

Correspondence

Comments on “A new combination of evidence based on compromise” by K. Yamada

In a previous issue of this journal, Yamada [14] presents an interesting new model of combination of evidence called *combination by compromise* based on previous works published in [13,12].

In the theory of belief functions, one of the most important problems is the one of reassigning the conflicting belief mass, as highlighted by the famous Zadeh’s example, see [15]. To date, many combination rules have been developed, proposing a solution to this problem. Yamada [14] recalls some of them in his paper.

Basically, most combination rules are mainly based on a conjunctive operator and propose a specific way of redistributing the global (or the partial) conflicting belief mass among some elements of the power-set (or the hyper-power set) of the frame of discernment. Using the conjunctive rule means that if the experts agree (i.e. their testimonies have a non-empty intersection), we consider them as reliable and if they are in conflict (empty intersection), at least one of the experts is considered unreliable see [2]. Then, the disjunctive combination rule can be employed instead see [1]. However the disjunctive rule is generally not used because it deteriorates the specificity of the expert’s responses, i.e. the combined mass is usually less specific after the disjunctive fusion than the mass of each source taken separately. If the reliability of the experts is unknown, there are different techniques to estimate it [3,6].

The first idea published in [13,12] is based on the assumption that we do not have information on the reliability of the experts. So in order to define a compromise between the conjunctive and the disjunctive rules, Yamada proposes to transfer the basic belief assignments/masses $m_1(X).m_2(Y)$ given by two experts to $X \cap Y$, $X \cap Y^c$ and $X^c \cap Y$, even if X and Y do not conflict. The repartition is made proportionally to the basic belief assignment with a weight given by a ratio of cardinalities. In the more recent paper, Yamada [14] proposes a general form of repartition, with thresholds instead of the weights based on cardinalities.

After a review of criticisms against Dempster’s rule and its advantages, Yamada [14] concludes on three possible ideas “to combine two even hypotheses with the same reliability into one” p. 1698:

- (1) Believe the common part of hypotheses (combination by exclusion, *CBE*).
- (2) Believe the disjunction of hypotheses (“united part” in [14]) (combination by union, *CBU*).
- (3) Believe the common part strongly and the other part weakly (combination by compromise *CBC*).

The *CBE* is similar to Dempster’s rule. The *CBU* is similar to the disjunctive combination rule. Yamada [14] “proposes the third approach, *CBC* as a natural consensus. The basic idea is to share the mass $m_1(X)m_2(Y)$ among subsets included in $X \cup Y$.” Yamada [14] examines “three ways of sharing”:

- (1) The mass is shared between X and Y .
- (2) The mass is shared between $X \cap Y$ and $X \cup Y$.
- (3) The mass is shared among $X \cap Y = C$, $X \cap Y^c = X_Y$ and $X^c \cap Y = Y_X$.

For the first way of sharing, Yamada [14, p. 1698] proposes Eqs. (16) and (17) given by

$$m(X) = \frac{m_1(X)^2 m_2(Y)}{m_1(X) + m_2(Y)} \quad \text{and} \quad m(Y) = \frac{m_1(X)m_2(Y)^2}{m_1(X) + m_2(Y)}$$

DOI of original article: 10.1016/j.fss.2007.11.019

For the second way of sharing, Yamada [14, p. 1699] proposes Eqs. (18) and (19) given by

$$m(X \cap Y) = \delta m_1(X)m_2(Y) \quad \text{and} \quad m(X \cup Y) = (1 - \delta)m_1(X)m_2(Y)$$

with $1 \leq \delta \leq 1$. “The value of δ could be chosen as the degree of overlapping between X and Y , i.e. $\delta|X \cap Y|/|X \cup Y|$, where $|\bullet|$ means cardinality.”

For the third way of sharing, Yamada [14, p. 1699] proposes Eqs. (20)–(22) given by

$$m(C) = \lambda_1 m_1(X)m_2(Y)$$

$$m(X_Y) = \lambda_2 m_1(X)m_2(Y)$$

$$m(Y_X) = \lambda_3 m_1(X)m_2(Y)$$

where $0 \leq \lambda_1, \lambda_2, \lambda_3 \leq 1$ and $\lambda_1 + \lambda_2 + \lambda_3 = 1$. The mass sharing of the *CBC* is proposed in [14, Section 4.3]. When $C = \emptyset$, the whole mass of $m_1(X)m_2(Y)$ is distributed to X and Y according to the first way of sharing. In [14], the paper focuses on this third approach, but “does not deny the qualification of the other subsets completely.”

