Numerical Computations and Proofs:
from Proof-Assistants to Aerospace Applications

Pierre Roux

October 22, 2025

ii

Contents

2

Convex Optimization and Policy Iterations|

[2.2.2 Unrolling] e
[2.2.3 Quadratic Invariants| L oL
2.3 Policy Iterations: State of the Art| oo
[2.3.1 Template Domains| e
[2.3.2 System of Equations|
[2.3.3 Policy Iterations| L
2.4 Template Generation| L L e e e e
[2.4.1 Introduction to Lyapunov Stability Theory|]
[2.4.2 Generating Templates| oo
2.5 Floating-Point Issues| e
2.6 Experimental Results|.
2.7 Conclusionl e e

Verified Sum Of Squares Optimizations|

8.1 Motivating Examples|.o
3.2 D Y=
3.2.1 Sum of Squares (SOS) Programming]

3.2.2 Semidefinite Programming (SDP)[.
8.2.3 Parameterized Problems|

[3.2.6 Making it Work in Practice| oo
3.3 Inside the Alt-Ergo SMT Solver|.
[3.3.1 Example: Control-Command Program Verification|
[3.3.2 Emptiness of Semi-algebraic Sets| Lo Lo
[3.3.3 Rounding to an Exact Rational Solution|.
[3.3.4 Implementation|.
[3.3.5 Experimental Results| o oo

3.4 Inside the Coq Proof Assistant|

4.2 Specification: Coq and Flocql o oo
[4.2.1 On Coq’s side|. . . .« o v o v i e e e e
[4.2.2 On Flocg’'sside] e

4.3 Implementation|. Lo
[4.3.1 Reduction engines| e e

iii

—_
N © © w1~ ut Gt =

= = e
O R W

19
19
20
20
21
22
22
22
24
24
27
27
29
29
31
32
33
33
34
35
36
38

iv
[4.3.2 Rounding directions| L.
4.3.3 Parsing and printing|
L34 Soundness . - - . oo oo e e
4.4 Applications|.o
4.5 Benchmarks
[4.5.1 Benchmark with ValidSDP 1.0.1 and Coq 8.15f
[4.5.2 Benchmark with Coglnterval 4.5.2 and Cog 8.15
E6 Conclusionl o
[Verifying Network Calculus]
b1 Real-Time Networksl
9.2 Formalizing Network Calculusin Coqf
Isilzll g:!zll!;ls:ls I!l!!!]s II
Ijil2.2 (‘g!!llllils;lil
.3 Veritying min-plus Computations|
31 Notations« . o v v v
[5.3.2 (min, plus) Operators on Functions|.
[5.3.4 Ultimately Pseudo Periodic Functions|
5.3.6 Stability of UPP Functions by (min, plus) Operators|.
5.3.7 Stability of UPP-PA Functions by (min, plus) Operators|
[6.3.8 Finite Equality and Inequality Criteria on UPP-PA].
[6.3.9 TImplementation|. oo oo
0.3.10 Conclusionl
. ontributing to the Coq an athComp Ecosystems|.
6.1 Contributing to the C d MathC I tems|
[6.1.1 Contributing to Coq| oo
[6.1.2 Contributing to MathComp|
[6.1.3 Contributing to MathComp Analysis|.
[6.1.4 Contributing to MathComp Algebra Tactics|.
6.1.5 Maintenancel Lo
6.2 Example of Application: T'T'Ethernet on Ariane 6 Launcher|
7 Perspectives|
. tatic Analysis of Control-Command Software|.
[7.1 Static Analysis of C I-C d Sof |
7.2 Improving Proof Assistant Usability]
(7.3 Interval Arithmetic for Formal Proots of Numerical Resultsl

7.4 Formal Verification of Real-Time Network and Systems|

CONTENTS

Chapter 1

Introduction

Since about three decades, modern commercial aircraft use digital flight commands, that is a computer
program repeatedly reads orders from the pilots, interprets them and send commands to the various govern
actuators on the wings, horizontal and vertical stabilizers, acting on the flow of air around the plane, hence
on its trajectory. This enables multiple things, among which:

e Improve both pilot and passenger comfort. For instance a recent commercial airplane used to make
some passengers seated at the back dizzy, due to uncomfortable movements. An update of the flight
command software was enough to fix the issue.

