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1. INTRODUCTION

Recently Professor Florentin Smarandache has proposed the founda-
tions for a new logic, called from now on Neutrosophic Logic (NL) or
Smarandache’s Logic, to unify all existing logics (see [128 —130]) for
details. The main idea of NL is to characterize cach logical statement
not in 1D or 2D spaces like in the existing logics but rather in 3D
neutrosophic space represented by the neutrosophic cube as presented
in Section 6. Each dimension of the space represents respectively the
truth (T), falsehood (F) and indeterminacy (I) of the statement under
consideration. Moreover, each statement is allowed to be over or
under true, over or under false and over or under inderterminate by
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using hyper real numbers developed in non standard analysis theory.
The neutrosophical value 9y(A)=(T(A), 1(A), F(4)) in a world of
discourse W of a statement A is then defined as a subset (a volume not
necessary connexe; i.e., a set of disjoint volumes) of the neutrosophic
space. This approach allows theoretically to consider any kinds of
logical statements. For example, the fuzzy set logic or the classical
modal logic (which works with statements verifying T(A), I(A)=0,
F(A)=1-—T(A), where T is a real number belonging to [0;1]) are
included in NL. The neutrosophic logic can easily handle also
paradoxes and anti-paradoxes. Discussion about this topic will be
brought in Section 5.

Even if the global framework of this new theory is now well defined,
major open questions still remain and must be solved to give to this
new very promising theory its full nobility and usefulness for solving
practical problems arising in Data Fusion and Multi-Expert systems.
Following the track of the development of Dempster-Shafer’s rule of
combination of evidence, which is considered as a generalization of
classical Bayesian Inference, the NL must now leave its childhood to
become more mature by answering the very difficult and important
questions:

e How to construct neutrosophical belief function?

e How to construct neutrosophical basic mass assignment?

e How to recover neutrosophical basic assignment from neutrosophi-
cal belief function?

e How to construct a general Neutrosophical rule of combination?

We hope that this paper will help to clarify foundations of the NL, will
bring some premisses for the answers to these questions and hence will
contribute to the development and the promotion of the neutrosophic
logic.

2. SHORT OVERVIEW ON NON STANDARD ANALYSIS

The theory of Non Standard Analysis (NSA) has been developed by A.
Robinson in sixties [111] to handle rigourously illicite equations
involving infinitesimal numbers in modern algebra [115]. A. Robinson
has formally extended the set of real numbers by introducing a new set of
numbers, called hyper-real set (or non-standard set), which contains
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infinitly small positive numbers € > 0 around each point of the real line.
Each of these infinitly small positive numbers have been called
infinitesimal. The set of infinitesimals is denoted by E. An infinitly small
number is defined as a number smaller than any positive quantity. Thisis
an abstract mathematical entity which can’t be numerically evaluated. A
real number x is said /imited if there exists a positive real (standard)
number y with |x| < y. A real number e is said infinitesimal if and only if

YneN*, l|e|<1/n (1)

The set of hyper-real numbers (i.e., non-standard numbers) is an
extension of the real number set R, which includes both classes of
infinite numbers and infinitesimal numbers. A non-standard finite
number is defined as a+¢ or a—¢, where a € R and € € E. The precise
value of ¢ is not given and & must be considered as a symbol to
represent any infinitesimal number. We will write symbolically
at2a+e and aZa-—c¢ (2)
a is the standard part of non-standard finite number ¢ or “@ and ¢
corresponds to the non-standard part of the number. One has “a < a
and a' >a. Originally, the construction of hyper-real numbers
proposed by Robinson was based on first order logic and on the
acceptation of Zermerlo’s Choice Axiom (ZCA) [38]. This ZCA tell us
that if we consider a family of non empty sets {4, ..., 4,}, there exists
a function f which picks up exactly one element a; € 4; in each set A4,,
i=1,...,n. Even if one admits the ZCA, the construction of such
(choice) function fis not determinable. This axiom is very important in
the axiomatic of the foundations of the Zemerlo-Fraenkel (ZFT)
set theory. We recall that all basic entities in ZFT are sets and
the following correspondances hold 0=0, 1={0}, 2=1{0,{0}} =
{0,1},...,n+1=/{0,...,n} etc. In seventies, E. Nelson has developed
in his milestone paper [99], a new set theory, called Internal Set Theory
(IST) which extends the ZFT by introducing a new predicat denoted
by st(-) (st stands for standard part of (-)). st predicat indicates that a
number x is standard if x = s#(x). The significance of st predicat which
is governed by three axioms (Idealization, Standardization and
Transfer) in IST, allows to distinguish infinitesimal from standard
numbers. We will say that “x is non standard” (i.e., charmed) when-
ever one has x # st(x). By introducing such new predicat, Nelson puts
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in a prominent new element in traditional set of integer numbers N. In
the IST, the infinitesimals are only real numbers which do not satisfy sz
predicat. The development of IST yields a better understanding of
infinite quantities considered as whole entities (rather than infinite
succession of elements). Three important consequences follow from
ZF/IST [116,110].

e any infinite set includes a non standard component (from
idealization axiom)

o if all elements of a set A4 are standard, then A4 is a finite set
(corollary)

e there exists a finite set which include all standard entities of
mathematical universe

According to E. Nelson, there is infinitesimal numbers because
among the infinity of real numbers there are numbers which cannot be
mathematically formally expressed (in numerical sense). All these non
standard numbers cannot be assigned precisely. From this point of
view assignable entities are closely related with finitude whereas
unassignable entities are related with infinitude.

