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Wireless Sensor Network for Tactical
Situation Assessment

Benjamin Pannetier , Jean Dezert , Julien Moras, and Raphael Levy

Abstract—This paper describes a complete solution of a
new dropped wireless sensor network (called “abandoned”
since it is never pickedup) dedicated to intelligenceoperation.
The sensor network, named SEXTANT for Smart sEnsor X for
Tactical situation AssessmeNT and presented in this paper is
the achievementof several years of researchand development
in the fields of data fusion and smart sensors at the French
Aerospace Lab. The main contribution of this paper is the
presentation of experimental results obtained with our Joint
Tracking and Classification (JTC) algorithm. The originality
of this algorithm relies on the use contextual information in the target tracking processing and data fusion for target
classification processing.

Index Terms— Wireless sensor network, mbed protocol, data fusion, multiple target tracking, classification.

I. INTRODUCTION

THIS paper presents a new Wireless Sensor Network
(WSN) system called SEXTANT (Smart sEnsor [X] for

Tactical situAtion assessmeNT) for real-time tactical assess-
ment in military applications. The proposed SEXTANT WSN
is aimed at culminating in the next years into an operational
network of a large number of smart heterogeneous sensors
with onboard sensing, processing and wireless communication
capabilities. In fact, SEXTANT is currently a modular labo-
ratory platform which can integrate new sensor components
(with dedicated signal processing tasks) and can evaluate
their impact in the fusion process. This paper presents
this achievement of the SEXTANT study and development
and is focused on experimental results demonstrating our
Joint Tracking and Classification (JTC) algorithm. The WSN
technical requirements are described in [1].

The current state of our demonstrator allows studying the
automatic data processing for fusion detections and creating
tracks on moving targets. In the future, it will enable the
evaluation of schemes for data collection and fusion process,
as well as the demonstration of the necessity of taking into
account the contextual information in the fusion process
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(cf. [2], [3]), typically the geographical information such as
traffic lanes, road intersections or intervisibility areas. [1],
[4], [5]. Previous works on this topic use particle filter to
generate particles on the road in order to improve the ground
target state estimation. This is the case for tracking targets
with a UAV in [6] or for instance in [7] where the authors
developed a modified particle filter (PF) to track a single
vehicle by a WSN. However, in order to address long-running
operational surveillance missions with a WSN, algorithms
must combine low computational cost and good target track-
ing performances. To this aim, our JTC algorithm exploits
geographical information.

In this work, we propose an adapted version of the algo-
rithm described in [8] for our WSN tracking SEXTANT
demonstrator. In line with what was proposed by Ulmke and
Koch [9], we leverage the geographical information within
both the Multiple Target Tracking (MTT) algorithm and the
classification algorithm, for improved performances. Indeed,
the target classification method is based on the knowledge
of target evolution capability relatively to the type of terrain.
Recent paper [10], [11] uses a constrained GMPHD for the
MTT, but if this approach is efficient with a single sensor
it is not adapted for multiple sensors. Also, we adapt the
Multiple Hypotheses Tracker algorithm described in [8] to
track several ground and aerial targets. In [12], Blasch presents
a system based on coupled target tracking and identification
with intent modeling. The tracking performances are improved
thanks to a classifier that works in parallel of the tracker. In the
same line of thought, we presented in [13] a fuzzy inference-
based target classifier that uses kinematic data jointly with
the contextual traffic information to identify ground and aerial
targets at once. Although our previous work was sufficient
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as a proof of concept, high performance classification could
not be achieved due to the lack of precision in inferring the
geographical context on which a target is located.

The paper is organized as follows: in Section II the WSN
is briefly introduced. Section III presents the improvement
brought to the proposed tracker and classifier compared to
previous versions. Section V describes the algorithm for
MTT. Experimental results obtained on real data are given
in Section VI. Finally, Section VII concludes with some
perspectives for future work.

II. SENSOR NETWORK DESCRIPTION

The sensor network is composed of heterogeneous sensor
nodes. Each node is composed of sensors, a processor and
a battery for power supply. Five types of sensor nodes have
been used in this work. Three of them are Wake-Up Nodes
(WUN), which perform a permanent monitoring in order to
detect the presence of a target and estimate its rough position.
The two other types of node are principal nodes (PRIN), which
are in sleeping mode most of the time and are woken up by
a WUN node. The PRINs are dedicated to precise detection
and classification of the targets under surveillance. Several
sensor networks exploiting data fusion to track and classify
targets exist, such as the one proposed in [14] and recently
the SAPIENT1 system which uses heterogeneous sensors [15].
Our approach is however quite different as we must limit the
data fusion processing time in order to save energy of the
batteries of sensor and computing nodes.

A. Wake-Up Node (WUN)
A Wake-Up Node (WUN) performs a permanent monitoring

in order to detect the presence of a target and estimates
its rough position. As the WUNs are continuously on, their
power consumption must be low to increase their working
life duration. Nevertheless, their refreshing rate must be high
enough, while they should provide trustful data that require
minimal computation cost. An additional requirement is to be
able to include news sensors in the WSN at a relatively low
cost. All these constraints led us to implement these nodes
based on ARM microcontroller. We chose a set of boards
produced by NPX (Freedom Board) running the MBED-OS
developed by ARM. The communication between the nodes
is realized using 6LowPan.2 This communication stack allows
a deployment of a low power meshed network.