o Enable different aircraft to feel similar for pilots. This optimizes pilot training and management for the
airline companies, that can thus more easily operate similar planes, for instance of different sizes.

o Improve safety, by preventing dangerous attitudes / efforts that might be accidentally required by pilots.
This also enable pilots to require prompt actions, for instance in case of emergency, without fear of
damaging the plane.

o Last but not least, as explained on Figure planes are designed to be inherently stable. This requires
a downward force at the tail, hence a larger wing to compensate with a larger upward force, both of
which create drag, hence an additional fuel burn. An unstable plane would be very hard to master for
a human pilot whereas it can be handled by a computerﬂ

Obviously, seating between pilots and the plane, those digital flight commands are critical systems, as
their failure could lead to dramatic consequences. We thus have an interest to perform formal or mechanized
proofs of correctness for such systems. Such numerical proofs can be tedious, so it can additionally be good to
obtain them as automatically as possible. For instance, an important mechanism of digital flight commands
is the flight-envelope protection. Among other things, this prevents the pilots from putting the plane in
a position in which it would stallﬂ Considering the flight command program, a model of the plane and
hypotheses about its environment, one could like to prove that stall conditions are indeed unreachable.

In practice, we are not yet able to perform such proofs. Actual flight command programs are far from
trivial. They are based on basic linear controllers but there are usually not a single controller but multiple
one for different flight points (altitude, speed, mass of the plane and position of its center of gravity)ﬂ which
are then interpolated. On top of that, multiple discrete behaviors are added, for instance to implement the
flight envelope protection, yielding a complex dynamical system. As a starting point, we nevertheless studied
the search for proofs for simple systems, that is linear systems with a few nonlinear additive behaviors.

Thus, during my PhD thesis [Roul3], advised by Pierre-Loic GAROCHE and under the direction of Virginie
WIELS, I focused on inference of quadratic invariants (geometrically speaking, ellipsoids) for mostly-linear
programs. Quadratic invariants are well suited to bound the behaviors of the linear cores of the programs
studied. The invariants were automatically inferred combining convex numerical solvers, called SDP solvers,
and static program-analysis methods, called policy iteration. This, as well as later work in this direction, is
summarized in Chapter

I later extended that line of research to inference of polynomial invariants for programs with polynomial
expressions. After a first attempt using Bernstein polynomials [RG13al at the end of my PhDEI, I then looked
for sum of squares polynomials, still using SDP solvers. This is presented in Section [3:2.1]

INote that modern combat aircraft are designed this way to be unstable, but it’s more a matter of maneuverability than fuel
efficiency.

2That is, experiencing a large loss of lift on the wings, usually due to a bad combination of low speed and high angle of
incidence.

3Each of these variables changes during a flight, as the plane lightens, burning its fuel.

4The current document won’t discuss further this work with Bernstein polynomials.

2 CHAPTER 1. INTRODUCTION

lift

A

horizontal stabili center of gravity

%)

4 £ 1
CCIILCL O@ 111U

(negative) lift

weight

Figure 1.1: Planes are usually built to be stable. The weight is applied at the center of gravity which is
designed to be at a small distance in front of the center of lift. The pitch-down torque thus created is
compensated by a downward “lift”, produced by the horizontal stabilizer at the tail of the plane. When the
plane goes down, it accelerates and the lift increases, which creates a pitch-up torque, making the plane
horizontal again. Conversely, when the plane goes up, the lift decreases, creating a pitch-down torque that
makes the plane horizontal again.