2.1. Operations with Non Standard Numbers

We remind now some useful definitions introduced in NSA and basic
algebraic operations with non-standard numbers. More details can be
found in [110].

e Monads: Monads are set of hyper-real numbers. In the following
we will consider

p(a) = {a—cle €k} (3)
w(b™) 2 {b+cle€E} (4)

e Binad: A binad pu( ¢") is defined as a collection of opened
punctured neighbourhood of ¢ [130]

u(ceh) 4 {c—c¢clee} U{c+c¢clecE} (5)

c¢ u(~c™). There is no order between ¢ and ~c¢ ™.
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e Non-standard interval: A non standard open interval is an interval
of the form ] a;b"[. The left and right border of a non-standard
interval |~ a; b [ are vague because they correspond to (sub)sets
w(~a) and w(b™). Inferior and superior bounds of |“a;b™[ are
respectively —a and b™". In other words,

“a=inf(] a;pT[) and b" =sup(] a;b*)

The non-standard unit interval is J0 ;1 7[. 0 and 1 belong to ]
0~;1 [ and also all non-standard numbers infinitely small but less
than O or greater than 1.

e Addition rules of non-standard finite numbers
a+~"b="(a+b) “a+b="(a+b)
a"+b=(a+b)" “a"+b= (a+b)"
a+bt=(a+b)" “a+ b= (a+b)

a"+ b="(a+b)" “a"+ b="(a+b)"
a+ b ="(a+b)" “a+b"="(a+b)"
a"+b"=(a+b)" “a"+b"="(a+b)"
a4+ b"="(a+b)"

a "+ b"="(a+b)" “at+ b"="(a+bh)"

e Substraction rules of non-standard finite numbers
a—b="(a=b) "a—-b="(a->)

a-b" “at—b="(a—b)"
Y*' Ta—"b="(a-b)

a " —b="(a—b)" “a"—b="(a—b)"

a—"b"="(a—b)" “a-b"="(a—b)"

a"—b"=(a—-b)" “a"—b"="(a—b)"
“a—"b"="(a—b)"
a"—b"="(a-b)" “at—b"="(a—b)"

e Multiplication rules of non-standard finite numbers

“b="(a-b) “a-b="(a-b)
a -b=(a-b)" “a"-b="(a-b)*
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a-b"=(a-b)" ~a-~ b= "(a-b)
a"-~b="(a-b)" “a"-"b="(a-b)"
a~bt="(a-b)" “a-b"=(a-b)*
a” bt =(a-b)" ~ +'b+ “(a-b)"
Ta bt ="(a-b)"
a" bt ="(a-b)" “a* ’b* “(a-b)"

e Division rules of a non standard finite number by a non null number

a/"b="(a/b) ~a/b="(a/b)
at/b=(a/b)" ~a"[b="(a/b)"
a/b* = (a/b)" ~a/"b="(a/b)
a'/"b="(a/b)" “a*/"b="(a/b)"
a/"b" ="(a/b)" “a/b" ="(a/b)"
at /bt =(a/b)" “at/b" ="(a/b)"
“a/ bt ="(a/b)"
at/"b"="(a/b)" “a"/b" ="(a/b)"

e Power rules of a non standard finite number

at="(d") (Ca)="(d)
(@) = (@) (Ca*)’ ="(a)"
& =) (a7 ="(d)
(@) =) (a)="(a")"
ar =) (o =)
(@) =" (a") =)
(Ca)™ ="()"
(@) ="()" (a")" ="(d)"

e Roots of non standard finite number

If {/a exists (and is standard) then one defines the roots of ~a, a™

and “a™ as follows

Vma=Na Nat=3a /- = a
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3. SMARANDACHE’S SET OPERATIONS

Here are the four basic Smarandache’s set operations defined in
[128, 130] involved in the manipulation of neutrosophic events. So, lets
consider S| and S, be two (unidimensional) standard or non-standard
real subsets. The addition, substraction, multiplication and division
(by a non null finite number) of these sets are defined as follows:

e Addition
Sl@SQ=S2@S1é{x|xzsl+52,VS1651,VS2652} (6)
The inferior (Inf) and superior (Sup) values of S;®S, are given by

Inf [S] D Sz} = Inf[Sl] + Inf[Sz]
and Sup[S; & S>] = Sup[S;] + Sup[$,]

Example 1 (S| and S, real standard):

(BRI o fagui-sa)

Example 2 (S, and S, non standard):

{ﬁ;jE:g;lg{ﬂ{{‘_@ﬁ}3} = $1 @8 =]"(—4);" 37 [U{-5,47}

Note that in this case, 3 € S| but surprisingly 3 ¢ S;®S>
e Substraction
S1685 =—(508)2{x|x =51 —5,Vs1 €S}, ¥s2€8}F  (7)

