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1. INTRODUCTION

Recently Professor Florentin Smarandache has proposed the founda-

tions for a new logic, called from now on Neutrosophic Logic (NL) or

Smarandache's Logic, to unify all existing logics (see [128 ± 130]) for

details. The main idea of NL is to characterize each logical statement

not in 1D or 2D spaces like in the existing logics but rather in 3D

neutrosophic space represented by the neutrosophic cube as presented

in Section 6. Each dimension of the space represents respectively the

truth (T), falsehood (F) and indeterminacy (I) of the statement under

consideration. Moreover, each statement is allowed to be over or

under true, over or under false and over or under inderterminate by
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using hyper real numbers developed in non standard analysis theory.

The neutrosophical value NjW(A)� (T(A), I(A),F(A)) in a world of

discourseW of a statement A is then de®ned as a subset (a volume not

necessary connexe; i.e., a set of disjoint volumes) of the neutrosophic

space. This approach allows theoretically to consider any kinds of

logical statements. For example, the fuzzy set logic or the classical

modal logic (which works with statements verifying T(A), I(A)� 0,
F(A)� 1ÿT(A), where T is a real number belonging to [0; 1]) are

included in NL. The neutrosophic logic can easily handle also

paradoxes and anti-paradoxes. Discussion about this topic will be

brought in Section 5.

Even if the global framework of this new theory is now well de®ned,

major open questions still remain and must be solved to give to this

new very promising theory its full nobility and usefulness for solving

practical problems arising in Data Fusion and Multi-Expert systems.

Following the track of the development of Dempster-Shafer's rule of

combination of evidence, which is considered as a generalization of

classical Bayesian Inference, the NL must now leave its childhood to

become more mature by answering the very di�cult and important

questions:

� How to construct neutrosophical belief function?

� How to construct neutrosophical basic mass assignment?

� How to recover neutrosophical basic assignment from neutrosophi-

cal belief function?

� How to construct a general Neutrosophical rule of combination?0

We hope that this paper will help to clarify foundations of the NL, will

bring some premisses for the answers to these questions and hence will

contribute to the development and the promotion of the neutrosophic

logic.

2. SHORT OVERVIEW ON NON STANDARD ANALYSIS

The theory of Non Standard Analysis (NSA) has been developed by A.

Robinson in sixties [111] to handle rigourously illicite equations

involving in®nitesimal numbers in modern algebra [115]. A. Robinson

has formally extended the set of real numbers by introducing a new set of

numbers, called hyper-real set (or non-standard set), which contains
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in®nitly small positive numbers " > 0 around each point of the real line.

Each of these in®nitly small positive numbers have been called

in®nitesimal. The set of in®nitesimals is denoted by E. An in®nitly small

number is de®ned as a number smaller than any positive quantity. This is

an abstractmathematical entity which can't be numerically evaluated. A

real number x is said limited if there exists a positive real (standard)

number ywith jxj< y. A real number " is said in®nitesimal if and only if

8n2N�; j"j< 1=n �1�

The set of hyper-real numbers (i.e., non-standard numbers) is an

extension of the real number set R, which includes both classes of

in®nite numbers and in®nitesimal numbers. A non-standard ®nite

number is de®ned as a�" or aÿ", where a2R and "2E. The precise

value of " is not given and " must be considered as a symbol to

represent any in®nitesimal number. We will write symbolically

a� �� a� " and ÿa �� aÿ " �2�
a is the standard part of non-standard ®nite number a� or ÿa and "
corresponds to the non-standard part of the number. One has ÿa< a

and a� > a. Originally, the construction of hyper-real numbers

proposed by Robinson was based on ®rst order logic and on the

acceptation of Zermerlo's Choice Axiom (ZCA) [38]. This ZCA tell us

that if we consider a family of non empty sets {A1, . . . ,An}, there exists

a function f which picks up exactly one element ai2Ai in each set Ai,

i� 1, . . . , n. Even if one admits the ZCA, the construction of such

(choice) function f is not determinable. This axiom is very important in

the axiomatic of the foundations of the Zemerlo-Fraenkel (ZFT )

set theory. We recall that all basic entities in ZFT are sets and

the following correspondances hold 0�;, 1� {;}, 2� {;, {;}}�
{0, 1}, . . . , n�1� {0, . . . , n} etc. In seventies, E. Nelson has developed

in his milestone paper [99], a new set theory, called Internal Set Theory

(IST ) which extends the ZFT by introducing a new predicat denoted

by st( � ) (st stands for standard part of ( � )). st predicat indicates that a
number x is standard if x� st(x). The signi®cance of st predicat which

is governed by three axioms (Idealization, Standardization and

Transfer) in IST, allows to distinguish in®nitesimal from standard

numbers. We will say that ``x is non standard'' (i.e., charmed) when-

ever one has x 6� st(x). By introducing such new predicat, Nelson puts
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in a prominent new element in traditional set of integer numbers N. In

the IST, the in®nitesimals are only real numbers which do not satisfy st

predicat. The development of IST yields a better understanding of

in®nite quantities considered as whole entities (rather than in®nite

succession of elements). Three important consequences follow from

ZF/IST [116, 110].

� any in®nite set includes a non standard component (from

idealization axiom)

� if all elements of a set A are standard, then A is a ®nite set

(corollary)

� there exists a ®nite set which include all standard entities of

mathematical universe0

According to E. Nelson, there is in®nitesimal numbers because

among the in®nity of real numbers there are numbers which cannot be

mathematically formally expressed (in numerical sense). All these non

standard numbers cannot be assigned precisely. From this point of

view assignable entities are closely related with ®nitude whereas

unassignable entities are related with in®nitude.

