo(m) —
Fa,(m)—...—Fa,(m) because all possible intersections of focal
sets including Fa, (m) N Fa,;(m) for j # i equal the empty set.
Hence Fa+(m) can also be expressed as

Fax(m) = mi:l,.“,k]:-Ai (m)

(34)

(35)

(36)



where Fa, (m) £ Fo(m)—Fa,(m) = Fz,(m
when partitioning © as {A4;, A;} one has Faz (m
Fa,(m) = Fz,(m).

Example 2: Consider © = {61, 02, 03,064,605} and a BBA m(-) de-
fined on 2°, with set of focal elements Fo (m) = { X1, X2, ..., Xs}
chosen as follows: X1 = 61, Xo = 01 U2, X3 = 605 U 03,
X4 = 03U04, X5 = 04, X = 04, U055, X7 = 01 U603 U 05,
and Xg = 05. Consider also the partition {A1, A2, A3} of © with
A1 = {91,92}, A2 = {93,94} and A3 = {05} Therefore,

)+]:A7f (m
) £ Fe(m

) because

)_

]:Al( ) = {leXQ} = {‘91,01 U02}

Fay(m) = {X4, X5} = {03 U 04,04}

Fag(m) ={Xs} = {05}

Fax (m) = {X17 s 7X8} - {X1,X2} — {X4,X5} — {Xg}
= {X3, X6, X7} = {02U03,04Ub5,6, Ubs Ubs}

Fa,(m) = Fo(m) — {X1, X2} = {X3, X4, X5, X6, X7, X5}

Fa,(m) = Fe(m) — {X4, X5} = {X1, Xa, X3, X6, X7, X5}

Fag(m) = Fo(m) — {Xs} = {X1, Xa, X3, X4, X5, X6, X7}

Applying (36), one gets

Fay(m) N Fay(m) N Fag(m) ={X3, Xe, X7} = Fax(m)

B. Total Belief Theorem (TBT)

Based on the previous decomposition of Fe (m) according to any
partition {A1,..., Ay} of the FoD O, the following TBT holds.

Total Belief Theorem (TBT): Let’s cons1der a FoD © with |©| >

2 elements and a BBA m(-) defined on 2 with the set of focal
elernents Fo(m). For any chosen partition {A;,..., A} of © and
for any B C O, one has

Bel(B)= Y Bel(A;nB)+U(A"NB) (37)
i=1,...,k
where Fax(m) & Fo(m) — Fa,(m) — ... — Fa, (m) and
U(A"NB) 4 > m(X). (38)

XEF 4% (m)| XEFp(m)

Proof of TBT: See appendix.

A* is a shorthand notation for the entity associated to the set of
focal elements Fa+(m) of the BBA m(-) involved in the summation
(38) of U(A* N B). From (38), one sees that U(A* N B) € [0, 1].
If one applies TBT with B = O, we get for any chosen partition
{A1, . A} of ©, 30, Bel(A;) + U(A") = 1 where
U+ 2 > xeF u (my M(X). This equality corresponds to TPT if
U(A*) = 0 (i.e. there is no uncertainty on the value of probabilities

of A;,i=1,...,k). Note that if B = © and if the FoD © is simply
partitioned as {A £ A1, A £ Ao}, then U(A*NB) = U(A*NO) =
U(A*) = PI(A) — Bel(A) = PI(A) — Bel(A).

Corollary 1 of TBT: If m(-) is Bayesian, then TBT is consistent
with the Total Probability Theorem (TPT) because U(A* N B) =0
and Bel(-) is homogeneous to a probability measure.

In expressing Bel(B) with TBT and noting that P{(B) = 1 —
Bel(B), one can also easily establish the following (not so elegant)
Total Plausibility Theorem (TPIT).

Total Plausibility Theorem (TPIT): For any partition {A1, ..., Ax}
of © and any B C O, one has
PI(B)= > PIAUB)+1-k-UA"NB) (39

C. Example for TBT

Consider the FoD © = {6;,i = 1,...,7} and J-'@( ) =
{X1,X2,...,Xo} of a BBA m() defined over 2° as m Table 1.
Consider also the partition {A1, As, A3} of © with A; £ 0; Uf3 U
04U607, Ao £ 02U05 and Az £ 06 and the subset B = 64U05U0s U6~
of ©. The Table II summarizes the belief values of different subsets
of ©® which are needed to apply TBT.