For real positive subsets, the Inf and Sup values of S8, are given by

Inf[S; © S5] = Inf[S;] — Sup[S>2] and
Sup[S; © 53] = SuplSi] — Inf[S,]

Example 1 (S; and S, real standard):

3B L 08— [-25U0{-36)
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Example 2 (S, and S, non standard):
{Sl =] (=1);
Sa=]"(=2);

e Multiplication

Lo =ses-r o su-3ne)

Sl®SzzS2®Slé{x\x:sl-sz,VsleSl,VszeSz} (8)
For real positive subsets, one gets

Inf[S; ® S3] = Inf[S;] - Inf[S>] and
Sup[S; © 8] = Sup[S)] - Sup[$>]

Example 1 (S; and S, real standard):
3}
=85108% = [—6;4] U {—9, 6}

Example 2 (S, and S; non standard):

{Sl =] (=1); 17U
U

_277 2+73} - —
P e = 5108 = [(~6): 4]U{-9,6}

{
{=3,17}
e Division of a set by a non null standard number
Let k€ R*, then

S1 0k 2 {x|x = s51/k,Vs1 €51} (9)
Example 1 (S, real standard and k =2):

if Si=[-L1uU{-2,2,3} =S 02=[-1/2;1/2]u{-1,1,3/2}

Example 2 (S non standard and k=2):

it S =" (=1);1"[U{-2,"2",3} = 5,02
=7 (=1/2); (1/2) [U{~1,"1%,3/2}
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4. NEUTROSOPHIC STATEMENT A

In the development of his new Neutrosophic Logic (9t-Logic for
short) [128—130], F. Smarandache introduces the notion of neutro-
sophic statement A which has the possibility to be at the same time
T% true, F% false and 1% indeterminate. This is an abuse of language
since more precisely and more generally, 7, F and [ are not necessary
real/classical percentage but rather standard or non-standard real
subsets included in non-standard unit interval 1~0;1 7[. In general, T, I
and F may be any real subsets: discrete or continuous, singletons,
finite, or (either countably or uncountably) infinite; union or
intersection of various subsets; efc. They may also overlap. The
inferior and superior values of 7, I and F are denoted

A . A N A
ting = Inf(T) toup = sup(T) iinr = inf(I) isup = sup(l)

fiot = inf(F) fuup = sup(F)
Since T, I and F are included in ]~ 0; 1 " [, one always has
fnt >0 Gipp>"0 firr>"0 and Tsup < 1" isup < 1" fsup < 1"

Hence,

A . _ A .
Sinf = tinf + finf + finr > "0 and Ssup = Lsup + Lsup +fsup < 3"

The neutrosophic value (or N-value) of a statement A in a given
world W under consideration (see details in next section) is given by
the knowledge of the three subsets 7, I and F and we will be denoted
by

Nw(A) = (N, R, Ny) £ (T,1,F) (10)

When there is no ambiguity about the knowledge of world W we are
working in, indice |, in 9, notation will be removed for convenience
notation. More rigourously, we have to write 7(A), I(A) and F(A) to
characterize the fact that subsets 7, I and F refer only to the specific
statement A. Any statement A represented by a triplet 9t(A) will be
called a neutrosophic event or N-event in the sequel.
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The subset i, 2 T(A) characterizes the truth part of statement A.
0, 2 (A) and 9% 2F (A) represent the inderterminacy and the
falsehood of A. This Smarandache’s representation is closer
to the human reasoning. It characterizes/catches the imprecision of
knowledge or linguistic inexactitude received by various ob-
servers, uncertainty due incomplete knowledge of acquisition
errors or stochasticity, and vagueness due to lack of clear contours
or limits.

5. WORLD AND UNIVERSE

The notion of “world” usually depends highly on many parameters. In
most of cases, assertions depend mainly on our own source of
knowledge (i.e., our own world W of knowledge representation) about
the problem under consideration. Usually our own world is imprecise,
incomplete, vague and even sometimes can become intentionally (or
unintentionally) subjective or biaised. It can moreover change with
time because of environmental conditions and context variations, but
our world of knowledge, relative to our body of evidence [119], can
also be refined sometimes by adding extra information coming from
exogeneous sources of information. The abstract set of all possible
worlds W is refered as universe U and a finite set of n distinct
worlds (like a pool of experts for example) will be denoted W in the
sequel.

We can distinguish several levels of truths, indeterminacies and
falsechoods of a statement A depending on the world(s) under
consideration. Most important levels which are directly supported
by Neutrosophic logic will be listed below. Neutrosophic logic is
actually the only one general theory which attempts to unify all
previous existing logics in the same global theoretical framework.
Even if more advances are necessary to get and reinforce a strong and
solid ground setting for Neutrosophy, we already believe in this new
Logic and expect many potential benefits from it to solve important
problems arising by example in distributed Artificial Intelligence and
Multi-Sensor Data Fusion research areas. A very good detailed
discussion about 9i-Logic within the Logic history can be found in
[130].
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e Absolute truth of A If statement A is true in the universe U (that is
in all possible worlds) and for all conjunctures, we will say that A is
absolutely (or universally) true which is represented by setting 9t,(A)
to1".