However, we would like to recall some similarities between Yamada’s two first ways of sharing the mass, and previously published combination rules not reported in the references of Yamada’s paper.

Whenever $X \cap Y = \emptyset$ and the mass that should be assigned to $X \cap Y$ is redistributed to X and Y proportionally to original masses $m_1(X)$ and $m_2(Y)$, Yamada’s first way of sharing in [14, p. 1698] (Eqs. (16) and (17)) is equivalent to the principle of sharing of the Proportional Conflict Redistribution rules #5 (PCR5) and #6 (PCR6) for two experts¹ published in [9–11,7].

The PCR5 and the PCR6 for two experts are given for two basic belief assignments m_1 and m_2 and for all $X \in 2^\Theta$, $X \neq \emptyset$ by:

$$m_{\text{PCR5}}(X) = m_{\text{Conju}}(X) + \sum_{Y \in 2^\Theta, X \cap Y = \emptyset} \left(\frac{m_1(X)^2 m_2(Y)}{m_1(X) + m_2(Y)} + \frac{m_2(X)^2 m_1(Y)}{m_2(X) + m_1(Y)} \right),$$

where $m_{\text{Conju}}(\cdot)$ is the conjunctive rule. In the case of two experts, the Yamada’s rule and the PCR5-PCR6 will be the same if all pairs of X_i^1 and X_j^2 chosen, respectively, from experts 1 and 2 have the empty intersection ($X_i^1 \cap X_j^2 = \emptyset$, $\forall i, j$). For M experts, if any pair of focal elements chosen from M focal elements X_i^1, \dots, X_j^M have an empty intersection ($X_i^{k_1} \cap X_j^{k_2} = \emptyset$, $\forall k_1, k_2 = 1, \dots, M$, $k_1 \neq k_2$ and $\forall i, j$) the Yamada’s rule (Eqs. (38)–(40) in [14, p. 1701]) is the PCR6 given explicitly for $X \in 2^\Theta$, $X \neq \emptyset$ by

$$m_{\text{PCR6}}(X) = m_{\text{Conju}}(X) + \sum_{i=1}^M m_i(X)^2 \sum_{\substack{\bigcap_{k=1}^{M-1} Y_{\sigma_i(k)} \cap X = \emptyset \\ (X_{\sigma_i(1)}, \dots, X_{\sigma_i(M-1)}) \in (2^\Theta)^{M-1}}} \left(\frac{\prod_{j=1}^{M-1} m_{\sigma_i(j)}(X_{\sigma_i(j)})}{m_i(X) + \sum_{j=1}^{M-1} m_{\sigma_i(j)}(X_{\sigma_i(j)})} \right)$$

where $X_k \in 2^\Theta$ is the response of the expert k , $m_k(X_k)$ the associated belief function and σ_i counts from 1 to M avoiding i :

$$\begin{cases} \sigma_i(j) = j & \text{if } j < i \\ \sigma_i(j) = j + 1 & \text{if } j \geq i \end{cases}$$

Indeed, in this special case, Eq. (40) in [14, p. 1701] is given by

$$m_k(X_k) = \frac{m_k(X_k)}{\sum_{k=1}^M m_k(X_k)} \prod_{k=1}^M m_k(X_k)$$

A presentation of PCR rules with many examples are proposed in [9–11,7].

¹The PCR5 and PCR6 rules coincide for the two experts case.

The second way of sharing proposed in [14] (Eqs. (18) and (19)) is exactly the same as the mixed rule proposed in [8], Eq. (17), that also transfers the basic belief assignment $m_1(X) \cdot m_2(Y)$ even if X and Y do not conflict. One of the proposed values of δ in [8] is also given by $|X \cap Y|/|X \cup Y|$. In case of conflict $X \cap Y = \emptyset$, all the mass is transferred to $X \cup Y$. The mixed rule proposed in [8] was inspired by [2,4]. The recent paper [5] presents more details on a robust combination rule.