Focal element X BBA m(X)
X1 =602U603U604U805U07 m(X1)=0.01
Xo =601 Ub2Ub3 U0y m(Xs2) = 0.02
X3 =03U65 U0 m(Xg)—003
X4 =04U67 m(X4) = 0.04
X5 =02 m(Xs) =0.20
X6 =06 U7 m(Xg) =0.30
X7 =602U03U607 m(X7) =0.20
=01 U604 U6bg m(Xg) =0.15
Xog = 0g m(Xo) = 0.05
Table I
FOCAL ELEMENTS AND THEIR MASSES.
Subsets of © Bel(-)
B=04U605U6bgU 67 Bel(B):
AL =601 U03U04U 07 Bel(Al)*004
Ao =02 U05 BEZ(AQ) =0.20
Az = 0g Bel(As) = 0.05
Ai1NB=064U67 Bel(AlmB)_OOzl
AsNB =05 Bel(AgﬂB)fo
A3N B =0g Bel(AgmB)—OOE)

Table IT
BELIEF VALUES USED FOR THE DERIVATIONS.

In this example, one has

]:B( ) = {X4,X6,X9} and .7:3( ) = {X5}
Fa,(m) ={Xa} and F5,(m) = {X5, Xo}
}_AZ(m) {Xr} and ]:A (m) = {X4,X6,X8,X9}
]‘-Ag(m) {Xg} and FA3( ) = {X17X27X4,X5,X7}
Fax(m) = Fo(m) — Fa,(m) — Fay(m) — Faz(m)
= {X1, X2, X3, X6, X7, Xs}
Therefore, one has
U(A*NB) = > m(X) = m(Xs) = 0.30

XeFpx(m)|XeFp(m)

In applying TBT formula (37), one can easily verify
Bel(B)= Y Bel(BNA;)+U(A"NB)

i=1,...,3

=0.04 +0+0.05+0.30 = 0.39

D. Generalization of TBT

As explained in Section II-B, we have to work in Cartesian product
space © = ©1 X O if the partition {A1,..., Ax} is related to a
given FoD ©; and B is a subset of an other FoD ©,. Because
{A1,..., Ai} is a partition of ©1, then {A; X O2,..., A x Oz}
defines a partition of ©® = ©; X O2 and because ©; x B =
Ui=1,...x((©1 x B)N(A; x ©2)), one can always apply TBT in the
Cartesian space ©. More precisely, one has

Z Bel(A; x B) + U(A* x B))

i=1,...,k

and where U(A* x B) 2 U((A* x ©2) N (61 x B)).

This formula can be used if and only if one knows the joint BBA
m(-) (or equivalently the joint belief) defined over the powerset of
the Cartesian space © = ©1 X Oa.

Bel(©: x B) (40)



VII. CONDITIONAL BELIEF FUNCTIONS AND GBT
Before justifying FH conditioning from TBT and presenting the
Generalized Bayes’ Theorem for BF, we establish a useful lemma.

Lemma 1: Consider a FoD © with a given BBA m(-) defined over
O, for partition {A;, A;} of © and any B C ©, one always has

0<U({(4;NB)")-UA*NB)<1 41)
where U((4; N B)") = ZXGF(AimB)*(m) m(X) and U(A*NB) £
ZXG]—'A* (m)|XeFg(m) m(X).

Proof of Lemma 1: See appendix.

A. Conditional belief and plausibility

We consider a partition {A4;, /L} of the FoD © and a subset B
of ©. Using TBT, one has

Bel(B) = Bel(A; N B) + Bel(A; N B) +U(A*NB) (42)
Hence
Bel(B) —U(A* N B) = Bel(A; N B) + Bel(A; N B)  (43)
Moreover, since one has (by definition)
U((A; N B)") = PI(A; N B) — Bel(4; N B) (44)
from the equality (44), one gets
Bel(A;NB) = PI(A;NB) —U((4; N B)") (45)

Putting the expression of Bel(A; N B) above into (43) and
rearranging terms, one gets