“R,W(A) =17 & Ais absolutely true (11)

e Relative truth of A If a statement A is true in only one possible
world W and for a specific conjunctures, we will say that A is
relatively true which is represented by having 9t,(A) to 1.

N (A) = 1 & Als relatively true| (12)

e Quantumly (n-level relative) truth of A If we consider jointly,
several (say n, with n> 1) different worlds W;, i=1,...,n (ie.,
experts), an assertion about a given proposition A can take at
same time k different several neutrosophic values depending on
each world W, Moreover, each elementary “world” can also be
interpreted as a dynamical system because of its possible variations
of its own knowledge with different varying parameters and past
observations, etc. One defines the ‘“‘n-level relative truth” of the
statement A (we will say that A is quantumly truth) if the statement
is true in at least n distinct worlds, and similarly “countably-" or
“uncountably-level relative truth” as gradual degrees between ““first-
level relative truth™ (1) and “absolute truth” (17) in the monad
(1)

‘9?,|Wn (A)€]l;17[& A is quantumly true‘ (13)

We just point out that this definition remains actually only
conceptual and quite abstract since there is for now no effective
construction algorithm to evaluate such neutrosophic value
9 wn(A) from each individual neutrosophic values 9t,y,(A),
i=1,...,n. This is actually the main challenge we are faced now.
Some issues will be proposed and discussed in the sequel.

With analogue definitions, one gets by substituting ‘“truth”
with “falsehood” or “indeterminacy” in the above the following
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characterizations of a statement A

e Absolute indeterminacy of A
Nu(A) =17 & A is absolutely indeterminate

Relative indeterminacy of A

Naw(A) = 1" & A is relatively indeterminate

Quantumly indeterminacy of A

Nywi(A) = €]1;17[& A is quantumly indeterminate
e Absolute falsehood of A
Ny u(A) = 1T < A is absolutely false

Relative falsehood of A

Nyw(A) =1 < A s relatively false

e Quantumly falsehood of A
Npwn(A) = €]1;17[ A is quantumly false

On the other hand, one also has

9, u(A) = "0« A s false in all possible worlds
‘Jlt‘W(A) 0 & A is false in at least one world
9 y(A) = 0 < A is indeterminate in no possible world
9 w(A) =0 < A is not indeterminate in at least one world
9 y(A) = 0 < Ais true in all possible worlds
Iw(A) =0 <« As true in at least one world

The ~0 and 1" monads leave room for degrees of super-truth
(truth whose values are greater than 1), as well as for degrees of
super-falsehood, and super-indeterminacy. All kinds of statements
can be described based on neutrosophic approach. Here are some
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typical ones:

Absolute/universal Tautology A statement A is called an absolute
or universal tautology (like for example A =*“B is B”), if and only if
in all possible worlds of the universe U, one has

Ny(A) = (17,70,70)

Tautology A statement A is a relative tautology (tautology for
short) in a given world W of universe U if and only if

Nw(A) = (1,0,0)

Absolute Contradiction A statement A is an absolute contra-
diction (like A =B is not B”), if and only if in all possible worlds of
the universe U, one has

Ny(A) = (70,70,17)
Relative Contradiction A is a relative contradiction (contradiction
for short) if and only if
Nyw(A) = (0,0,1)

Paradox and Anti-Paradox A statement A is a (relative) paradox
in W if and only if one has ecither

Nw(A)=(1,1,1) or Nw(A)=(0,0,0)

To distinguish 9;(4) = (1, 1, 1) from 9t (A)=(0,0,0), we suggest
to call the last statement an anti-paradox. This must not be confused
with (relative) tautology corresponding to 9t,(A)=(1,0,0). The
absolute/universal paradox and anti-paradox are in same way
characterized by

Ny(A)=(17,17,17) or Ny(A)=(70,70,70)
Absolute Full Ignorance

Niy(A) = (705 1°[,]70; 17[]70; 17[)
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Note that Absolute Full Ignorance is not equivalent to Absolute
Indeterminacy which is charaterized by 9ty(A)=("0,1 +,70)
e Relative Full Ignorance

Niw(A) = ([0; 1], [0; 1], [0; 1])

6. UNIVERSAL NEUTROSOPHIC CUBE

Any neutrosophic statement can be easily interpreted graphically by
using the following universal neutrosophic cube representation (9t-
Cube). The 3D space limited by vertices 4, B, ..., H corresponds to
the representation of universe U (i.e., the set of all possible worlds
of knowledge). The small classical unit cube defined by vertices
a,b, ..., h represents a typical world of knowledge W related to a
given source of information (body of evidence) under consideration.
In general, a statement A will not correspond to a specific point
of 9-Cube but rather a set of non-connexe volumes included
into it.

Each vertice of the 9i-Cube corresponds to a very special kind of
logical formula (tautology, contradiction, paradox, efc.). The list of all
these specific statements is given in Table I. By example, if statement A
lies in G this means that A is an universal tautology. If the position of
statement A is anywhere in the UNC, we have an absolute full
ignorance about A and no (or all) conclusions/decision can be drawn
from A.