For the sake of efficiency, all these invariant-inference methods, using SDP solvers, are fundamentally based
on approximate computations performed with floating-point arithmetic. Section demonstrates how easy
it is to derive incorrect results, without much warning. I thus investigated some effort in rigorous verification
methods to derive strong a-posteriori guarantees of correctness at small overhead costs, as described in
Section

Whereas such rigorous verifications were first performed in the prototype program analyzer I developed
for my PhD, I was later interested in further developing them and making them available in wider contexts.
In particular I investigated their use in SMT (Satisfiability Modulo Theories) solvers. As their name indicates,
these solvers combine multiple theory solvers through a boolean SAT solver (solving boolean SATisfiability
problems) to attempt to validate (or refute with counterexamples) logical formulas. They are used in a wide
range of applications, including program verification. Working in collaboration with Sylvain CONCHON and
Mohamed IGUERNLALA, we got their Alt-Ergo SMT solver to solve numerical problems out of reach for the —
at least then — state of the art solvers [RICI8|. This work is presented in Section

Not long after, in collaboration with Erik MARTIN-DOREL, assistant professor at the nearby Paul Sabatier
University in Toulouse, we developed the ValidSDP library, making these rigorous verification methods for
polynomial inequalities available in the Coq proof assistant. A proof assistant is a software that helps its user
build mechanized proofs, that is actually build the logical objects corresponding to mathematical proofs. This
enables both a very high level of confidence in the proofs (since they are verified by a — somewhat — small
piece of software (the kernel of the proof assistant) that only relies on some basic logic) and manipulation of
the proofs like computer programs. For instance, understanding how and where an hypothesis is used (or
not) in a proof, is just a matter of commenting out that hypothesis and recompiling the proof. Note that
later in this document, as well as in the literature, the terms “formal proof” are often used to refer to those
mechanized proofs. Thus, the ValidSDP implementation provides both an easy access to the polynomial
verification methods in virtually any proof that can be performed with Coq, as well as a mechanized proof of
the — far from trivial — internals of the method. All this is detailed in Section [3.41

As a side effect, the previous work on ValidSDP sparked interest for more efficient handling of floating-point
arithmetic in Coq. Working again with Erik, we coadvised the L3 internship of Guillaume BERTHOLON
(summer 2018) which eventually led to the addition of the primitive floats feature [BMDRI19] in Coq (end of
2019). To combine soundness and efficiency, this raised a number of interesting questions, as presented in
Chapter [l Some roots of that work and my interest in formal proofs about floating-point arithmetic can in
some sense be traced back to a short six-months postdoctoral work, coadvised by Guillaume MELQUIOND
and Sylvie BOLDO at the LRI lab in 2014E| during which I studied conditions for innocuous double rounding
on arithmetic operators, with formalized proofs in Coq [Roul4].

Besides that interest in formal proofs of numerical properties, after getting a permanent position at
ONERA, I got the opportunity to start a still-ongoing fruitful collaboration with my colleague Marc BOYER.

51 basically had some PhD funding remaining, wanted some serious experience with Coq and asked them if they got a subject
to feed me.

Marc is our specialist in embedded networks. He particularly developed an expertise in network calculus,
a method used to certify embedded networks in commercial aircraft during the last two decades. Indeed,
modern planes are packed with systems that need to communicate all kind of data between them. Some of
these data require some guarantee that they won’t be lost during their journey on the network or that they
will arrive within a strict time bound. A main line of our common work centered around a Coq formalization
of important building bricks of network calculus. In particular, we coadvised the PhD thesis of Lucien
RAKOTOMALALA. This work is detailed in Chapter

Finally, to support all these work, I conduct a number of more technical activities. For multiple reasons,
these activities are not amenable to publications, although they can represent a nonnegligible part of my
working time. The Chapter [f] gives some examples of those activities. I also value teaching and transmission
of knowledge and despite my position not mandating it, I try to keep a smal]ﬂ amount of teaching activities
over the years. This however remains outside the scope of the current document.

The Figure [1.2] sums-up all the publications and pieces of software I significantly contributed to, with
their relative links. In this graph, edges between programs are the usual notion of software dependency.
We extended it to publications when a publication builds on top of some previous workm One can see my
PhD [Roul3| work on the bottom left corner. Following work on invariant inference appears on top of it, still
on the left. Then work on rigorous proofs and floating-point arithmetic comes further right, in the middle of
the figure and work on network calculus sits on the right.