1) Passive InfraRed Node: This type of node is equipped
with a common Passive InfraRed (PIR) sensor (see Figure 1a).
In order to get more information, we used a ZMotion sensor,
which is a double PIR sensor with interleaving beams that
enables the detection of the target together with its motion
direction (to the left or to the right). The PIR node uses
a FRDM-KW41Z board3 equipped with a System-on-Ship
(SoC) that embeds an ARM Cortex-M4 and a 802.15.4
modem. This node is also equipped with environments
sensor (barometer, thermometer, luxmeter, hydrometer) and

1SAPIENT stands for Sensing for Asset Protection with Integrated Elec-
tronic Networked Technology.

2www.researchgate.net/publication/220785778_The_6LowPAN_architecture
3https://os.mbed.com/platforms/FRDM-KW41Z/

Fig. 1. Wake up node (WUN).

with localization sensor (GPS, 3 axes magnetometer, 3 axes
accelerometer).

2) Microbolometer Node: This node uses a microbolometer
camera to improve detection of people and vehicles. The
sensor used is FLIR Lepton at 9Hz (see Figure 1b). Its
associated WUN is shown in Figure 1a by replacing PIR
sensor by lepton camera. The lepton camera provides a
60 × 80 pixel image encoded over 14 bits. The detection
process consists in background subtraction and a clustering
based on connecting component labelling that provides a set
of bounding boxes [16]. The output is the direction of the
detection in the sensor frame of reference and a class based
on the ratio between the width and height of the box.

3) Seismometer Node: The seismometer node developed at
ONERA is presented in detail in [17]. It includes a high resolu-
tion MEMS accelerometer, a microcontroller measurement and
processing unit and a radio module. A high precision MEMS
accelerometer has been specifically designed for that purpose.
It consists in a quartz vibrating beam accelerometer [18]
that enables to reach a resolution under 4.10−4 m.s−2 in a
100Hz bandwidth, allowing sensing seismic waves emitted by
footsteps and vehicles within a 30m detection range. The goal
of the microcontroller unit is, at first, to sense seismic raw
data, then to process this high rate data and send a signal to
the network only in case of detection. This signal provides
a first identification data that enables the distinction between
footsteps and vehicles. This node has been tested for various
ground types (asphalt road, grass, etc.) and various target types
as well (pedestrians, heavy and light vehicles, etc). Its main
advantages are its low data rate, low power consumption,
ability to work during night and through foliage, with a range
detection of 30 m.

B. Principal Node (PRIN)
These nodes are used to detect, localize and classify targets.

Since the sensors considered here are more heavy (because of
power supply to satisfy computing demand), these nodes are
mostly in a sleep mode and are woken up by WUNs when
targets are detected in the field of view of the sensors coupled
to these nodes.

1) Optronic Node: This node uses an RGB camera to detect
targets in the image (see Figure 2b). The camera is calibrated
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Fig. 2. Principal node (PRIN).

Fig. 3. Radar principal Node.

on the node and the position of the node can be estimated
(based on the board localization sensors), or registered by
an operator. This node is based on an Intel NUC6i5SYH
(I5-6260U, 8GB RAM) that runs a Linux based OS. The
deep learning object detection, named YOLO,4 is implemented
using OpenCL to run on the embedded GPU, reaching 5Hz
as frequency. The outputs of the algorithm are bounding
boxes labelled with classes. The bounding boxes are converted
to corresponding angles and sent to the fusion node. Upon
request a thumbnail image of one object can be sent to the
operator.

2) Radar Node: This node uses a “PSR-500 perimeter sur-
veillance radar” from EPSI-ITNI (see Figure 3). This radar has
8W of consumption, a size fixed to 370(l)×150(w)×53(mm),
a weight equals to 1.8kg and emits in C band frequency
with FMCW waveforms. This node is based on an Intel
NUC6i5SYH (I5-6260U, 8GB RAM) that runs a Linux based
OS. A processing tool-chain is boarded on NUC to provide
measurements of moving targets. Those measurements are
transmitted to a fusion node at 3Hz with limited classification
information.

III. GROUND TARGET ESTIMATION

In this section, we describe our approach to estimate ground
target states by taking into account geographic layers in the
tracking process.

4arxiv.org/abs/1506.02640

A. Definitions
1) State Model: The target state at the current time tk is

defined in the local horizontal plane of the East North Up
(ENU) frame by the vector:

xk = [xk ẋk yk ẏk]T (1)

where (xk, yk) and (ẋk, ẏk) denote respectively the target
location and velocity in the local horizontal plane at time k and
T denotes the transpose operator. The elevation component is
omitted because we focus here on a two-dimensional ground
MTT problem on Earth surface. In fact, despite the presence
of drones the selected sensors in our network are unable to
provide elevation data for now. The sensor node s state, for
s = 1, . . . , NS , is denoted xs

k :

xs
k = [

xs
k ẋ s

k ys
k ẏs

k

]T (2)

where Ns is the number of sensor nodes.
2) Measurement Model: Each principal sensor deployed on

the ground provides both location measurement and classifi-
cation data if possible.

z js
k = hs(k, xk) + bs

k (3)

where js = 1, . . . , ms
k is the index of the js-th validated mea-

surement of target by the sensor s at time tk , ms
k is the number

of all validated measurements, hs is the observation function
of the state xk from sensor s at current time tk , and bs

k is a
zero-mean Gaussian measurement noise with covariance Rs

k .
The probability distribution function of the measurement (3)
given the state and all previous measurements is denoted by:

�
js
k = p{z js

k |xk, Zk−1,l }. (4)

where the sub-sequence of measurements Zk−1,l will be
defined in Section III-A4. In the specific WSN surveillance
application of this paper, we consider three types of
measurements: the range ρ

js
k and the azimuth θ

js
k , the

azimuth θ
js

k only, and the range ρ
js
k only where:

ρ
js
k =

√
(xk − xs

k)
2 + (yk − ys

k)
2 (5)

and

θ
js

k = arctan

(
yk − ys

k

xk − xs
k

)
(6)

where s corresponds to a specific sensor node among Ns

sensors. For a radar sensor, the measurements are composed
of range and azimuth, for seismic sensor the measurements are
composed of range component only, and for optronic sensor
the measurements are composed of azimuth component only.