TABLE I Types of specific logical statements in 9t-Cube

Location of statement Type of statement

Anti Paradox

Universal Truth

Anti Falsehood
Universal Indeterminacy
Universal Contradiction
Anti Indeterminacy
Universal Paradox

Anti Truth

TQTMmgoO®m >
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FIGURE 1 Universal 9t-Cube.

7. MANIPULATIONS ON NEUTROSOPHIC
ASSERTIONS AND SETS

In the neutrosophic topology defined on ]70;17[, the union and
intersection of two any neutrosophic subsets 4 and B (corresponding
to either the part of truth, indeterminacy or falsechood of a given
assertion) are defined as follows

AUB=A®B)©(A®B) and ANB=A0OB (14)

The neutrosophic complement of 4 is defined as A = {17} © A

The neutrosophic logical (neutrosophical) value of an assertion A
conditioned on a given world of knowledge W is characterized by a
mapping function A -) such that

Ry - A Ry (A) = (T(A),I(A), F(A)) C]70; 17 (15)
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Consider now two statements A; and A, conditioned on the same
world of knowledge W. The following basic operators are then defined
(indexe |- has been omitted for simplicity and T;=T(A)), I;=I(A)),
Fi=F(A) fori=1,2)

NANBRA) =(T1 @ T2, 1, &1, F1 & F) (16)
NRANBRA) =(T1©Tr, 1,61, F ©F) (17)
N(A)ER(A,) = (T1 © Ta, 1), © I, Fi O F) (18)

Since the truth, falsehood and indeterminacy of any statement must
belong to ]~ 0;17[, the result of each previous operator H, H and []
must be in ]70; 17[°. Therefore upper and lower bounds of T} & T,
must be set respectively to ~0 and 17 whenever inf(T) & T2) <0 or
sup(T) & T») > 1. The same remark applies for H and [1 operators
and for falsehood and inderterminacy part of compounded statement.

All classical logical operators and connectors can be extented in the
N-Logic. For notation convenience, we will identify logical operators
with their classical counterpart in set theory as pointed out in [92]
(hence the following equivalences will be used “~A = A A AA=A N
A, and A; V A, = A| U A, throughout this paper). We recall here only
important operators used in the sequel. Additional neutrosophic
logical operators can be found in [130].

e Negation
R(A) = ({1} eTA){1}cI(A),{1} o F(A)) (19)

e Conjunction
NAINA) =RANERA) = (T 0T, 0L, FLOF,)  (20)
e Disjunction
NAIUA) =(TMUT,, [ UL, FiUF,)
=(MeT) e (o),

(11 @12) S (11 @Iz), (11 @12) S (11 @Iz))
= [9t(A)) B 9(A)] B DA N (AL)] (21)
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7.1. 9i-Membership Function Over a Neutrosophic Set

We denote by © a world of discourse for a given world of knowledge
W, called also frame of discernment in DS (Dempster-Shafer) theory.
Each ‘“‘neutrosophical” element x of © is characterized by its own
neutrosophical basic assignment (9i-value)9ty (x) 2 (T(x),I(x),F(x))
with T(x), I(x) and F(x) C]70;17[. The 9M-membership function of
any neutrosophical element x with any subset MCO is defined in
similar way by

RNy (x|M) 2 (T (x), I (x), Fur (%)) (22)

with Ty(x), Iy(x) and Fy(x) C]70;1%[. The 9-value of x over M
can be interpreted, by abuse of language, as its membership function
to M in the following sense: x is % true in the set M, i%
indeterminate (unknown if it is) in M, and f% false in M, where ¢
varies in 7, i varies in /, f varies in F. The standard notation x € M will
be used in the sequel to denote the neutrosophical membership of x to
M. One can say actually that any element x of a given frame of
discernment supported by a body of evidence neutrosophically belongs
to any set, due to the percentages of truth/indeterminacy/falsity
involved, which varies between 0 and 1 or even less than 0 or greater
than 1. From this definition and previous neutrosophic rules, one gets
directly following basic neutrosophical set operations:

e Complement of M
If x € M with Ry (x|M) 2 (Tyy (x), Iy (x), Fu(x)), then x & M with

N (xIM) = ({1} © T (x), {1} © In(x), {1} © Fu(x)) ~ (23)

o Intersection M NN If xeM with 9y (x[M) = (T (x), I (x), Fpr(x))
and xe N with %‘W(x|N) (Ty(x),Iy(x),Fy(x)) then xe MNN
with

m‘w(le ﬂN) = (TM(X) ® TN(X),IM(X) @IN(X),FM(X) @FN(X))
(24)
e Union MUN

I xeM with Ry (x4 M) 2 (Ty(x), Iu(x), Fy(x)) and xeN
Ny (x|N) = ( wn(x), Iy(x), Fy(x)) then x€ MUN with