2.1. Operations with Non Standard Numbers

We remind now some useful de®nitions introduced in NSA and basic

algebraic operations with non-standard numbers. More details can be

found in [110].

� Monads: Monads are set of hyper-real numbers. In the following

we will consider

��ÿa� �� faÿ "j"2Eg �3�

��b�� �� fb� "j"2Eg �4�

� Binad: A binad �(ÿc� ) is de®ned as a collection of opened

punctured neighbourhood of c [130]

��ÿc�� �� fcÿ "j"2Eg [ fc� "j"2Eg �5�
c2= �(ÿc�). There is no order between c and ÿc� .
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� Non-standard interval: A non standard open interval is an interval

of the form ]ÿa; b� [. The left and right border of a non-standard

interval ]ÿa; b� [ are vague because they correspond to (sub)sets

�(ÿa) and �(b�). Inferior and superior bounds of ]ÿa; b� [ are
respectively ÿa and b� . In other words,

ÿa � inf��ÿa; b��� and b� � sup��ÿa; b���
The non-standard unit interval is ]0ÿ ;1� [. 0 and 1 belong to ]

0ÿ ;1� [ and also all non-standard numbers in®nitely small but less

than 0 or greater than 1.

� Addition rules of non-standard ®nite numbers

a�ÿ b � ÿ�a� b� ÿa� b � ÿ�a� b�
a� � b � �a� b�� ÿa� � b � ÿ�a� b��
a� b� � �a� b�� ÿa�ÿ b � ÿ�a� b�

a� �ÿ b � ÿ�a� b�� ÿa� �ÿ b � ÿ�a� b��
a�ÿ b� � ÿ�a� b�� ÿa� b� � ÿ�a� b��
a� � b� � �a� b�� ÿa� � b� � ÿ�a� b��

ÿa�ÿ b� � ÿ�a� b��
a� �ÿ b� � ÿ�a� b�� ÿa� �ÿ b� � ÿ�a� b��

� Substraction rules of non-standard ®nite numbers

aÿÿ b � ÿ�aÿ b� ÿaÿ b � ÿ�aÿ b�
a� ÿ b � �aÿ b�� ÿa� ÿ b � ÿ�aÿ b��
aÿ b� � �aÿ b�� ÿaÿÿ b � ÿ�aÿ b�

a� ÿÿ b � ÿ�aÿ b�� ÿa� ÿÿ b � ÿ�aÿ b��
aÿÿ b� � ÿ�aÿ b�� ÿaÿ b� � ÿ�aÿ b��
a� ÿ b� � �aÿ b�� ÿa� ÿ b� � ÿ�aÿ b��

ÿaÿÿ b� � ÿ�aÿ b��
a� ÿÿ b� � ÿ�aÿ b�� ÿa� ÿÿ b� � ÿ�aÿ b��

� Multiplication rules of non-standard ®nite numbers

a �ÿ b � ÿ�a � b� ÿa � b � ÿ�a � b�
a� � b � �a � b�� ÿa� � b � ÿ�a � b��
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a � b� � �a � b�� ÿa �ÿ b � ÿ�a � b�
a� �ÿ b � ÿ�a � b�� ÿa� �ÿ b � ÿ�a � b��
a �ÿ b� � ÿ�a � b�� ÿa � b� � ÿ�a � b��
a� � b� � �a � b�� ÿa� � b� � ÿ�a � b��

ÿa �ÿ b� � ÿ�a � b��
a� �ÿ b� � ÿ�a � b�� ÿa� �ÿ b� � ÿ�a � b��

� Division rules of a non standard ®nite number by a non null number

a=ÿb � ÿ�a=b� ÿa=b � ÿ�a=b�
a�=b � �a=b�� ÿa�=b � ÿ�a=b��
a=b� � �a=b�� ÿa=ÿb � ÿ�a=b�

a�=ÿb � ÿ�a=b�� ÿa�=ÿb � ÿ�a=b��
a=ÿb� � ÿ�a=b�� ÿa=b� � ÿ�a=b��
a�=b� � �a=b�� ÿa�=b� � ÿ�a=b��

ÿa=ÿb� � ÿ�a=b��
a�=ÿb� � ÿ�a=b�� ÿa�=ÿb� � ÿ�a=b��

� Power rules of a non standard ®nite number

aÿb � ÿ�ab� �ÿa�b � ÿ�ab�
�a��b � �ab�� �ÿa��b � ÿ�ab��

ab� � �ab�� �ÿa�ÿb � ÿ�ab�
�a��ÿb � ÿ�ab�� �ÿa��ÿb � ÿ�ab��

aÿb� � ÿ�ab�� �ÿa�b� � ÿ�ab��

�a��b� � �ab�� �ÿa��b� � ÿ�ab��
�ÿa�ÿb� � ÿ�ab��

�a��ÿb� � ÿ�ab�� �ÿa��ÿb� � ÿ�ab��

� Roots of non standard ®nite number

If
���
an
p

exists (and is standard) then one de®nes the roots of ÿa, a�

and ÿa� as follows������ÿa
n
p � ���

aÿn
p ������

a�n
p

� ���
an
p � ���������

ÿa
�n

p
� ���

aÿn
p �
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03. SMARANDACHE'S SET OPERATIONS

Here are the four basic Smarandache's set operations de®ned in

[128, 130] involved in the manipulation of neutrosophic events. So, lets

consider S1 and S2 be two (unidimensional) standard or non-standard

real subsets. The addition, substraction, multiplication and division

(by a non null ®nite number) of these sets are de®ned as follows:

� Addition

S1 � S2 � S2 � S1�� fxjx � s1 � s2; 8s1 2 S1; 8s2 2 S2g �6�
The inferior (Inf) and superior (Sup) values of S1�S2 are given by