3) Classification Information: Each principal sensor is able
to provide class information associated to each measurement.
The set C of target classes is defined by:
C � {Unknown, vehicle, animal, PAX,

copter, drone, plane, boat} (7)

where PAX stands for “person”. The measurement z js
k defined

in (3) is associated to a class c ∈ C with a likelihood vector
LC defined over C.
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4) Track Definition: For notation convenience, a track T with
unique identifier l at current time tk is denoted by T k,l . This
track is represented by its current estimated state x̂k|k with
its associated covariance Pk|k and previous estimated states so
that T k,l � {(x̂k|k, Pk|k),T k−1,l}. The measurements sequence
Zk,l � {z js

k , Zk−1,l } represents a possible set of measurements
generated by the target up to time tk and associated to the
track T k,l . The sequence Zk,l consists in a sub-sequence
Zk−1,l of measurements up to time tk−1 appended by the
js-th measurement from sensor s available at time tk from
track T k,l .

B. Track Estimation With Geographic Constraints
1) Prediction: To track ground targets, we use several motion

models constraining the target dynamics with contextual prior
information on road, buildings, forest and locations. The
dynamics of the target evolving on the road are modelled
by a first-order plant kinematics. The target state on the road
segment r is defined by xr

k where the target position (xr
k , yr

k )
belongs to the road segment r and the corresponding heading
(ẋ r

k , ẏr
k ) in its direction. The event “the target is on road

segment r” is denoted by er
k = {xk ∈ r}. Given this event

er
k and according to a motion model Mir

k for the road segment
r , at time k, ir ∈ I , where I = {0, . . . , NI } is the set of
motion models and the model indexed by ir = 0 is the stop
model. The estimation of the target state can be improved by
considering the road segment r . For a constant velocity motion
model, it follows:

xir
k = Fir (�k) · xr

k−1 + �(�k) · vir
k (8)

where �k is the sampling time, Fir is the state transition matrix
associated to the road segment r and adapted to a motion
model Mir

k ; vir
k is a white zero-mean Gaussian random vector

with covariance matrix Qir
k chosen in such a way that the

standard deviation σd along the road segment is higher than
the standard deviation σn in the orthogonal direction associated
to the road width given by the Geographic Information System
(GIS). It is defined by:

vir
k = Rθr ·

(
σ 2

d 0
0 σ 2

n

)
· RT

θr
(9)

where Rθr is the rotation matrix associated with the direction
θr defined in the plane (O, X, Y ) of the road segment r . The
matrix �(�k) is defined in [19] and is the noise transition
matrix adapted to motion model under consideration. For
example, for a constant velocity motion model we have:

�(�k) =

⎛
⎜⎜⎜⎜⎜⎝

�2
k

2
0

�k 0

0
�2

k

2
0 �k

⎞
⎟⎟⎟⎟⎟⎠ (10)

2) Estimation: As the linear motion model defined above
does not consider possible maneuvers, the track may be
lost by the tracker. To circumvent this problem, we use the
well-known Interacting Multiple Model (IMM) filter [19]. The

IMM filter combines estimated states from multiple models to
get a better state estimate when the target is maneuvering.
The IMM is near optimal with a reasonable complexity.
In Section III-B1, a motion model i ∈ I constrained to
segment r and selected a time tk , denoted by Mir

k , was defined.
In a classical IMM estimator [20], the likelihood function (4)
is defined for all models in I for a track T k,l , associated with
the js-th measurement from sensor s. Thanks to Bayes rule,
we can introduce in the likelihood of Equation (4), defined for
each measurement z js

k , ( js = 1, . . . , ms
k ), the motion model

Mir
k as follows:

p{z js
k |Zk−1,l} = �

js
k =

NI∑
ir =0

�
ir , js
k P{Mir

k |Zk−1,l} (11)

where Zk−1,l is the sequence of measurements associated
with the track T k,l and �

ir , js
k is the likelihood of the motion

model ir , (for ir = 0, 1, . . . , NI ), defined by:
�

ir , js
k = p{z js

k |Mir
k Zk−1,l} (12)

The motion model probability P{Mir
k |Zk−1,l} is denoted

by μir
k . As in [20], by introducing “stopped” motion model,

we obtain the following motion model likelihoods:

�
ir , js
k = PD · p{z js

k |Mir
k , Zk−1,l} · (1 − δ js ,0)

+ (1 − PD) · δ js,0 (13)

where PD is the probability of detection of the tracked target,
while δ js,0 is the Kronecker index defined by δ js,0 = 1 if js =
0 (no measurement) and δ js,0 = 0 otherwise. The likelihood
of the stopped target model (i.e. for ir = 0) is then:

�
0, js
k = p{z js

k |M0
k , Zk−1,l} = δ js,0 (14)