Bel(B) + A(U) = Bel(Ai N B) + PI(A;, N B) (46)

where A(U) £ U((A;NB)*) — U(A* N B), and A(U) € [0,1]
because of Lemma 1.
Assuming Bel(B) > 0, and dividing left and right sides of the
equality (46) by Bel(B) + A(U), one gets
_ Bel(Ain B) PI(A; N B)
" Bel(B)+ A(U) = Bel(B)+ A(U)
Hence, the equality (47) suggests to define the conditional belief
Bel(A;|B) and PI(A;|B) as follows
Bel(A;|B) 2 Bel(A; N B)/(Bel(B) + A(U))
PI(A;|B) £ PI(A; N B)/(Bel(B) + A(U))

(47)

(48)
(49)

Using equality (46), the previous conditioning formulas can be
rewritten more concisely as

Bel(A;|B) = Bel(A; N B)/(Bel(A; N B) + PI(A; N B)) (50)
PI(A;|B) = PI(A; N B)/(Bel(A; N B) + PI(A; N B)) (51)

Replacing A; by A; in notations of formulas (49)—(51) we get®
the following expressions for conditional plausibility PI(A;|B)

. Pi(A; N B)
PUAIB) = gam v oianB) —o@ang O
PI(A|B) = Pi(A:n B) (53)

" Bel(A; N B) + PI(A; N B)

Formulas (50) and (53) coincide with FH formulas [4] originally
proposed from a very good intuition. In this work, we derive
them only from TBT by a direct constructive manner. Note that

It is worth to note that one has always U(A* N B)
ZXG]—'A*(m)\XGFB(m) m(X) = U(A* N B) because Fu=(m)
Fo(m)=Fa,(m)=Fz,(m) = Fo(m)=F3,(m)=Fa;(m) = Fz-(m).

Bel(A;|B) given in (48) satisfies Bel(#|B) = 0, Bel(6©|B) = 1,
and Bel(A;|B) € [0, 1] conditions. To prove that Bel(A;|B) defined
by (50) is a belief function one must also prove that it is an n-
monotone (n > 2) Choquet’s capacity [24] on the finite set O, or
equivalently that the condition B3 of Theorem 1 holds for Bel(:|B).
The proof of B3 is difficult, but three different proofs have been
already given by Fagin and Halpern [3], Jaffray [6], and Sundberg
and Wagner [7], the latter one being the clearest of fashion.

B. Generalization of Bayes’ Theorem
Starting from (48) with A(U) £ U((4; N B)*) —U(A*N B) and
replacing Bel(B) by the expression (37) of TBT, we get
B@l(Az n B)
D i1, Bel(AiN B) + U((A;nB)")

Similarly, in assuming Bel(A;) > 0, Fagin-Halpern expression of
Bel(B|A;) given by

Bel(A;|B) = (54)

Bel(BlA) = 55 fifiﬁ;&? A A (53)
is equivalent to the formula
Bel(BN A;
Bel(BIA) = 5o Ay v (B r(w A0 )— U na) 9
where
U((BNA)") 2 PI(BNA;) — Bel(BN A;) (57)
= > m(X) (58)

XEF(gra,)+(m)
with Fgra, )= (m) = Fo(m)—Fpna, (m)—Fpua, (m), and where
UB*NA;) = Z m(X)
X€Fp«(m)|XEFa,(m)
with Fg=(m) = Fe(m) — Fe(m) — Fz(m).
From (56), one obtains
Bel(A;NB) = Bel(B|A;)[Bel(A)+U((BN A;)")—U(B*NA;)]

Replacing the above expression of Bel(A; N B) into the formula
(54), we obtain the formula

(59)

Bel(B|Al)q(A1, B)
SF | Bel(B|A;)q(Ai, B) + U((A4; N B)")

where the factor q(A;, B) introduced here for notation conciseness
is defined by

q(A;, B) £ Bel(A)) +U((BNA)") —U(B*NA;)  (61)
This allows to establish the Generalized Bayes’ Theorem (GBT).