Inf �S1 � S2� � Inf �S1� � Inf �S2�
and Sup�S1 � S2� � Sup�S1� � Sup�S2�

Example 1 (S1 and S2 real standard):�
S1� �ÿ1; 1� [ fÿ2; 2; 3g
S2� �ÿ2; 0� [ fÿ3; 1g ) S1 � S2 � �ÿ4; 3� [ fÿ5; 4g

Example 2 (S1 and S2 non standard):�
S1��ÿ�ÿ1�;1��[fÿ2;ÿ 2�;3g
S2��ÿ�ÿ2�;ÿ 0�[fÿ3;1�g ) S1� S2 ��ÿ�ÿ4�;ÿ 3��[fÿ5;4�g

Note that in this case, 32S1 but surprisingly 32= S1�S2
� Substraction

S1 	 S2 � ÿ�S2 	 S1��� fxjx � s1 ÿ s2; 8s12 S1; 8s2 2S2g �7�
For real positive subsets, the Inf and Sup values of S1	S2 are given by

Inf �S1 	 S2� � Inf �S1� ÿ Sup�S2� and

Sup�S1 	 S2� � Sup�S1� ÿ Inf �S2�

Example 1 (S1 and S2 real standard):�
S1� �ÿ1; 1� [ fÿ2; 2; 3g
S2� �ÿ2; 0� [ fÿ3; 1g ) S1 	 S2 � �ÿ2; 5� [ fÿ3; 6g
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Example 2 (S1 and S2 non standard):

�
S1��ÿ�ÿ1�;1��[fÿ2;ÿ 2�;3g
S2��ÿ�ÿ2�;ÿ 0�[fÿ3;1�g ) S1	 S2 ��ÿ�ÿ2�;ÿ 5��[fÿ3�;6g

� Multiplication

S1 � S2 � S2 � S1 �� fxjx � s1 � s2; 8s1 2 S1; 8s22 S2g �8�

For real positive subsets, one gets

Inf �S1 � S2� � Inf �S1� � Inf �S2� and

Sup�S1 � S2� � Sup�S1� � Sup�S2�

Example 1 (S1 and S2 real standard):�
S1 � �ÿ1; 1� [ fÿ2; 2; 3g
S2 � �ÿ2; 0� [ fÿ3; 1g ) S1 � S2 � �ÿ6; 4� [ fÿ9; 6g

Example 2 (S1 and S2 non standard):�
S1 � �ÿ�ÿ1�; 1�� [ fÿ2;ÿ 2�; 3g
S2 � �ÿ�ÿ2�; ÿ 0� [ fÿ3; 1�g ) S1 � S2 � �ÿ�ÿ6�;ÿ 4� [ fÿ9; 6g

� Division of a set by a non null standard number

Let k2R�, then

S1 � k �� fxjx � s1=k; 8s12 S1g �9�

Example 1 (S1 real standard and k� 2):

if S1 � �ÿ1; 1� [ fÿ2; 2; 3g ) S1 � 2 � �ÿ1=2; 1=2� [ fÿ1; 1; 3=2g

Example 2 (S1 non standard and k� 2):

if S1 ��ÿ�ÿ1�; 1�� [ fÿ2;ÿ 2�; 3g ) S1 � 2

��ÿ�ÿ1=2�; �1=2��� [ fÿ1;ÿ 1�; 3=2g
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04. NEUTROSOPHIC STATEMENT A

In the development of his new Neutrosophic Logic (N-Logic for

short) [128 ± 130], F. Smarandache introduces the notion of neutro-

sophic statement A which has the possibility to be at the same time

T% true, F% false and I% indeterminate. This is an abuse of language

since more precisely and more generally, T, F and I are not necessary

real/classical percentage but rather standard or non-standard real

subsets included in non-standard unit interval ]ÿ0;1� [. In general, T, I

and F may be any real subsets: discrete or continuous, singletons,

®nite, or (either countably or uncountably) in®nite; union or

intersection of various subsets; etc. They may also overlap. The

inferior and superior values of T, I and F are denoted

tinf �� inf�T� tsup �� sup�T� iinf �� inf�I� isup �� sup�I�
finf �� inf�F� fsup �� sup�F�

Since T, I and F are included in ]ÿ0; 1� [, one always has

tinf � ÿ0 iinf � ÿ0 finf � ÿ0 and tsup � 1� isup � 1� fsup � 1�

Hence,

sinf �� tinf � iinf � finf � ÿ0 and ssup �� tsup � isup � fsup � 3�

The neutrosophic value (or N-value) of a statement A in a given

world W under consideration (see details in next section) is given by

the knowledge of the three subsets T, I and F and we will be denoted

by

NjW�A� � �Nt;Ni;Nf � �� �T ; I;F� �10�

When there is no ambiguity about the knowledge of world W we are

working in, indice jW in NjW notation will be removed for convenience

notation. More rigourously, we have to write T(A), I(A) and F(A) to

characterize the fact that subsets T, I and F refer only to the speci®c

statement A. Any statement A represented by a triplet N(A) will be

called a neutrosophic event or N-event in the sequel.
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The subset Nt �� T�A� characterizes the truth part of statement A.

Ni �� �A� and Nf �� F�A� represent the inderterminacy and the

falsehood of A. This Smarandache's representation is closer

to the human reasoning. It characterizes/catches the imprecision of

knowledge or linguistic inexactitude received by various ob-

servers, uncertainty due incomplete knowledge of acquisition

errors or stochasticity, and vagueness due to lack of clear contours

or limits.