Ny (x|M UN) = (T (x), Iaon (x), Fyon (x)) (25)
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where
Tyon (x) 2 [Ty (x) @ Ty (x)] © [Tw (x) © Ty(x)] (26)
Tuon (%) 2 [Iu(x) @ Iv(x)] © [T (x) © Iy(x)] (27)
Fuon(x) 2 [Fy(x) @ Fy(x)] © [Fa(x) © Fy(x)] (28)

e Difference M N
SinceM — N2 M — N1fx€Mw1thER‘W( x|M) = (Ty (x), In(x), Far(x))
and x € N with 9y (x|N)= ( w(x),In(x), Fy(x)) then x € M — N with

|||>

Nyw(x|M = N) = (Tayy-n(x), Iy-—n(x), Fy—n(x)) (29)
:Fﬂle-'ﬂl'rﬂﬂd
H .i’

Imlalmy
w

,_,-*
Sefh

?’;’f
.
/

FIGURE 2 Example of neutrosophic inclusion of M in N.
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SetM
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where
Tyr (%) = T (x) © [Tar(x) © Ty (x)] (30)
Iy w(x) 2 1 (%) © [T (%) © I ()] (31)
Fu (%) = Fy(x) © [Fu(x) © Fy(x)] (32)

e Inclusion M C N
We will said that MCN if for all xeM w1th ER‘W(x|M):
(Tu(x), Iu(x), Fy(x)) and xeN with (V)2 (Ty(x), (),
Fy(x)) one has jointly TjAx) C Tn(x), Ip(x) CIp(x) and Fax) C
FN(X)

8. NEUTROSOPHIC INFERENCE

Before discussing about neutrosophy inference, it is important to
remind the framework of the two main rules of inference on which are
based most of modern data fusion algorithms: the Bayesian inference
and Dempster-Shafer rule of combination.

e Bayesian Inference and Bayesian Fusion Rule

To each event A4 of random experiment defined on frame of
discernment (worl os discourse) ©, we assign a real number P{A},
called probability verifying some properties. Traditional definitions
P{A} are [92]:

(1) within classical approach

Number of possible outcomes for event A
Number of possible outcomes for space O

P{A} =

For example, if we consider the fair Die-rolloing experiment and
the event 4="an event number shows up”, then P{A} =
(I+1+1)/6=1/2.

(2) within geometrical approach

Geometric measure of set A

P{A} = .
{a} Geometric measure of space ©
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(©)

4)
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within relative frequency approach

Number of occurrences of set A

P{A} = 1i
{4} NLI?(}C Total number of trials N

In this approach, we implicitly assume that each elementary (focal)
element of © is equally probable. This fundamental assumption is
called principle of sufficient reason or principle of indifference. This
principle has been strongly critized especially for cases involving
infinitely many possible outcomes because this can lead to
confusing paradoxes. That is why since the work of A.
Kolmogorov in 1933, the axiomatic of the probability theory
based on (o)algebraes and measure theory has been definitely
adopted.

within axiomatic approach The probability measure P is defined
by the following axioms

Al: (Nonnegativity)
0<P{A} <1 (33)
A2: (Unity) Any sure event (the sample space) has unity probability
P{O6} =1 (34)
A3: (finite additivity) If 4,,...,4,, are disjoint events, then
P{AJU---UA,} = P{A} + -+ P{A,} (35)

A4: (countable additivity) If 4;, A,, ... are disjoint events

P{ QA,} = ,Z:P{Ai} (36)

From these axioms, all other probability laws (specially Total
Probability Theorem and Bayes’s rule as it will be reminded) can be
derived. In particular,

P{0} =0 and P{A°}=1-—P{A} (37)

A C B= P{A} < P{B} (38)
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VA,BC©, P{AUB}=P{A}+P{B}—P{ANB}  (39)
VAy,...,A, C O, P{A]U“-UAn}SZn:P{Ai} (40)
i=1

More precisely, in the general case one has

P{AjU---UA,} = zn:P{Ai} - ZP{AiﬂAj} +o (=D
i=1

i<j
> P{Ailﬂ...ﬂAi,(}+-~-+(—l)”P{ A,}
i <..<lg i=ln
(41)
which can be also written as
P{A U--UA} = Y (1)’“1){ ﬂA,} (42)
1c{l .} iel

The probability of an event 4 under the condition that event B has
occured (with probability P{B} #0) is called the conditional (or a
posteriori) probability of 4 given B and is defined as

P{ANB)

PUAIBY =5

(43)
Events 4 and B are said to be independent if P{4N B} = P{A}P{B}
or equivalently P{A4|B} = P{A} and P{B|4} = P{B}.