The steps for deriving the IMM filter under road r constraint
are the same than for the classical IMM filter: Step 1. Under
the assumption of several possible models for road segment
r as defined previously, the mixing probabilities are given for
all pairs (ir , i ′

r ) = {0, . . . , NI }2 by:

μ
ir |i ′r
k−1|k−1 = pir ,i ′r · μi ′r

k−1

c̄ir
(15)

where c̄ir = ∑NI
i ′r =0 pir ,i ′r μ

i ′r
k−1 is a normalizing factor. The

probability of model switch, from motion model ir to i ′
r ,

depends on the Markov chain according to a a priori transition
probability pir ,i ′r which does not depend on the constraint r .
For the different models we consider, we use the mode
transition probability matrix presented in [20] whose diagonal
components for ir = 0, . . . , NI are:

pir ,ir = min{u, max{v, 1 − �k

τir
}} (16)

where τir is the mean sojourn time in motion model ir , while
v = 0.5 and u = 0.95 are the lower and upper limits for
the no-transition (stay-in-place) probabilities, respectively. The
other transition matrix elements are chosen in [0, 1] such that∑NI

i ′r =0 pir ,i ′r = 1.
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Step 2. The mixed estimate of the target state under the road
segment r constraint is defined for ir = 0, . . . , NI by:

x̄ir
k−1|k−1 =

NI∑
i ′r =0

μ
ir |i ′r
k−1|k−1x̂

i ′r
k−1|k−1 (17)

where x̄ir
k−1|k−1 is the weighted target state estimate at time

index k −1 on road segment r for the i -th motion model. The
covariance of the estimation error is given by:

P̄ir
k−1|k−1 =

NI∑
i ′r =0

μ
ir |i ′r
k−1|k−1 · [Pir

k−1|k−1

+ (x̂i ′r
k−1|k−1−x̄ir

k−1|k−1) · (x̂i ′r
k−1|k−1−x̄ir

k−1|k−1)
T]

(18)

Step 3. As aforementioned, the motion models are con-
strained to the associated road segment. Each constrained
mixed estimate (17) is predicted and then associated to a
new road, or to several new ones (in crossroad cases) which
yields to the modification in the dynamics according to the
new segments. The mixed estimates (17) and (18) are used
as inputs for the filter matched to Mir

k . It uses the reports
associated to the track T k,l to calculate x̂ir

k|k , Pir
k|k (with Kalman

filter associated to motion model Mir
k ) and the corresponding

likelihood (11). The estimates of each filter are obtained with
a constrained Kalman filter (see [21] for more details).

Step 4. The model probability update is done for ir =
0, 1, . . . , NI , and a measurement js = 1, . . . , ms

k by:

μir
k = 1

c
· �ir , js

k · c̄ir (19)

where c is a normalization coefficient and c̄ir is given in (15).
Step 5. The unconstrained combined state estimate (called

global state estimate) is the sum of each constrained local state
estimate weighted by each model probability,i.e.:

x̂k|k =
NI∑

ir =0

μir
k x̂ir

k|k (20)

Its error covariance estimate is given by:

Pk|k =
NI∑

ir =0

μir
k · [Pir

k|k + (x̂ir
k|k − x̂k|k) · (x̂ir

k|k − x̂k|k)
T ] (21)

where μir
k is the probability of the motion model Mir

k ,
at current time tk .

Here, we have presented briefly the principle of the IMM
algorithm constrained to only one road segment r . However,
a road section is often composed with several road segments.
When the target is transitioning from one segment to another
one, the problem is to choose the segments with the corre-
sponding motion models that can better fit the target dynamics.
The choice of a segment implies the construction of the
directional process noise. That is why the IMM motions model
set varies with the road network configuration. In such context
the Variable Structure IMM (VS-IMM) offers a better solution
for ground target tracking on road networks. Such algorithm

has been referred as VS IMMC (C standing for Constrained)
and was presented in details in [21].

step 6. Constrained state estimate. If the target is on the
road r , we apply the following constraint:

x̂r
k|k = arg max

er
k

(x̂k|k) (22)

where er
k represents the constraint that the estimated target

state x̂k|k belongs to the road r . So, the optimized estimated
state x̂r

k|k must satisfy the following constraint:{
ax̂k|k + bŷk|k + c = 0

〈[ ˆ̇xk|k , ˆ̇yk|k]T |−→nr 〉 = 0
(23)

where (a, b, c) are the parameters of the straight line equation
of road r in the East North Up (ENU) direction and −→nr is the
normal vector of road r . The constraint (23) can be expressed
as follows:

D̃x̂k|k = L (24)

with

D̃ =
[

a 0 b 0
0 a 0 b

]
(25)

and

L =
[−c

0

]
(26)

Based on Lagrangian relaxation method [22] applied to (22),
we obtain the state vector estimate x̂r

k|k :

x̂r
k|k = x̂k|k − Pk|kD̃T (D̃Pk|kD̃T )−1(D̃x̂k|k + L) (27)

and its associated error covariance Pr
k|k constrained on road r :

Pr
k|k = (I − Wk)Pk|k(I − Wk)

T (28)

where I is the identity matrix with the same dimension of
Pk|k and the matrix Wk is defined by:

Wk = Pk|kD̃T (D̃Pk|kD̃T )D̃ (29)

The prediction III-B1 and estimation III-B2 processings are
sufficient to be introduced in usual MTT algorithm for tracking
multiple maneuvering ground targets. However, the scope of
the paper is to track and classify jointly the targets with WSN.
In the next section, we present our approach to combine
class information provided by sensors and class information
obtained from track behavior given by estimated states (27)
and its associated covariance (28).