Generalized Bayes’ Theorem (GBT): For any partition
{A1,..., Ay} of a FoD ©, any belief function Bel(-) : 2° + [0, 1],
and any subset B of © with Bel(B) > 0, then one has for
1e{l,...,k}

Bel(A;|B) = (60)

Bel(B|A;)q(Ai, B)
Si_y Bel(B|Ai)q(As, B) + U((A:n B)")

Bel(A;|B) = (62)

U((A; N B)*) 2 PI(A; N B) — Bel(A; N B)

U(ANB)) 2 Exer peem™X) =
PI(A; N B) — Bel(A; N B), and where the factor q(A;, B)
is defined by (61).

where

Lemma 2: GBT reduces to BT if Bel(-) is a Bayesian BF.

Proof: See appendix.



Remark: When A; C ©; and B C O3 with ©; # O3, we must
work in the Cartesian product space © = ©; x Oz and the GBT
formula is similar to (62) in replacing A; by A; x Oz, and B by
©; x B. The application of GBT formula is not easy in general
because it requires the knowledge of joint BBA m(-) defined over
291%92 which is rarely known in practice. If the joint BBA m(-)
can be expressed (or approximated) as a function of two marginal
BBAs m(+) and ma(-) (assumed to be known) defined respectively
over ©1 and ©», then GBT formula should become tractable.

VIII. ILLUSTRATIVE EXAMPLE OF GBT

Consider © = {6;,i = 1,...,7}, Fo(m) = {X1,Xo,...
and m(-) given in Table IIL

7X9}

Focal element X BBA m(X)

X1 =02U603U604 U805 U807 m(X1)=0.01
Xo =601 UbB3Ub3U60y m(Xs2) = 0.02
X3 =03U65 U0 m(Xg)—OO?)
X4 =04U67 m(X4) =0.04
X5 =02 m(Xs) = 0.20
X6 =06 UO7 m(Xg) =0.30
X7 =02U63U807 m(X7) =0.20
Xg =601 Ub4U60g m(Xg) =0.15
X9 =06g m(Xo) = 0.05

Table III
FOCAL ELEMENTS AND THEIR MASSES.
Consider the partition { A1, A2, A3} of © with A; = 6;UA;UH,U67,
As = 02U65 and A3 = 0, and the subset B = 0, U05U0s UO7 of ©
having belief Bel(B) = m(X4) + m(Xe) + m(Xo) = 0.39. Table
IV summarizes the BF values which are needed in the derivations.

U((A1 N B)") = 0.49 is calculated by U((41 N B)") = PI(A1 N
B) — Be(A1 N B) = 0.54 — 0.05 = 0.49, and other values of Table
VII are calculated similarly.

Subsets of © | q(A;, B) | U((A; " B))
A7 0.45 0.49
Az 0.43 0.41
Az 0.05 0.71
Table VII

VALUES OF q(A;, B) AND U((4; N B)*) FOR GBT FORMULA.

One verifies that GBT formula (62) works because we retrieve
correct values obtained with FH formula. Indeed, one has
Bel(B|A1)q(A1, B)
S0, Bel(B|A;)q(Ai, B) + U((A1 N B)")
0.0889 - 0.45
(0.0889 - 0.45) + (0 - 0.43) + (1 -0.05) + 0.49
~ 0.0690

Bel(A1|B) =

~
~

Similarly, one can easily verify that one obtains Bel(Az|B) = 0 and
Bel(As|B) ~ 0.0625 with GBT.

o Results with Shafer’s conditioning formulas
With formulas (22)—(23), we get the values of Tables VIII-IX.

Subsets of © | Bel(A;|B) Pl(A;|B)

A, Bel(A;|B) = 0.3250 _ PI(A1|B) = 0.9000

As Bel(As|B) = 0 PI(A3|B) = 0.0500

As Bel(A3|B) = 0.0625  PI(A3|B) = 0.6625
Table VIII

Bel(A;|B) AND PI(A;|B) WITH SHAFER’S CONDITIONING.