When writing the current document, valuing clarity and — at least relative — conciseness more than
completeness, I had to make some choices on what I wanted to put forward, among a bit more of a decade of
various work, as summarized on Figure Thus, some publications [BRI6, BRDP21l [CDGRII IDGG™18|
GRT1, PGH™21, IPGH™23, [RDGT0, RG13al RIGIS, Rould, RQB22, RST0, WGR™16] are voluntarily left
completely out of the scope of this document. This includes the PhD thesis work of Baptiste POLLIEN [PGH™ 21|
PGH™23| T recently coadvised with Christophe GARION from the nearby school ISAE (aerospace engineering,
former SUPAERO), Gautier HATTENBERGER from the nearby school ENAC (civil aviation school) and Xavier
THIRIOUX, also from ISAE. Baptiste performed some verification work on Paparazzi, an UAV autopilot
developed at ENAC.

6Usually around 60 hours per year.
1 stole the idea from the HDR thesis of Guillaume MELQUIOND. Thanks to him!

CHAPTER 1. INTRODUCTION

conference / workshop

_ software ((co)author) _ E AABT21]

[BMDR19]

_ software (contributor)

o> o -

NGZID
T ~ -
@ Coq

Cleporn Com
(> Cromd

[ValidSDP |

_ Algebra Tactics _ _ CoqEAL _ _ Analysis

Figure 1.2: Summary of publications and programs. Publications are ordered by year, most recent on right.

Chapter 2

Convex Optimization
and Policy Iterations

2.1 Introduction

During my PhD thesis [Roul3|, I developed an interest in verification of programs implementing control-
command regulators, mostly linear with potentially a few nonlinear features such as saturations. Although
actual control-command programs of modern airliners are much more complicated, they remain based on
such linear cores. More precisely, I targeted the synthesis of quadratic invariants for such programs, using a
method called policy iterations, based on tools called convex-optimization solvers.

The current chapter will first introduce the considered problem and its then state of the art, the policy
iteration methods (both min- and max-policy), some refinements we developed to make their use more
practical in our context [RG13bl RG15, [RIJGF12] and finally a practical comparison on some benchmark
programs between min- and max-policy iterations [RG14]. This chapter can be seen as a motivation for
rigorously proving polynomial inequalities with a high degree of automation. The reader only interested in
those numerical proofs themselves, can directly jump to next Chapter

Since the first proposals in the 70s, static analysis, and more specifically abstract interpretation through
Kleene-based fixpoint computation [CCTT, [CC79, [CCI2], has been widely developed and is now considered
usable on realistic systems. Those techniques provide an over-approximation of the program semantics by
computing iteratively a fixpoint in an abstract domain. To cope with convergence issues, the iterative sequence
of increasing elements is itself approximated using the (in)famous widening operator.

When the target property, e.g., boundedness of the variable values, or unreachability of bad values, cannot
be guaranteed, the following two elements are usually to blame: the choice of the abstract domain and the use
of widening. Since almost half a century, the set of abstractions proposed by the static analysis community is
mainly bound to linear abstractions: from interval arithmetic based analysis, to convex polyhedra [CHT7§],
or less expensive yet precise abstractions such as zonotopes [GGP09] or octagons [Min01]. Regarding the
widening, its use is mandatory but hard to control. Threshold widening, or widening up to [HPR97], for
instance strongly depends on the set of thresholds chosen a priori, and can give radically different results
depending on this choice.

Among the solutions offered for those issues, policyE] iterations were introduced [GGTZ0T, [GS07]. Tt is
inspired by classical approaches in game theory. In short, using policy iterations could replace widening and
compute precise fixpoints using numerical solvers. They also enable the use of other than linear abstractions,
such as quadratic polynomials [AGGIQ, [GST0, IGSAT12|, thanks to the availability of efficient numerical
solvers for convex optimization.

While policy iteration can have a wide impact in static analysis, its use was hampered by practical issues:

1. Tt relies on an a priori known set of templates on which the computation is performed. This choice of
templates can have a dramatic impact on the result.
How to choose appropriate templates for a given problem/program?