5. WORLD AND UNIVERSE

The notion of ``world'' usually depends highly on many parameters. In

most of cases, assertions depend mainly on our own source of

knowledge (i.e., our own worldW of knowledge representation) about

the problem under consideration. Usually our own world is imprecise,

incomplete, vague and even sometimes can become intentionally (or

unintentionally) subjective or biaised. It can moreover change with

time because of environmental conditions and context variations, but

our world of knowledge, relative to our body of evidence [119], can

also be re®ned sometimes by adding extra information coming from

exogeneous sources of information. The abstract set of all possible

worlds W is refered as universe U and a ®nite set of n distinct

worlds (like a pool of experts for example) will be denoted Wn in the

sequel.

We can distinguish several levels of truths, indeterminacies and

falsehoods of a statement A depending on the world(s) under

consideration. Most important levels which are directly supported

by Neutrosophic logic will be listed below. Neutrosophic logic is

actually the only one general theory which attempts to unify all

previous existing logics in the same global theoretical framework.

Even if more advances are necessary to get and reinforce a strong and

solid ground setting for Neutrosophy, we already believe in this new

Logic and expect many potential bene®ts from it to solve important

problems arising by example in distributed Arti®cial Intelligence and

Multi-Sensor Data Fusion research areas. A very good detailed

discussion about N-Logic within the Logic history can be found in

[130].
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� Absolute truth of A If statement A is true in the universe U (that is

in all possible worlds) and for all conjunctures, we will say that A is

absolutely (or universally) true which is represented by setting Nt(A)

to 1� .

NtjU�A� � 1� , A is absolutely true �11�

� Relative truth of A If a statement A is true in only one possible

world W and for a speci®c conjunctures, we will say that A is

relatively true which is represented by having Nt(A) to 1.

NtjW�A� � 1, A is relatively true �12�

� Quantumly (n-level relative) truth of A If we consider jointly,

several (say n, with n> 1) di�erent worlds Wi, i� 1, . . . , n (i.e.,

experts), an assertion about a given proposition A can take at

same time k di�erent several neutrosophic values depending on

each world Wi. Moreover, each elementary ``world'' can also be

interpreted as a dynamical system because of its possible variations

of its own knowledge with di�erent varying parameters and past

observations, etc. One de®nes the ``n-level relative truth'' of the

statement A (we will say that A is quantumly truth) if the statement

is true in at least n distinct worlds, and similarly ``countably-'' or

``uncountably-level relative truth'' as gradual degrees between ``®rst-

level relative truth'' (1) and ``absolute truth'' (1�) in the monad

�(1�).

NtjWn�A�2 �1; 1��, A is quantumly true �13�

We just point out that this de®nition remains actually only

conceptual and quite abstract since there is for now no e�ective

construction algorithm to evaluate such neutrosophic value

NtjWn�A� from each individual neutrosophic values NtjWi
�A�,

i� 1, . . . , n. This is actually the main challenge we are faced now.

Some issues will be proposed and discussed in the sequel.0

With analogue de®nitions, one gets by substituting ``truth''

with ``falsehood'' or ``indeterminacy'' in the above the following
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characterizations of a statement A

� Absolute indeterminacy of A

NijU�A� � 1� , A is absolutely indeterminate

� Relative indeterminacy of A

NijW�A� � 1� , A is relatively indeterminate

� Quantumly indeterminacy of A

NijWn�A� � 2 �1; 1��, A is quantumly indeterminate

� Absolute falsehood of A

Nf jU�A� � 1� , A is absolutely false

� Relative falsehood of A

Nf jW�A� � 1, A is relatively false

� Quantumly falsehood of A

Nf jWn�A� � 2 �1; 1��, A is quantumly false

0
On the other hand, one also has

NtjU�A� � ÿ0, A is false in all possible worlds

NtjW�A� � 0, A is false in at least one world

NijU�A� � ÿ0, A is indeterminate in no possible world

NijW�A� � 0, A is not indeterminate in at least one world

Nf jU�A� � ÿ0, A is true in all possible worlds

Nf jW�A� � 0, A is true in at least one world

The ÿ0 and 1� monads leave room for degrees of super-truth

(truth whose values are greater than 1), as well as for degrees of

super-falsehood, and super-indeterminacy. All kinds of statements

can be described based on neutrosophic approach. Here are some
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typical ones:

� Absolute/universal Tautology A statement A is called an absolute

or universal tautology (like for example A� ``B is B''), if and only if

in all possible worlds of the universe U, one has

NjU�A� � �1�; ÿ0; ÿ0�

� Tautology A statement A is a relative tautology (tautology for

short) in a given world W of universe U if and only if

NjW�A� � �1; 0; 0�

� Absolute Contradiction A statement A is an absolute contra-

diction (like A� ``B is not B''), if and only if in all possible worlds of

the universe U, one has

NjU�A� � �ÿ0; ÿ0; 1��

� Relative Contradiction A is a relative contradiction (contradiction

for short) if and only if

NjW�A� � �0; 0; 1�

� Paradox and Anti-Paradox A statement A is a (relative) paradox

in W if and only if one has either

NjW�A� � �1; 1; 1� or NjW�A� � �0; 0; 0�

To distinguish NjU(A)� (1, 1, 1) from NjU(A)� (0, 0, 0), we suggest
to call the last statement an anti-paradox. This must not be confused

with (relative) tautology corresponding to Njw(A)� (1, 0, 0). The
absolute/universal paradox and anti-paradox are in same way

characterized by

NjU�A� � �1�; 1�; 1�� or NjU�A� � �ÿ0; ÿ0; ÿ0�

� Absolute Full Ignorance

NjU�A� � ��ÿ0; 1��; �ÿ0; 1��; �ÿ0; 1���
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Note that Absolute Full Ignorance is not equivalent to Absolute

Indeterminacy which is charaterized by NjU(A)� (ÿ0,1� ,ÿ0)
� Relative Full Ignorance

NjW�A� � ��0; 1�; �0; 1�; �0; 1��
0

6. UNIVERSAL NEUTROSOPHIC CUBE

Any neutrosophic statement can be easily interpreted graphically by

using the following universal neutrosophic cube representation (N-

Cube). The 3D space limited by vertices A,B, . . . ,H corresponds to

the representation of universe U (i.e., the set of all possible worlds

of knowledge). The small classical unit cube de®ned by vertices

a, b, . . . , h represents a typical world of knowledge W related to a

given source of information (body of evidence) under consideration.