To conclude, the proposed approach by Yamada can be an interesting alternative to the disjunctive rule and reconsiders the conjunctive rule. In very recent years many rules of combination have been proposed in the theory of belief functions. The choice of a rule is usually difficult and must be guided by the prior and the exogenous information (if available) related to the application one has to deal with.

References

- [1] D. Dubois, H. Prade, A set theoretic view of belief functions-logical operations and approximation by fuzzy sets, *Internat. J. General Systems* 12 (3) (1986) 193–226.
- [2] D. Dubois, H. Prade, Representation and combination of uncertainty with belief functions and possibility measures, *Comput. Intell.* 4 (1988) 244–264.
- [3] Z. Elouedi, K. Mellouli, P. Smets, Assessing Sensor Reliability for Multisensor Data Fusion Within The Transferable Belief Model, *IEEE Trans. Systems, Man, and Cybernetic-Part B: Cybernetics* 34 (1) (2004) 782–787.
- [4] M. Florea, J. Dezert, P. Valin, F. Smarandache, A. Josselme, Adaptative combination rule and proportional conflict redistribution rule for information fusion, in: COGnitive systems with Interactive Sensors. March 2006, Paris, France.
- [5] M. Florea, A. Josselme, E. Bossé, D. Grenier, 2008. Robust combination rule for evidence theory, *Information Fusion* (doi: [10.1016/j.inffus.2008.08.007](https://doi.org/10.1016/j.inffus.2008.08.007)).
- [6] A. Martin, A.-L. Josselme, C. Osswald, Conflict measure for the discounting operation on belief functions, in: International Conference on Information Fusion, July 2008, Cologne, Germany.
- [7] A. Martin, C. Osswald, A new generalization of the proportional conflict redistribution rule stable in terms of decision, in: F. Smarandache, J. Dezert (Eds.), *Applications and Advances of DSmT for Information Fusion*, Vol. 2, American Research Press Rehoboth, 2006, pp. 69–88, Chapter 2.
- [8] A. Martin, C. Osswald, Toward a combination rule to deal with partial conflict and specificity in belief functions theory, in: International Conference on Information Fusion, July 2007, Québec, Canada.
- [9] F. Smarandache, J. Dezert, Proportional conflict redistribution rules for information fusion. Technical report, December 2004 (<http://xxx.lanl.gov/abs/cs/0408064v2>).
- [10] F. Smarandache, J. Dezert, Information fusion based on new proportional conflict redistribution rules, in: International Conference on Information Fusion, Philadelphia, PA, USA, 2005.
- [11] F. Smarandache, J. Dezert, Proportional conflict redistribution rules for information fusion, in: F. Smarandache, J. Dezert (Eds.), *Applications and Advances of DSmT for Information Fusion*, Vol. 2, American Research Press Rehoboth, July 2006, pp. 3–68.
- [12] K. Yamada, On new combination of evidence by compromise, in: Joint 3rd International Conference on Soft Computing and Intelligent Systems and 7th International Symposium on advanced Intelligent Systems, Tokyo, Japan, 20–24 September 2006.
- [13] K. Yamada, On new combination of evidence in evidence theory, in: 22nd Fuzzy System Symposium, Sapporo, Japan, 6–8 September 2006.
- [14] K. Yamada, A new combination of evidence based on compromise, *Fuzzy Sets and Systems* 159 (13) (July 2008) 1689–1708.
- [15] L. Zadeh, On the validity of Dempster’s rule of combination, *Memo M 79/24*, University of California, Berkeley, USA, 1979.

Jean Dezert

ONERA, The French Aerospace Lab, 29 Av. Division Leclerc,
92320 Châtillon, France

Arnaud Martin

ENSIETA, E³I²-EA3876, 2 rue François Verny, 29806 Brest cedex 9, France
E-mail address: Arnaud.Martin@ensieta.fr.

Florentin Smarandache

Chair of Material and Sciences Department, University of New Mexico,
200 College Road, Gallup, NM 87301, USA