IV. TRACK CLASSIFICATION

We apply the classification method we proposed in [13]
to each confirmed track delivered by the WSN multiple target
tracker. To this end, we use two pieces of information as inputs
to the classifier: the estimated class of the track according
to the geographical information on the one hand and the
estimated class based on sensor measurements on the other
hand. We frame the class estimation and combination problem
into the Transferable Belief Model (TBM) [23]. The following
subsections will succinctly describe the different mathematical
concepts used in the classifier, before going deeper into its
architecture.
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A. Basics of Belief Functions
The belief function theory, also known as Dempster-Shafer

Theory (DST) has been introduced in 1976 by Shafer in
his Mathematical Theory of Evidence book [24]. In DST,
a discrete and finite frame of discernment (FoD) is defined
as 
 = {ωi , i = 1, . . . , c} consisting of c exclusive and
exhaustive hypotheses for the problem at hand. In our case
each ωi represents a specific target class. A mass function
can be defined over the power-set of 
, denoted by 2
,
which is the set of all subsets of 
. For example, if the
frame of discernment 
 = {ω1, ω2, ω3}, then its power-set
is 2
 = {∅, ω1, ω2, ω1 ∪ ω2, ω3, ω1 ∪ ω3, ω2 ∪ ω3,
}, where
∅ denotes the empty set and ∪ the disjunction operator. A
mass function, also named Basic Belief Assignment (BBA),
is mathematically defined as a mapping m :2
 → [0; 1] which
satisfies m(∅) = 0 and ∑

A∈2


m(A) = 1 (30)

All the elements A ∈ 2
 such that m(A) > 0 are called
focal elements of m. The mass m(ωi ) represents the support
degree that the target is of class ωi only. In pattern classifica-
tion problems, if A is a set of classes (e.g. A = ωi ∪ω j ), m(A)
can be used to characterize the imprecision degree (partial
ignorance) among the classes ωi and ω j . m(
) denotes the
total ignorance degree. m(
) = 1 is called the vacuous mass
function and characterizes the total ignorance about the class
of the target. It is a neutral element in the fusion process.

The plausibility of A is defined for all A ⊆ 
 by

Pl(A) =
∑

B∈2
| A∩B �=∅
m(B). (31)

The quantity Pl(A) can be interpreted as an upper bound
of an unknown probability, P(A).

In the DST framework, Dempster’s rule of combination
(D-S rule) is adopted to combine BBAs provided by inde-
pendent and reliable sources. For example in the case of a
multi-classifier system, each classifier can be considered as a
source of evidence, which output can be represented by a mass
function.

Considering two distinct sources of evidence, whose BBAs
are respectively defined by m1 and m2, the D-S combination
of m1 and m2 is denoted m1 ⊕ m2= m1⊕2, and defined by
m(∅) = 0, and ∀A ∈ 2
, A �= ∅ as:

m1⊕2(A) = 1

1 − K

∑
B,C∈2
,B∩C=A

m1(B) · m2(C) (32)

where K = ∑
B∩C=∅ m1(B)m2(C) < 1 is the total conjunc-

tive conflicting mass. If K = 1 (corresponding to the total
conflicting case) D-S rule cannot be applied.

The decision process, i.e the track classification, is done as
within TBM framework proposed by Smets and Kennes [23].
The TBM is composed by two levels: a credal level, used to
represent and maintain beliefs quantified by belief functions,
and a pignistic level where those beliefs are used to make
decision.

The pignistic transformation defined by Smets in [25]
approximates a BBA by a subjective probability measure
thanks to a uniform redistribution of the mass of each partial
ignorance (if any) on the singletons involved in it. More
precisely, the pignistic probability derived from a BBA m is
a mapping Bet P{m} :
 → [0, 1] such that:

Bet P{m}(ωk) = 1

1 − m(∅)

∑
A⊆
,ωk ∈A

m(A)

|A| (33)

The decision is then made by selecting the element ωk

having the highest pignistic probability and greater than a
given threshold γ∈ [0, 1]:

ω0 = arg max
ωk∈
,Bet P{m}(ωk )>γ

Bet P{m}(ωk) (34)

In our application and tests we have set γ = 0.7.
If there is no class ωk such that Bet P{m}(ωk) > γ , then

the target is assigned to the closure class c = {Unknown}.

B. Classifier Description
The classifier we designed operates following three steps:
- Step 1. A fuzzy inference system takes as input the

kinematic data (speed and position) of the track, and
outputs a vector of possibilities;

- Step 2. a function maps the possibility vector and
probability of sensor class from the inference system onto
basic belief assignments;

- Step 3. a fusion function then combines the new mass
functions for the tracks with previous ones, and derives
the associated pignistic probabilities.

1) Fuzzy Inference System: As described in [13], the first
step is to define the membership functions regarding the terrain
and the velocity for each hypothesis described in (7). Because
we do not have enough data for learning the membership
functions, we build them , using expert knowledge. We have
defined a set of types for the terrain under surveillance:
T � {road network, forest, building, grass land,

hydrographical area, unknown } (35)

Then, for each type of terrain of T, we construct a “traffi-
cability” capacity for each target class of (7), according to the
minimum (and maximum) speed for each target class on each
terrain type. This trafficability capacity is then obtained with
multi-fuzzy logic inference system, where each inference is
conditioned by a terrain attribute. In this way, when the tracker
updates the confirmed track T k,l , we extract from (27) and
(28) its estimated position, velocity and angular velocity and
uncertainties. Furthermore, based on terrain type estimation,
we can use the fuzzy inference system to obtain the possibility
distribution over 
 for the target under tracking.