In general, a statement A will not correspond to a speci®c point

of N-Cube but rather a set of non-connexe volumes included

into it.

Each vertice of the N-Cube corresponds to a very special kind of

logical formula (tautology, contradiction, paradox, etc.). The list of all

these speci®c statements is given in Table I. By example, if statement A

lies in G this means that A is an universal tautology. If the position of

statement A is anywhere in the UNC, we have an absolute full

ignorance about A and no (or all) conclusions/decision can be drawn

from A.

TABLE I Types of speci®c logical statements in N-Cube

Location of statement Type of statement

A Anti Paradox
B Universal Truth
C Anti Falsehood
D Universal Indeterminacy
E Universal Contradiction
F Anti Indeterminacy
G Universal Paradox
H Anti Truth
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7. MANIPULATIONS ON NEUTROSOPHIC

ASSERTIONS AND SETS

In the neutrosophic topology de®ned on ]ÿ0; 1� [, the union and

intersection of two any neutrosophic subsets A and B (corresponding

to either the part of truth, indeterminacy or falsehood of a given

assertion) are de®ned as follows

A [ B � �A� B� 	 �A� B� and A \ B � A� B �14�
The neutrosophic complement of A is de®ned as �A � f1�g 	 A

The neutrosophic logical (neutrosophical) value of an assertion A

conditioned on a given world of knowledge W is characterized by a

mapping function NjW( � ) such that

NjW : A 7!NjW�A� � �T�A�; I�A�;F�A�� � �ÿ0; 1��3 �15�

FIGURE 1 Universal N-Cube.
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Consider now two statements A1 and A2 conditioned on the same

world of knowledgeW. The following basic operators are then de®ned

(indexe jW has been omitted for simplicity and Ti�T(Ai), Ii� I(Ai),

Fi�F(Ai) for i� 1, 2)
N�A1�7� N�A2� � �T1 � T2; I1 � I2;F1 � F2� �16�

N�A1�7ÿ N�A2� � �T1 	 T2; I1 	 I2;F1 	 F2� �17�

N�A1�7� N�A2� � �T1 � T2; I1 � I2;F1 � F2� �18�

Since the truth, falsehood and indeterminacy of any statement must

belong to ]ÿ0; 1� [, the result of each previous operator7�,7ÿ and ú�
must be in �ÿ0; 1��3. Therefore upper and lower bounds of T1 � T2
must be set respectively to ÿ0 and 1� whenever inf �T1 � T2�< 0 or

sup�T1 � T2�> 1. The same remark applies for 7ÿ and ú� operators

and for falsehood and inderterminacy part of compounded statement.

All classical logical operators and connectors can be extented in the

N-Logic. For notation convenience, we will identify logical operators

with their classical counterpart in set theory as pointed out in [92]

(hence the following equivalences will be used :A � A;A1 ^ A2 � A1 \
A2 and A1 _ A2 � A1 [ A2 throughout this paper). We recall here only

important operators used in the sequel. Additional neutrosophic

logical operators can be found in [130].

� Negation

N�A� � �f1g 	 T�A�; f1g 	 I�A�; f1g 	 F�A�� �19�

� Conjunction

N�A1 \ A2� � N�A1�ú� N�A2� � �T1 � T2; I1 � I2;F1 � F2� �20�
� Disjunction

N�A1 [ A2� � �T1 [ T2; I1 [ I2;F1 [ F2�
� ��T1 � T2� 	 �T1 � T2�;
�I1 � I2� 	 �I1 � I2�; �I1 � I2� 	 �I1 � I2��

� �N�A1�7� N�A2��7ÿ �N�A1�ú� N�A2�� �21�
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07.1. N-Membership Function Over a Neutrosophic Set

We denote by � a world of discourse for a given world of knowledge

W, called also frame of discernment in DS (Dempster-Shafer) theory.

Each ``neutrosophical'' element x of � is characterized by its own

neutrosophical basic assignment �N-value�NjW�x��� �T�x�; I�x�;F�x��
with T(x), I(x) and F�x� � �ÿ0; 1��. The N-membership function of

any neutrosophical element x with any subset M�� is de®ned in

similar way by

NjW�xjM��� �TM�x�; IM�x�;FM�x�� �22�
with TM(x), IM(x) and FM�x� � �ÿ0; 1��. The N-value of x over M

can be interpreted, by abuse of language, as its membership function

to M in the following sense: x is t% true in the set M, i%

indeterminate (unknown if it is) in M, and f% false in M, where t

varies in T, i varies in I, f varies in F. The standard notation x2M will

be used in the sequel to denote the neutrosophical membership of x to

M. One can say actually that any element x of a given frame of

discernment supported by a body of evidence neutrosophically belongs

to any set, due to the percentages of truth/indeterminacy/falsity

involved, which varies between 0 and 1 or even less than 0 or greater

than 1. From this de®nition and previous neutrosophic rules, one gets

directly following basic neutrosophical set operations:

� Complement of M

If x2M with NjW�xjM��� �TM�x�; IM�x�;FM�x��, then x2=M with

NjW�xj �M� � �f1g 	 TM�x�; f1g 	 IM�x�; f1g 	 FM�x�� �23�

� Intersection M\N If x2M with NjW�xjM��� �TM�x�; IM�x�;FM�x��
and x2N with NjW�xjN��� �TN�x�; IN�x�;FN�x�� then x2M\N
with

NjW�xjM \ N� � �TM�x� � TN�x�; IM�x� � IN�x�;FM�x� � FN�x��
�24�

� Union M[N
If x2M with NjW�xjM��� �TM�x�; IM�x�;FM�x�� and x2N
NjW�xjN��� �TN�x�; IN�x�;FN�x�� then x2M[N with

NjW�xjM [ N� � �TM[N�x�; IM[N�x�;FM[N�x�� �25�

17NEUTROSOPHIC INFERENCE



where

TM[N�x��� �TM�x� � TN�x�� 	 �TM�x� � TN�x�� �26�

IM[N�x��� �IM�x� � IN�x�� 	 �IM�x� � IN�x�� �27�

FM[N�x��� �FM�x� � FN�x�� 	 �FM�x� � FN�x�� �28�

� Di�erence MÿN
SinceM ÿ N�� M ÿ �N if x2MwithNjW�xjM��� �TM�x�; IM�x�;FM�x��
and x2N with NjW�xjN����TN�x�; IN�x�;FN�x�� then x2MÿN with

NjW�xjM ÿ N� � �TMÿN�x�; IMÿN�x�;FMÿN�x�� �29�

FIGURE 2 Example of neutrosophic inclusion of M in N.
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where

TMÿN�x��� TM�x� 	 �TM�x� � TN�x�� �30�

IMÿN�x��� IM�x� 	 �IM�x� � IN�x�� �31�

FMÿN�x��� FM�x� 	 �FM�x� � FN�x�� �32�

� Inclusion M�N

We will said that M�N if for all x2M with NjW�xjM���
�TM�x�; IM�x�;FM�x�� and x2N with NjW�xjN��� �TN�x�; IN�x�;
FN�x�� one has jointly TM(x)�TN(x), IM(x)� IN(x) and FM(x)�
FN(x).0

8. NEUTROSOPHIC INFERENCE

Before discussing about neutrosophy inference, it is important to

remind the framework of the two main rules of inference on which are

based most of modern data fusion algorithms: the Bayesian inference

and Dempster-Shafer rule of combination.

� Bayesian Inference and Bayesian Fusion Rule

To each event A of random experiment de®ned on frame of

discernment (worl os discourse) �, we assign a real number P{A},

called probability verifying some properties. Traditional de®nitions

P{A} are [92]:

(1) within classical approach

PfAg � Number of possible outcomes for event A

Number of possible outcomes for space �

For example, if we consider the fair Die-rolloing experiment and

the event A� ``an event number shows up'', then PfAg �
�1� 1� 1�=6 � 1=2.

(2) within geometrical approach

PfAg � Geometric measure of set A

Geometric measure of space �
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(3) within relative frequency approach

PfAg � lim
N!1

Number of occurrences of set A

Total number of trials N

In this approach, we implicitly assume that each elementary (focal)

element of � is equally probable. This fundamental assumption is

called principle of su�cient reason or principle of indi�erence. This

principle has been strongly critized especially for cases involving

in®nitely many possible outcomes because this can lead to

confusing paradoxes. That is why since the work of A.

Kolmogorov in 1933, the axiomatic of the probability theory

based on (�)algebraes and measure theory has been de®nitely

adopted.

(4) within axiomatic approach The probability measure P is de®ned

by the following axioms0

A1: (Nonnegativity)

0� PfAg � 1 �33�

A2: (Unity) Any sure event (the sample space) has unity probability

Pf�g � 1 �34�
A3: (®nite additivity) If A1, . . . ,An are disjoint events, then

PfA1 [ � � � [ Ang � PfA1g � � � � � PfAng �35�

A4: (countable additivity) If A1, A2, . . . are disjoint events

P

�[1
i�1

Ai

�
�
X1
i�1

PfAig �36�

0

From these axioms, all other probability laws (specially Total

Probability Theorem and Bayes's rule as it will be reminded) can be

derived. In particular,

Pf;g � 0 and PfAcg � 1ÿ PfAg �37�

A � B) PfAg � PfBg �38�
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8A;B � �; PfA [ Bg � PfAg � PfBg ÿ PfA \ Bg �39�

8A1; . . . ;An � �; PfA1 [ � � � [ Ang �
Xn

i�1
PfAig �40�

More precisely, in the general case one has

PfA1 [ � � � [ Ang �
Xn

i�1
PfAig ÿ

X
i < j

PfAi \ Ajg � � � � � �ÿ1�kÿ1

X
i1 < ... < ik

PfAi1 \ . . . \ Aikg � � � � � �ÿ1�nP

� \
i�1;n

Ai

�
�41�

which can be also written as

PfA1 [ � � � [ Ang �
X

I�f1;...;ng
I 6�;

�ÿ1�jIj�1P
�\

i 2 I

Ai

�
�42�

The probability of an event A under the condition that event B has

occured (with probability P{B} 6� 0) is called the conditional (or a

posteriori) probability of A given B and is de®ned as

PfAjBg � PfA \ Bg
PfBg �43�

Events A and B are said to be independent if P{A\B}�P{A}P{B}

or equivalently P{AjB}�P{A} and P{BjA}�P{B}.