2. It uses numerical solvers, relying on floating-point arithmetic, and analyzes programs, themselves using
floating-point arithmetic.
How to trust the validity of the resulting invariant?

Targeted programs are the typical time-triggered linear controllers as found in a wide range of critical
cyber-physical systems such as car engines, flight commands of an aircraft or even medical devices such as

IThe term strategy is also used in the literature, with equivalent meaning.

6 CHAPTER 2. CONVEX OPTIMIZATION AND POLICY ITERATIONS

x0 := 0; x1 := 0; x2 := 0;

while —1 <0 do
in:= 7(-1, 1); x0’ := x0; x1’ := x1; x2’ := x2;
x0 := 0.9379x0’—0.0381 x1’—0.0414 x2’+0.0237 in;

x1 := —0.0404 x0’+0.968 x1'—0.0179 x2’+0.0143 in;
x2 := 0.0142x0’—0.0197 x1’+0.9823 x2’+0.0077 in;
od

Figure 2.1: Example of a control-command program. These are essentially infinite loops updating a few
variables (here “x0”, “x1” and “x2”) as a linear combination of their previous values and some input read from
a sensor (here “in” takes some arbitrary value in the [—1, 1] interval, changing at each loop iteration). In an
actual controller, the loop iterations would be periodically spaced in time (for instance every 10 milliseconds)
and an output would be computed from “x0”, “x1” and “x2” and sent to an actuator at each iteration.

T 1

Lo Lo

(a) an interval property: not inductive (b) a quadratic property: inductive (c) the interval property is 6-inductive.

Figure 2.2: Intervals vs quadratic properties for a linear transformation.

pacemakers or insulin pumps. Most of them are based on a linear update performed within an infinite loop.
For such systems, we offer

e an algorithm to compute appropriate quadratic templates;

e an a posteriori proof that the invariant, computed using numerical solvers, is actually valid, even in
presence of floating point computations in the analyzed program.

The first step is presented in Section [2.4] and relies on numerical optimization to identify appropriate
templates. This mostly consists in a more comprehensive exposition of material already presented in previous
papers |[CDD™13, [RG13b, RGT4, [RIGF12]. The second step, detailed in Section is based on a set of
theorems about error bounds on floating point computations. Their proofs being particularly tedious and
error prone, they are supported and mechanically checked by a proof assistant (Coq [Coq24]). Before that,
Sections [2.2] and 2.3 introduce respectively our interest for quadratic invariants, compared to linear ones and
the use of policy iterations. Finally, Section [2.6] gives experimental results.

2.2 Need for Quadratic Invariants

This section introduces quadratic invariants and compares them to the more usual linear invariants for static
analysis of control-command systems.

2.2.1 Linear Domains

Most control systems are based on a linear core. This is for instance the case of the Linear Quadratic
Gaussian regulator given in Figure 2.1} Unfortunately, these are hard to analyze using simple linear abstract
domains, such as the intervals domain (for instance, the previous regulator does not admit any nontrivial
invariant in this domain). Figure gives an intuition of this point. An interval property on two variables
undergoes a small rotation composed with an homothety of factor 0.92 < 1 (i.e., a strictly contracting linear
transformation), showing that the property is not inductive. Nevertheless, as control theorists know for
long, stable linear systems admit quadratic invariants (called Lyapunov functions [BEEFB94| Lyad7]). Such
invariants can be depicted as ellipsoids. On Figure 2:2B] an ellipsoid is depicted along with its image by the
same linear transformation as previously. This time, the property appears to be inductive.

In practice, when a quadratic invariant exists, approximating it with enough faces can give an invariant
in classic linear abstract domains such as the polyhedra [CHTS8] or the zonotope domains [GGP09]. Thus, it

2.2. NEED FOR QUADRATIC INVARIANTS 7

could be thought that quadratic invariants are useless and that the same results can be obtained using solely
linear invariants. However, this suffers two, often prohibitive, issues making it a mere theoretical approach:

Large Number of Faces. “enough faces” can be way too large to be actually tractable, particularly when
the number of variables grows. This issue becomes even more stringent in presence of weakly contracting
transformations, intuitively requiring the linear invariant to be “smooth” enough to be inductive, hence
composed of a large number of faces. More than the memory space required to store these objects, the
cost of their manipulation may become intractable. Compared to linear invariants, quadratic invariants
have a space complexity quadratic in the number of variables and are intrinsically “smooth”.