Total Probability Theorem: The probability of any event B can be
recovered from any partition (i.e., a set of exhaustive and disjoint
events) 41, ...,4, of sample space © by the following relationship

PiBY =S P{BIAIPIA) (44)
i=1

Baye’s rule: P{A|B}P{B}=P{ANB}=P{B|A}P{A}, one gets the
famous Baye’s formula also called Bayesian inference

P{B|A}P{A}

PLAIBY = =P

(45)
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8.1. Bayesian Fusion Rule

Let have a given set of hypothesis © = {6, ...,0,,} corresponding to a
world of discourse (frame of discernment) about the true nature of
a parameter . If we now consider N body of evidence (experts)
providing an unreliable assertion/disjonction Wf", i=1,...,N (where
6;=11if 6 W; or §;=0 otherwise) about the truth in ©, then general
optimal Bayesian fusion rule for these N sources of knowledge is given
by [36]

piliN Hn:l.N P{91|Wné”}

P{O=0, W), ... Wi} = (46)

Ky

where the normalization constant Ky is given by
kv=">_ pn" [ POIW} (47)

i=1.M n=I.N

If we assume the so-called principle of sufficient reason, i.e., we
consider uniform prior p,-éP{G =0;}, then P{0 = 0i|Wf1,...,W]f,N}
will reduce to

[T PLOIW,

P{O = 0;|Wh .. W) = ‘
{ " Wl Zi:l.MHn:l,NP{ei\Wﬁ"}

(48)

Because of exhaustive list of focal/atomic hypotheses 6, any
disjunction can be evaluated by additivity property of probabilities
from (46). Hence for example, if we consider A = 6; U, U 65, then
P{A|Wf‘] ey W,‘f,”} will be easily obtained by

1-N

1 N Di n

paw Wy =3 B T plawy| @)
iC n=l,

The optimal Bayesian fusion rule always exists if the sources are
unreliable even if they appear to be incompatible, that is to say when

Wflﬂ, . .,ﬂW,f,N = when &, = --- = 6y. When the sources are fully
reliable and if for 6, = - - - = 6y, one has W' N W2, ... WY = ) then

no theoretical optimal fusion rule exists because this would mean that
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these two sources of information assign different values for the unique
absolute truth which yields to a physical paradox. Actually, such case
must not appear in theory. Such case can however occur in some
practical problem of multi-sensor data fusion only because the sources
of information (experts) do not support the same world of knowledge.
They may be actually only fully reliable with respect to their
own world of knowledge but not in the absolute universe defined in
Section 5.

e Dempster-Shafer’s inference and fusion rule

In his theory of evidence (called sometimes theory of probable
reasoning), Glenn Shafer has introduced in [119] the concept of belief
functions to quantify the impact of an evidence on a finite and
countably frame of discernment © provided by a given world of
knowledge W. Formally, belief functions Bel : 2© — [0;1] obey the
following three axioms:

Axiom 1: The belief over all the frame of discernment is set to one
Bel(©) = 1 (50)
Axiom 2: The belief of impossible event is set to zero
Bel()) =0 (51)

Axiom 3: For every positive integer # and every collection A4, ..., 4,
of subset of O,

Bel(AjU---UA,) > Y (—1)’“Be1(ﬂA,-> (52)

iel

Any belief function satisfying Bel(() = 0, Bel(©) =1 and Bel(AU B) =
Bel(A)+ Bel(B) whenever A4, BC © and AN B=0 is called a Bayesian
belief function. In such case, relation (52) coincides exactly
with (42).

The basic probability assignment (mass) n2: 2° — [0; 1] defined by

m@) =0 and Y m(A)=1 (53)

ACO
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are bi-uniquely related to the belief function Be/ by

Bel(A) =Y m(B) (54)
BCA
In return, m(A4) for all AC O can be recovered from the belief
function by

m(A) =" (=1)*"IBei(B) (55)
BCA

The mass m(-) is sometimes called the Mobius inverse of belief
function [113]. The quantity m(A4) is the measure of belief that is
exactly committed to A. A subset 4 of a frame of discernment © is
called focal element of a belief function Bel over 6 if m(A4) > 0. The
union of all the focal elements of a belief function is called its core C. A
vacuous belief function is a belief function that allocates a null belief to
any strict subset of ©, i.e., Bel(A) =0 for all 4 # ©. It represents a state
of full ignorance on ©. It has been shown in [119], that Bel is a
Bayesian belief function if and only if there exists a mass assignment
m(-) such that > gco m@)=1 and YACO, Bel(A)=> gca m(H)
which is equivalent to say that all Bel’s focal elements are singletons or
VA C O, Bel(A)+ Bel(A°)=1.

8.2. Dempster’s Rule of Combination

G. Shafer has proposed the ad-hoc Dempster’s rule of combination
(orthogonal summation), symbolized by the operator &, to combine
two so called distinct bodies of evidences over the same frame of
discernment ©. Let Bel'(-) and Bel’(-) be two belief functions over the
same frame of discernment © and m'(-) and m?(-) their corresponding
basic probability masses. The combined (i.e., merged or fusionned)
global belief function Bel(-)= Bel’(-)@®Bel’(-) is obtained from the
combination of its basic mass assignments m'(-) and m?(-) as follows:
m(P)=0 and for any C#( and CC O,

" _ 2anB=cC m' (A)m*(B) _ DanB=c m' (A)m*(B)
O = S s T AEB) 1= 3 g Am’(B)

The orthogonal sum m(-) is a basic probability assignment if KA1 —
Sunp—gm' (A)m*(B)#0. If K=0, which means 3 ,nz_gm' (A)
m*(B)=1 then orthogonal sum m(-) does not exist and m'(-) and
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m?(-) are said to be totally or flatly contradictory. Such case arises
whenever the cores of Bel'(-) and Bel’(-) are disjoint or equivalently
when there exists 4CO such that Bel'(4)=1 and Bel*(A°)=1. The
same problem has already been pointed out previously in the develop-
ment of optimal Bayesian fusion rule.