Total Probability Theorem: The probability of any event B can be

recovered from any partition (i.e., a set of exhaustive and disjoint

events) A1, . . . ,An of sample space � by the following relationship

PfBg �
Xn

i�1
PfBjAigPfAig �44�

Baye's rule: P{AjB}P{B}�P{A\B}�P{BjA}P{A}, one gets the

famous Baye's formula also called Bayesian inference

PfAjBg � PfBjAgPfAg
PfBg �45�
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08.1. Bayesian Fusion Rule

Let have a given set of hypothesis �� {�1, . . . ,�m} corresponding to a

world of discourse (frame of discernment) about the true nature of

a parameter �. If we now consider N body of evidence (experts)

providing an unreliable assertion/disjonction W�i

i ; i � 1; . . . ;N (where

�i� 1 if �2Wi or �i� 0 otherwise) about the truth in �, then general

optimal Bayesian fusion rule for these N sources of knowledge is given

by [36]

Pf� � �ijW�1
1 ; . . . ;W�N

N g �
p1ÿN

i

Q
n�1;N Pf�ijW�n

n g
KN

�46�

where the normalization constant KN is given by

KN �
X

i�1;M
p1ÿN

i

Y
n�1;N

Pf�ijW�n
n g �47�

If we assume the so-called principle of su�cient reason, i.e., we

consider uniform prior pi �� Pf� � �ig, then Pf� � �ijW�1
1 ; . . . ;W�N

N g
will reduce to

Pf� � �ijW�1
1 ; . . . ;W�N

N g �
Q

n�1;N Pf�ijW�n
n gP

i�1;M
Q

n�1;N Pf�ijW�n
n g

�48�

Because of exhaustive list of focal/atomic hypotheses �i, any

disjunction can be evaluated by additivity property of probabilities

from (46). Hence for example, if we consider A � �1 [ �2 [ �3, then
PfAjW�1

1 ; . . . ;W�N

N g will be easily obtained by

PfAjW�1
1 ; . . . ;W�N

N g �
X
�i�A

�
p1ÿN

i

KN

Y
n�1;N

Pf�ijW�n
n g
�

�49�

The optimal Bayesian fusion rule always exists if the sources are

unreliable even if they appear to be incompatible, that is to say when

W�1
1 \; . . . ;\W�N

N � ; when �1 � � � � � �N . When the sources are fully

reliable and if for �1 � � � � � �N , one has W�1
1 \W�2

2 ; . . . ;\W�N

N � ; then
no theoretical optimal fusion rule exists because this would mean that
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these two sources of information assign di�erent values for the unique

absolute truth which yields to a physical paradox. Actually, such case

must not appear in theory. Such case can however occur in some

practical problem of multi-sensor data fusion only because the sources

of information (experts) do not support the same world of knowledge.

They may be actually only fully reliable with respect to their

own world of knowledge but not in the absolute universe de®ned in

Section 5.

� Dempster-Shafer's inference and fusion rule

In his theory of evidence (called sometimes theory of probable

reasoning), Glenn Shafer has introduced in [119] the concept of belief

functions to quantify the impact of an evidence on a ®nite and

countably frame of discernment � provided by a given world of

knowledge W. Formally, belief functions Bel : 2� ! �0; 1� obey the

following three axioms:

Axiom 1: The belief over all the frame of discernment is set to one

Bel��� � 1 �50�

Axiom 2: The belief of impossible event is set to zero

Bel�;� � 0 �51�

Axiom 3: For every positive integer n and every collection A1, . . . , An

of subset of �,

Bel�A1 [ � � � [ An� �
X

I�f1;...;ng
I 6�;

�ÿ1�jIj�1Bel

�\
i 2 I

Ai

�
�52�

0

Any belief function satisfyingBel(;)� 0,Bel(�)� 1 andBel(A[B)�
Bel(A)�Bel(B) whenever A, B�� and A\B� 0 is called a Bayesian

belief function. In such case, relation (52) coincides exactly

with (42).

The basic probability assignment (mass) m: 2�! [0; 1] de®ned by

m�;� � 0 and
X
A��

m�A� � 1 �53�
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are bi-uniquely related to the belief function Bel by

Bel�A� �
X
B�A

m�B� �54�

In return, m(A) for all A�� can be recovered from the belief

function by

m�A� �
X
B�A

�ÿ1�jAÿBj
Bel�B� �55�

The mass m( � ) is sometimes called the M�obius inverse of belief

function [113]. The quantity m(A) is the measure of belief that is

exactly committed to A. A subset A of a frame of discernment � is

called focal element of a belief function Bel over � if m(A)> 0. The

union of all the focal elements of a belief function is called its core C. A
vacuous belief function is a belief function that allocates a null belief to

any strict subset of �, i.e., Bel(A)� 0 for all A 6��. It represents a state

of full ignorance on �. It has been shown in [119], that Bel is a

Bayesian belief function if and only if there exists a mass assignment

m( � ) such that
P

� 2� m(�)� 1 and 8A��, Bel(A)�P� 2A m(�)

which is equivalent to say that all Bel's focal elements are singletons or

8A��, Bel(A)�Bel(Ac)� 1.