Subsets X of © Bel(X) PI(X)
X=DB=0,U0;00500; | Bel(B) =039 PI(B) =030 Subsets of © | Bel(B|A;) PI(BJA;)
X=A =0,U03U0,U07 | Bel(A])=0.04 PI(A;)=0.75 A Bel(B|A1) ~ 0.4533  PI(B|A1) ~ 0.9600
X = A2 = 092 U 95 Bel(AQ) =0.20 Pl(AQ) = 0.46 A2 Bel(B Ag) ~ 0.0652 Pl(B Ag) =~ 0.0870
X = Az = 0 Bel(As) =0.05 PI(As) = 0.53 As Bel(B|As) =1 PI(B|As) = 1
X=A1NB=04U807 Bel(X) =0.04 PI(X) =0.72 Table IX
X=ANB=0s Bel(X) =0 PI(X) =0.04 Bel(B|A;) AND PI(B|A;) WITH SHAFER’S CONDITIONING.
X =A3nB =06 Bel(X)=0.05 PI(X)=0.53 N ,
X =A,NB=605U6bg Bel(X) =005 PI(X) =054 One sees that the conditional values are not coherent since they
X=ANB=0,U6sU60; | Bel(X)=0.39 PI(X) = 0.80 do not verify GBT because we obtain in this example
X:Agﬁ@:€4U05U07 Bel(X) =0.04 PI(X)=0.75 . .
X=AiNB=6,U6; Bel(X) =0 PI(X) = 0.41 Bel(A:|B) = 0.3250 (using (23))
X=A4NB=06 Bel(X)=0.20 PI(X)=0.43 ! Bel(B|A1)q(A1, B)
X=A3NnB=90 Bel(X):O Pl(X)ZO Z?leel(BMz)q(Al,B)—I—U((A1ﬂB)*)
Table IV
0.4533 - 0.45
BELIEF AND PLAUSIBILITY VALUES USED FOR THE DERIVATIONS. ~
(0.4533 - 0.45) + (0.0652 - 0.43) + (1 - 0.05) + 0.49

e Results with Fagin-Halpern conditioning formulas

Using (50) and (55) and the fact that PI(A;|B) = 1— Bel(A;|B)
and PI(B|A;) = 1— Bel(B|A;), we get the values of Tables V-VI.

Subsets of © | Bel(A4;]|B) Pl(A;|B)

Ay Bel(A1|B) = 0.0690 PI(A1|B) ~ 0.9351

A2 Bel(AQ B) =0 PZ(AQ B) ~ 0.0930

As Bel(A3|B) ~ 0.0625  Pl(A3|B) ~ 0.9298
Table V

Bel(A;|B) AND PI(A;|B) WITH FAGIN-HALPERN CONDITIONING.

Subsets of © | Bel(B|A;) PIl(B|A;)

Al Bel(B[A1) ~ 0.0889 PI(BJ[A;) =1

Asg Bel(B|A2) =0 PI(B|As) =~ 0.1667

Az Bel(B|A3z) =1 PI(B|A3) = 1
Table VI

Bel(B|A;) AND PI(B|A;) WITH FAGIN-HALPERN CONDITIONING.

To verify GBT, one calculates Bel(4;), U((BNA;)") and
U(B* N A;) for getting q(A;, B), and U((A; N B)™). These val-
ues are given in Table VIL. ¢(A:,B) = 0.45 is calculated by
q(A1, B) £ Bel(A1)+U((BN A1)")=U(B*NA;) = 0.45 because
Bel(A1) = 0.04, U((B N Alg:) = PI(BNAy) — Bel(BN A1) =
0.41 and U(B* N A1) = XEFa, (m)|XEF g, (m) m(X) = 0.

~ 0.2642

Similarly, one can show that Bel(A2|B) = 0 (using (23)) #
0.0405 (using GBT) and Bel(As|B) = 0.0625 (using (23)) #
0.0504 (using GBT). Hence, Ellsberg urn example and this example
show clearly that Dempster’s rule of combination used by Shafer to
establish his belief conditioning formulas does not provide coherent
and satisfactory results since they are inconsistent with lower and
upper bounds of imprecise conditional probabilities and they do not
satisfy GBT established directly by a constructive manner without
ad-hoc assumption.