The quantity log1/K is called the weight of conflict between the
sources of evidence Bel'(-) and Bel’(-). It is easy to show that
Dempster’s rule of combination is commutative (m'@®m?=m>®m")
and associative ([m'® m?] ® m* =m"' @ [m*> ® m’]). The vacuous belief
function such that m"(©)=1 and m"(4) =0 for 4+# O is the identity
element for @, i.e., m" & m=m®m’ =m. If Bel'(-) and Bel*(-) are two
combinable belief functions and if Bel'(-) is Bayesian, then Bel'@®Bel”
is a bayesian belief functions.

This rule of combination, initially proposed by Shafer without
strong theoretical justification (“ad-hoc justification™), has been
criticized in the past decades by many disparagers of this
theory. Nowadays, this rule of combination has however been fully
justified by the axiomatic of the transfer belief model developed by
Smets in
[136—138, 140]. We mention the fact that such theoretical justification
had been already attempted by Cheng and Kashyap in [18].

We can see a very close similarity between Dempster’s rule and
optimal bayesian fusion (46). Actually these two rules coincides
exactly when m' and m?® become probability assignments and if we
accept the principle of indifference within the optimal Bayesian fusion
rule.

8.2.1. Conditional Belief Functions

Let mg(B)=1 and mp(A)=0 for all 4# B. Then Belg is a belief
function that focuses all of the belief on B (note that Belg is not in
general a Bayesian belief function unless |B|=1). If we now consider
another belief function Bel over © combinable with Belp, then the
orthogonal sum of Bel with Belp denoted as Bel(-|B) = Bel ® Bely, is
defined for all A C© by [119]

Bel(A U B) — Bel(B°)
1 — Bel(B°)

Bel(A|B) = (57)
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If Bel is a Bayesian belief function, then

Bel(ANB)

Bel(A|B) = Bel(B)

(58)
which coincides with the classical conditional probability defined
in (43).

e Neutrosophic inference

The major difficulty for the development of neutrosophic inference
is to deal with 3 dimensions of the neutrosophic space and the freedom
on each dimension with respect to the others.

We propose to use the following generalized neutrosophic mass
assignment m(-)=(m,(-), my(-), mf(~)):29—>]*0; 17 satisfying the
following constraints for each dimension of the neutrosophic space

S sup(mi(4)) > 1 (59)
ACO
> inf(my(A)) > 0] — 1 (60)
ACO

where |©] represents the cardinality of frame of discernment ©. For
notation convenience we prefer to indroduce here the notation
(m,(-),m{-),my(-)) rather than (7(-),1(-), F(-)) to explicitly specify
that these neutrosophic components have to follow the previous
constraints.

We don’t impose constraint on indeterminate part of neutrosophic
statements but to belong to ]~ 0;1"[. This generalization coincides
with the basic mass assignment whenever we impose the classical
constraint 7(-)=1— F(-) with 7(-) being a real number belonging to
[0; 1]. Neither, we impose constraint on empty set (.

From this basic neutrosophic “mass’ assignment, we would like to
associate bi-uniquely a new neutrosophic belief function having some
mathematical properties. It can be shown that classical belief functions
are oo-monotone capacities, form a convex subset of the space of non-
additive measures on a given algebra (the algebra of events). A direct
extension of Dempster Shafer’s theory suggest us to take, forall 4 C O,
Bel(-)=(Bel{(-), Bel(-), Bel(-)) as

BEZT(A) :BE‘BCAWZ[(B) (61)
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B@l](A) :EBCAW!,'(B) (62)
BelF(A) :BE‘BCAI’}’!f(B) (63)

Such first tentative for a “‘neutrosophic belief function” construction
must however be examined in details to be validated or rejected.
Definitely, the mathematical properties of such kind functions have to
be clarified. We expect that such function should extend in some way
the classical belief functions proposed by Shafer. Some caution must
be taken for now about the indeterminate part of neutrosophic belief
function. Since we have introduced no constraint about indeterminate
part (on my(-)) of neutrosophic events, we can’t expect some nice
mathematical properties for Bel,(-) (like super additivity, ezc.). This is
a miss and more deeper investigations are needed to develop a new
neutrosophic belief formalism. We have just wanted, through this
paper, to point out major open questions about neutrosophic
inference. When neutrosophic belief formalism and axiomatic will be
achieved, one should be able to develop a new neutrosophical rule of
combination. Such rule (if any) will have to be commutative,
associative and allow to reduce indeterminacy with the introduction
of (better) sources of information and possibly eliminate antinomies
of the world of discourse. The development of the theory of
neutrosophic belief function and neutrosophic combination rule is
the forthcoming theoretical challenge to overcome to bring the full
usefulness of neutrosophy for solving many important problems
involved mainly in data fusion and expert systems.
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