8.2. Dempster's Rule of Combination

G. Shafer has proposed the ad-hoc Dempster's rule of combination

(orthogonal summation), symbolized by the operator �, to combine

two so called distinct bodies of evidences over the same frame of

discernment �. Let Bel1( � ) and Bel2( � ) be two belief functions over the
same frame of discernment � and m1( � ) and m2( � ) their corresponding
basic probability masses. The combined (i.e., merged or fusionned)

global belief function Bel( � )�Bel2( � )�Bel2( � ) is obtained from the

combination of its basic mass assignments m1( � ) and m2( � ) as follows:
m(;)� 0 and for any C 6� ; and C��,

m�C� �
P

A\B�C m1�A�m2�B�P
A\B 6�;m1�A�m2�B� �

P
A\B�C m1�A�m2�B�

1ÿPA\B�;m1�A�m2�B� �56�

The orthogonal sum m( � ) is a basic probability assignment if K�41ÿP
A \ B�;m

1(A)m2(B) 6� 0. If K� 0, which means
P

A \ B�;m
1(A)

m2(B)� 1 then orthogonal sum m( � ) does not exist and m1( � ) and
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m2( � ) are said to be totally or ¯atly contradictory. Such case arises

whenever the cores of Bel1( � ) and Bel2( � ) are disjoint or equivalently
when there exists A�� such that Bel1(A)� 1 and Bel2(Ac)� 1. The
same problem has already been pointed out previously in the develop-

ment of optimal Bayesian fusion rule.

The quantity log 1/K is called the weight of con¯ict between the

sources of evidence Bel1( � ) and Bel2( � ). It is easy to show that

Dempster's rule of combination is commutative (m1�m2�m2�m1)

and associative ([m1�m2]�m3�m1� [m2�m3]). The vacuous belief

function such that mv(�)� 1 and mv(A)� 0 for A 6�� is the identity

element for �, i.e., mv�m�m�mv�m. If Bel1( � ) and Bel2( � ) are two
combinable belief functions and if Bel1( � ) is Bayesian, then Bel1�Bel2
is a bayesian belief functions.

This rule of combination, initially proposed by Shafer without

strong theoretical justi®cation (``ad-hoc justi®cation''), has been

criticized in the past decades by many disparagers of this

theory. Nowadays, this rule of combination has however been fully

justi®ed by the axiomatic of the transfer belief model developed by

Smets in

[136 ± 138, 140]. We mention the fact that such theoretical justi®cation

had been already attempted by Cheng and Kashyap in [18].

We can see a very close similarity between Dempster's rule and

optimal bayesian fusion (46). Actually these two rules coincides

exactly when m1 and m2 become probability assignments and if we

accept the principle of indi�erence within the optimal Bayesian fusion

rule.

8.2.1. Conditional Belief Functions

Let mB(B)� 1 and mB(A)� 0 for all A 6�B. Then BelB is a belief

function that focuses all of the belief on B (note that BelB is not in

general a Bayesian belief function unless jBj � 1). If we now consider

another belief function Bel over � combinable with BelB, then the

orthogonal sum of Bel with BelB denoted as Bel( � jB)�Bel�Belb is

de®ned for all A�� by [119]

Bel�AjB� � Bel�A [ Bc� ÿ Bel�Bc�
1ÿ Bel�Bc� �57�
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If Bel is a Bayesian belief function, then

Bel�AjB� � Bel�A \ B�
Bel�B� �58�

which coincides with the classical conditional probability de®ned

in (43).

� Neutrosophic inference

The major di�culty for the development of neutrosophic inference

is to deal with 3 dimensions of the neutrosophic space and the freedom

on each dimension with respect to the others.

We propose to use the following generalized neutrosophic mass

assignment m( � )� (mt( � ), mi( � ), mf ( � )):2�! ]ÿ0; 1� [3 satisfying the

following constraints for each dimension of the neutrosophic spaceX
A��

sup�mt�A�� � 1 �59�

X
A��

inf�mf �A�� � j�j ÿ 1 �60�

where j�j represents the cardinality of frame of discernment �. For

notation convenience we prefer to indroduce here the notation

(mt( � ),mi( � ),mf ( � )) rather than (T( � ), I( � ),F( � )) to explicitly specify

that these neutrosophic components have to follow the previous

constraints.

We don't impose constraint on indeterminate part of neutrosophic

statements but to belong to ]ÿ0; 1� [. This generalization coincides

with the basic mass assignment whenever we impose the classical

constraint T( � )� 1ÿF( � ) with T( � ) being a real number belonging to
[0; 1]. Neither, we impose constraint on empty set ;.
From this basic neutrosophic ``mass'' assignment, we would like to

associate bi-uniquely a new neutrosophic belief function having some

mathematical properties. It can be shown that classical belief functions

are1-monotone capacities, form a convex subset of the space of non-

additive measures on a given algebra (the algebra of events). A direct

extension of Dempster Shafer's theory suggest us to take, for all A��,

Bel( � )� (BelT( � ), BelI( � ), BelF( � )) as
BelT�A� �7�B�Amt�B� �61�
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BelI�A� �7�B�Ami�B� �62�

BelF�A� �7�B�Amf �B� �63�

Such ®rst tentative for a ``neutrosophic belief function'' construction

must however be examined in details to be validated or rejected.

De®nitely, the mathematical properties of such kind functions have to

be clari®ed. We expect that such function should extend in some way

the classical belief functions proposed by Shafer. Some caution must

be taken for now about the indeterminate part of neutrosophic belief

function. Since we have introduced no constraint about indeterminate

part (on mi( � )) of neutrosophic events, we can't expect some nice

mathematical properties for BelI( � ) (like super additivity, etc.). This is
a miss and more deeper investigations are needed to develop a new

neutrosophic belief formalism. We have just wanted, through this

paper, to point out major open questions about neutrosophic

inference. When neutrosophic belief formalism and axiomatic will be

achieved, one should be able to develop a new neutrosophical rule of

combination. Such rule (if any) will have to be commutative,

associative and allow to reduce indeterminacy with the introduction

of (better) sources of information and possibly eliminate antinomies

of the world of discourse. The development of the theory of

neutrosophic belief function and neutrosophic combination rule is

the forthcoming theoretical challenge to overcome to bring the full

usefulness of neutrosophy for solving many important problems

involved mainly in data fusion and expert systems.
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