At this step of the algorithm, the inference system provides
for any confirmed track T k,l with kinematic parameters K ,
a likelihood vector L K ,T defined over the set of classes
considering the terrain T where the target is located.

2) From Likelihood to Belief Functions: Based on what we
described in [13], the output of the fuzzy inference system is
a likelihood vector L K ,T = [Lc1, Lc2, . . . , Lc8] where Lc is
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the likelihood that the observed track, with kinematic parame-
ter K and terrain parameter T, belongs to class c∈ C. On the
other hand, we recall that the likelihood that the observed
track, with sensor information is noted LC and described
in Section III-A3.

These likelihood vectors are then transformed into a plau-
sibility functions following the approach proposed in [26] as
follows:

Pl
(A; x) = sup
ω∈A

pl(ω; x) = supω∈A L(ω; x)

supω∈2
 L(ω; x)
,∀A ⊆ 


(36)

where L(.; x) is the likelihood function and pl is the contour
function such that pl(ω) = Pl({ω}). From the plausibility
function, we then derive the mass function of A using the
Möbius inverse formula:

m
(A) =
∑
B⊆A

(−1)|A|−|B|+1 Pl(B̄), ∀A ⊆ 
 (37)

where B̄ is the complement of B relatively to 
.
Hence, we have at this point for each track, considering

its velocity and position, the support degree that it belongs to
any subset of classes. The output of this process are the mass
functions mC,k and mK ,k defined over 
 obtained respectively
from the likelihoods LC and L K ,T .

3) Fusion and Decision Making: At each update of a track,
i.e. at time k, a new estimate of its velocity and position is
provided by the tracker and a new mass function mK ,k is
derived as previously defined.

The global mass function at time k, denoted by mC ,k
is obtained by fusing the new mass function mC,k with
the previous global mass function at the previous time tk−1
mC ,k−1 by Dempster’s rule of combination (Eq. (32)), that is:

mC ,k = mK ,k ⊕ mC,k ⊕ mC ,k−1 (38)

Decision on the class label to assign to the track is then
made following Eq. (34).

The fusion operation defined in (32) plays an important
role in our classification and decision schemes. We make the
assumption that over time, the target will have a discriminant
behavior (excluding incompatible kinematic or position situa-
tions) leading to discard some target classes. Yet, because the
estimation of the terrain type over which the target is located,
is itself based on an estimated position of the target, it can
thus be imprecise or even wrong. Consequently, it could yield
discarding the correct class among C defined in (7). In our
previous work [13], the GIS data was Boolean, meaning that
the derivation of mK ,k was based in a single attribute leading
to quite high missclassification rate. In this work, in order
to improve the contextual discounting in the mass function
and by that the classification rate, we change our approach
compared to [13]. Rather, we consider several attributes for the
terrain from which we derive several BBAs obtained through
the inference system for each attribute. The final BBA is then
obtained by combining all discounted BBAs for each terrain
attribute in order to get mK ,k .

Fig. 4. Representation of the sensor and kinematic based classifier.
Conversions refers to Section IV-B2 to transform likelihoods or probabil-
ities into mass functions.

Fig. 5. TO-MHT algorithm flowchart with geographical information.

V. DATA FUSION AND ASSOCIATION

In sections III and IV, we have respectively presented our
approach to track and classify a single target. However we
work with multiple sensors and multiple targets that implies
track-to-measurement association problems. Algorithm must
be adapted to track targets with several sensors. The proposed
method is based on the (TO-MHT) framework [27], which
takes advantage of the track tree structure to manage and
maintain hypotheses sets. Each association between track
and measurement generates hypotheses represented by a new
branch in the tree of the possible joint association. Figure 5
shows the basic elements of a typical TO-MHT system. The
prediction and estimation processings refer respectively to sec-
tions III-B1 and III-B2. The classification process in figure 5
refers to part IV. Hypotheses are reformed from tracks at each
scan and the tracks that survive pruning step are predicted
to the next scan where the process continues. An overview
of the core components of the TO-MHT framework given in
Sections V-A and V-B provides some efficient strategies for
limiting the number of hypotheses.

A. Centralized Fusion
According to the communication network structure

described in Section II, all measurements z js
k provided by

the Ns sensors, are broadcast over the network to reach a
centralized fusion node. This node processes sequentially the
set of measurements by sensor packet Zs(k), named scan,
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defined for ( js = 1, . . . , ms
k) and (s = 1, . . . , Ns ) by:

Zs(k) = {z js
k } (39)

where ms
k is the number of measurements at time tk from the

sensor s and Ns the number of sensors.