IX. CONCLUSION

This paper has presented new important results: the Total Belief
Theorem (TBT), the justification of Fagin-Halpern conditioning from
TBT, and the Generalized Bayes’ Theorem (GBT). Our theoretical
results allowed us to establish rigorously the Generalized Bayes’
Theorem by a direct constructive manner from TBT. It does not
need extra assumptions nor some underlying ad-hoc construction
principles. Also, we prove that our TBT and GBT are fully consistent
with classical TPT and Bayes Theorem as soon as the belief functions
are Bayesian. That way this achievement could be an excellent



ground for working in belief function framework. From Ellsberg’s
urn example and an illustrative example we have shown that Shafer’s
conditioning based on Dempster’s rule provides results inconsistent
with lower and upper bounds of imprecise conditional probabilities,
and inconsistent with GBT. These new results should allow to
reconcile practitioners of Bayesian reasoning with those of evidential
reasoning.

APPENDIX

A. Proof of TBT

Bel(B) = m(X)

>

X€Fo(m)|XCB

- ¥

X€Fa, (m)|XeFp(m)

+ >

XE}_Ak(m)|X€]:B(m)
+ > m(X)

XeF g+ (m)| XeFp(m)
= Bel(Ay N B) + ...+ Bel(A, N B)
+ > m(X)

XEF g+ (m)| XEFp(m)
> Bel(AinB)+U(A"NB)

i=1,...,k

m(X)+...

m(X)

where U(A* N B) 2 m(X).

ZXG]:A* (m)| X eFg(m)

B. Proof of Lemma 1

For notation convenience, we denote

A(U)2U((A;NB)") —U(A* N B)
= [PI(A; N B) — Bel(A; N B)]

— [Bel(A; N B) + Bel(A; N B) — Bel(B)]
= PI(A; N B) — Bel(A; N B) + Bel(B)

— Bel(A; N B) — Bel(A; N B)

To prove that A(U) > 0, one needs to prove equivalently that
PI(A;NB)—Bel(A; ﬁB)+Bel(B) > Bel(A;NB)+ Bel(A;NB).
Using TBT, one has Bel(B) = Bel(A;NB)+Bel(A;NB)+U(A™ N
B), and replacing expression of Bel(B) in the previous inequality,
one must verify if the following equality is satisfied

PI(A;NB)—Bel(A;NB)+Bel(A;NB)+Bel(A;:NB)+U(A*NB)
> Bel(Ai N B) + Bel(A; N B)

After simplification, we have to check if inequality below holds
PlI(A; N B)+ U(A* N B) > Bel(A; N B).

Because PI(A; N B) = Bel(A; N B) + U((A; N B)"), one has to
check if Bel(A;NB)+U((Ai N B)")+U(A*NB) > Bel(A;NB).
After simplification (omitting both Bel(A; N B) in left and right
side of the prev10us inequality), one just has to prove the inequality
U((AinB)") + U(A* N B) > 0 in order to prove that A(U) > 0.
Because U((A; N B)") € [0,1] and U(A*NB) € [0, 1], the previous
inequality always holds which proves that U ((A NB)") -U(A*N
B) > 0. Moreover because U(A™ N B) € [0,1], then —U(A™ N

B) € [-1,0], and because U((A; ﬂB) ) [0, 1] one deduces that
AW) = U((A;n B)') — U(A" N B) <

C. Proof of Lemma 2

If Bel(:) : 2° + [0,1] is a Bayesian belief function, then all
focal elements of its corresponding BBA m(-) are singletons of
2°. In this case Bel (* ) and PI(-) functions coincide and therefore
one has U((A NB)") = Pi(AiN B) — Bel(A; N B) = 0 and
U((BNA;)*) = Pl(BNA;)—Bel(BNA;) = 0. Any focal element
(singleton) of m(-) is either a subset of B or a subset of B of the
FoD ©. Therefore, Fp=(m) = ), which implies U(B*NA4;) = 0, so
that g(A;, B) = Bel(A;). The GBT formula (62) with in this case
q(A;, B) = Bel(A;) and U((A; N B)™) = 0 reduces to the formula
Bel(Ai|B) = Bel(B|A;)Bel(A;)/ YF_| Bel(B|A;)Bel(A;).
This coincides with formula (10) since Bel(-) (being a Bayesian
belief function) is homogeneous to a probability measure P(-). This
completes the proof that GBT formula is consistent with Bayes’
Theorem formula when the Belief function is Bayesian.
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