B. Multiple Target Tracking Hypotheses
TO-MHT uses a tree structure to store all possible

track-to-measurement association hypotheses. Evaluation of
alternative track formation hypotheses requires a probabilis-
tic expression that includes all aspects of data association
problem. These aspects include the prior probability of tar-
get presence, the false alarm density of each sensor, the
detection sequences and dynamic consistency of the obser-
vation contained in the track. It is convenient to use the
Log-Likelihood Ratio (LLR) to evaluate each hypothesis (i.e
a track-to-measurement association). The LLR is also termed
“track score”. For a given track T k,l , it is convenient to use
the LLR as a score of a track T k,l because it can be expressed
at current time k in the following recursive form [28]:

Lk,l = Lk−1,n + �Lk,l (40)

with

�Lk,l = log

(
�

js
k

λ f a

)
(41)

and

L(0) = log

(
λ f a

λ f a + λnt

)
(42)

where λ f a and λnt are respectively the false alarm rate and
the new target rate per unit of surveillance volume. �

js
k is the

global likelihood function associated to a measurement js for
( js = {1, . . . , ms

k}) given in (4).
The first step consists to apply prediction process (presented

in the subsection III-B1) for all tracks. The second step is
the gating (i.e. the selection) of measurements followed by
the track formation. When the new set Zs(k) of measure-
ments from sensor s is received, a standard gating procedure
[28] is applied in order to determine the valid measurement
reports for track pairings. The existing tracks are predicted
and estimated with IMM at first (presented in subsection
III-B2), and then extrapolated confirmed tracks are formed.
When the track is not updated with reports, the stop-motion
model is activated. The process of clustering is used to put
altogether the tracks that share common measurements. The
clustering limits the number of hypotheses to generate, and
therefore it can drastically reduce the complexity of track-
ing system. The result of the clustering is a list of tracks
that are interacting. The next step is to create hypotheses
of compatible tracks. For each cluster, multiple compatible
hypotheses are formed to represent the different compatible
tracks scenarios. Each hypothesis is evaluated according to
the track score function (41) associated to the different tracks.
Then, a technique is necessary to find the set of hypotheses
that represents the most likely tracks collection. The unlikely
hypotheses and associated tracks are deleted by a pruning

Fig. 6. Node locations on ONERA’s site.

method (if the hypothesis probability is less than a chosen
threshold PHypo), and only the NHypo best hypotheses are kept
in the system. For each track, a a posteriori probability is
computed, and a classical N-Scan pruning approach [28] is
used to delete the most unlikely tracks. With this approach the
most likely tracks are selected to reduce the number of tracks.
However, the N-Scan technique combined with the constraint
implies that other tracks hypotheses (i.e. constrained on other
road segments) are arbitrary deleted. To avoid this problem,
we modify the N-Scan pruning approach in order to select the
Nk best tracks on each Nk road sections. Finally, the class of
all updated tracks is done according the process presented in
the section IV. It is worth noting that the class is never used
for gating or track hypotheses evaluation steps.

VI. EXPERIMENTAL RESULTS

In this paper, we illustrate the concept of our “abandoned”
WSN to achieve tracking and classification in a wide sur-
veillance area, but for several constraints5 we cannot provide
for now precise performance evaluations based on many real
experimental acquisitions.

A. Scenario Description
In order to investigate the feasibility of the proposed algo-

rithms and the SEXTANT system for the ground surveillance
application, we have performed live recordings on site with
real ground sensors and test vehicles and pedestrians equipped
with GPS transponders. The scenario contains both live record-
ings from the GPS and a simulated part.

The live recordings were carried out at Palaiseau on
July 9th, 2018. The ground sensor network was deployed
according to figure 6. Table I represents the sensor types and
how they were deployed. This table gives also the standard
deviations (in range σρ and azimuth σθ ) of each detection
and the minimal and maximal distance of detection (dmin

and dmax respectively). The sensors were radars, seismics,
optronic and PIR sensors. The ground sensor network was

5mainly due to budget limitations.
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TABLE I
SENSOR PARAMETERS TABLE

composed of a number of sensors, each associated with a
node with transmission capability as described in section II.
For the geographic layer we have used shapefiles with metric
precision. The only grass, forest and road layers were used
(there is no water on site). The PIR nodes were only used to
wake up principal sensors.

During the data recordings for the real part the only sensor
radar 3, optronic sensors 5,7 and WUN nodes 4 and 6 were
used.

B. Ground Truth
The figures 7 and 8, represents views of the trajectories

of the target. Only targets 1_Car, 2_PAX, 5_Car, 6_Car are
true targets. The five other targets have been simulated 4_Car,
8_Car, 9_PAX, 10_PAX, 11_PAX for the need of demonstra-
tion. We can observe maneuvering targets on and out of the
road with crossing targets problem.

C. MTT Parameters
At the fusion node we have plugged a C2 (Control and

Command) station to display the results of MTT algorithms.
In our experiment, the setting of tracker parameters have been
done as follows:

1) SB-MHT Parameters: The maximum number of track
hypotheses NHypo in cluster is set to 20 and the minimal
probability PHypo to keep each track hypothesis is fixed to
0.01. The N-Scan number to prune the tree of track hypotheses
is fixed to 3. The validation gate parameters are δ1D = 2 for
the bearing only measurements and δ2D = 4.835 for range
and azimuth measurements. For the track initialization: each
report at every scan is considered as a new track and declared
as “initialized”. The initialized track is declared as “tentative
track” if the score (40) of each track hypothesis is greater
than 2. If the track score (40) is greater than 10 the “tentative
track” is declared as “confirmed”.

2) IMM Parameters: The motion models are constant veloc-
ity motion models. A motion model M1 to track the targets
which move with constant velocity, a motion model M2 with
a big state noise to palliate the maneuvers of the target

Fig. 7. Trajectories of the targets at the beginning.

Fig. 8. Trajectories of the targets after 1 minutes.

and a stop-model M0. The noises of the previous motion
models have been set respectively as: σ = 0.4m.s−2 for
M1, σ =4m.s−2 for M2 and σ = 0.1m.s−2, for M0. In our
experiment we did use the following prior probability vector:

μ0 = [0.9 0.1 0]′ (43)

with the following sojourn time (defined in [19]): τ0 = 1,
τ1 = 40 and τ2 = 20.

3) Classification Parameter: The classification parameter is
the threshold γ used to classify a track. If the pignis-
tic probability (33) of a target class is greater than γ =
0.7, the track is committed to the class having the max
of Bet P(.).
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Fig. 9. Track situation at 10 h 42 m 20 s.

D. Results With Environmental Information
During trial, all sensor measurements were broadcasted

to only one fusion node in order to work in a central-
ized architecture. The MTT algorithm initializes and updates
tracks. We only display “confirmed” tracks (see step 2 of
the MTT algorithm V-B for track confirmation or deletion).
At 10 h 42 m 20 s (figure 9), ground vehicles and PAX are
well tracked (the track continuity is maintained). The tracks
5,6, 17 and 22 are quickly classified as ground vehicle because
the tracks are projected on road network by the algorithm.
The used constraint tracking motion models carry along to
keep track on the road and improve track prediction on the
road. This allows to conserve the tack out sensor field of
view or update the track only with bearing measurement only.
This is the case for the track 6 at this time. We observe that
the track 6 is maintained according to road constraint motion
model despite of bearing only measurement provided by video
sensor.

Target 1 crosses target 5 and 6 (figure 8). Despite the
crossing the associated tracks (respectively track 6, 22 and
18) tracks are kept (figure 11). As explained previously, the
constrained motion models allow to estimate precisely the
track state, and to maintain the track on the road. That implies
a better track prediction and improves the MTT association
processing.

The figures 13 and 14 represent respectively the member-
ship layer probability obtained and cumulated Bet P target
classification for the target associated with track 6. If the
probability that is on the road is not equal to 1 (figure 13),
the estimated track velocity and acceleration is characteristic
of a vehicle in grass land, that is why we can observe that the
classification algorithm quickly classifies the targets as “car”.
After the turn, the velocity of the vehicle decreases and the
probability of the “car” class becomes close to the probability
of “SUAV” (Small UAV) class. In fact, with this kinematic,

Fig. 10. Track situation at 10 h 42 m 27 s.

Fig. 11. Track situation at 10 h 42 m 46 s, zoom on track 4.

fuzzy inferences in velocity and acceleration provide a close
likelihood “Car” and “SUAV” classes. The mass conflict
between those classes becomes higher. But, at this step, we can
consider other fusion operator to have a better consideration
of the conflict. In our future research works we will test some
sophisticated fusion methods to deal more efficiently with the
conflicting information.

The track 14 associated to the PAX is initialized according
triangulation of bearing measurements provided by video
sensors 5 and 10.

If we observe track 14, we can see that our classification
algorithm has quickly converged to “PAX” class because of
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Fig. 12. Track situation at 10 h 42 m 58 s.

Fig. 13. Membership geographic layer probability of track 4.

Fig. 14. Cumulated BetP classification of track 4.

the correct classification probability of bearing optronic sensor
measurement. But if we observe the cumulated Bet P target
classification of track 17 (figure 15), we observe the con-
flict between three classes (“PAX”, “car” and “SUAV”). The
“PAX” fuzzy modelling of estimated kinematic of track 17 on
grass-land geographical layer is similar with “car” (modelling
of cross-country vehicle) or “SUAV”.

Fig. 15. Cumulated BetP classification of track 17.

VII. CONCLUSION

The aim of the research work is to develop a demonstrator
platform in order to study the feasibility of a WSN joint
tracking and classification technology and adapt it to improve
surveillance and intelligence capabilities. In this paper we
have focused on the abilities of data fusion algorithm used
to detect, track and classify multiple targets thanks to a
smart wireless sensor network. Based on owner developed
sensors, we have proceeded to real trials in order to validate
the data fusion algorithm. The proposed Joint Classification
and MTT algorithm confirms existing results on real data.
We have proved, with real data, the capability of SEXTANT
system to estimate the target states (location and velocity) with
sensor network constraints. Each motion model is submitted
to ground network test to constrained it (or not) on the road.
The contextual constraints improve the track estimation and
track continuity. This is more efficient to maintain track when
the target is maneuvering in unobservable area. After the
estimation step, the MTT algorithm has proceeded to target
classification taking into account the classification provided
by sensor and the contextual classification estimated by the
track behavior correlated to terrain layer. We have succeeded
to build a behavioral context-based joint tracking-classification
(JTC) system. Based on our tests, the target classification using
fuzzy logic seems promising, as a virtual sensor to provide a
classification indication for the tracker. Different researches
could be done in future works to enhance the performances of
this JTC based on the wireless sensor applications described
in [29]. Combined with our results, some preliminary insights
and recommendations for the use and the development of new
generations of smart sensors in operational exercises have been
identified, and they will orient new research in this field.
As perspective works, we plan to improve this WSN sur-
veillance system on several points: 1) improve the estimation
of layer membership probability thanks to neuro-fuzzy tech-
niques, 2) improve the target classification thanks to a more
efficient fusion rule like the proportional conflict redistribution
rule, 3) improve the decision-making strategy based on belief
functions, and 4) improve the tracking precision with more
sophisticated maneuvering models.
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