Ineffectiveness of Kleene Iterations. Existence of an invariant does not mean existence of a practical
way to compute it. In particular, Kleene iterations with polyhedra are known to perform poorly when
trying to generate such linear invariants [SB13]. Moreover none of the classic widening strategies allows
to find such results without performing a large number of iterations.

Moreover, control systems can also contain guards. For instance, resets and saturations are two common
kinds of guards. Resets can at any time reset the value of all program variables to some constant (possibly
different from the initial value). They are usually rather easy to handle since they can just be considered as
an additional initial value. Saturations force a variable to remain in some range by keeping it constant when
it reaches the boundaries of the range. They can be much harder to handle. Adding a saturation to a stable
linear system can even make it unstable.

2.2.2 Unrolling

Unrolling constitutes a practical alternative to the search for linear inductive invariants with myriads of faces.
For purely linear systems, unrolling to depths k ranging from a few hundreds to a few thousands allows to
compute precise k-inductive invariants while keeping the number of faces reasonably small [Fer04l, [GGPQ9].
Some work [SBI13] even demonstrates that precise bounds (i.e., the maximum reachable values) can be
computed with simple support functions by fully unrolling the system. Intuitively, unrolling turns a
contracting transformation into a more contracting one. Thus, properties which are not inductive may appear
k-inductive. This is illustrated on Figure [2.2¢

These results are definitely interesting but only produce k-inductive invariants for large values of k which
exhibits the following drawbacks:

Checking Results. When the user does not trust the analyzer and wants to check its results a posteriori,
not having a simple inductive invariant can seriously complicate the taskﬂ

Difficulty of Unrolling in Presence of Guards. Unrolling purely linear systemsﬂ works well because
the size of the unrolled system is linear in the unrolling depth k. However, when the system contains
guards, things can become more intricate. Considering all paths through k iterations, can lead to a
system of exponential size 2¢ which rapidly becomes intractable for large values of k.

2.2.3 Quadratic Invariants

Although quadratic invariants have been known for a long time, as quadratic Lyapunov functions, from control
theorists [BEEFB94| [Lyad7], their use in static analysis is more recent. The first famous use of quadratic
invariants for static analysis was two dimensional ellipsoids to bound second order filters [Fer04! [Fer05, Mon05].
Bounds on filters of order n could then be computed by decomposing them into filters of order 1 (bounded
with intervals) and 2 (bounded with ellipsis) and refining the obtained bounds by means of some kind
of unrolling [Fer04, [Fer05, IMon05]. The method then presents the same advantages (precision of the
computed bounds) and drawbacks (no inductive invariant is produced) as other unrolling methods. Other
works offer to compute quadratic inductive invariants of higher dimensions on larger classes of linear
systems [AFP09, [AGG10, [GS10, REMO05]. Such invariants are computed thanks to the use of some numerical
solvers, namely semidefinite programming solvers. Table [2.I] summarizes the respective advantages and
drawbacks of linear invariants with unrolling and quadratic invariants.

Example 1. In the remainder of this chapter, the following invam’amﬁ will be fully automatically computed
on the code of Figure [2.1} 6.2547a3 + 12.186827 + 3.87752% — 10.61zgx1 — 2.4306z072 + 2.41827 25 <
1.0029 A |xg] < 0.4236 A |z1] < 0.3371 A |x2| < 0.5251. This invariant is a cropped ellipsoid as displayed on

Figure[2.3

2Although the k-inductive invariants can be made (1)-inductive by adding extra variables, representing past values of program
variables, in their expression.

3Like the one in Figure

4All figures are rounded to the fourth digit.

8 CHAPTER 2. CONVEX OPTIMIZATION AND POLICY ITERATIONS

linear domains with wunrolling | quadratic =~ domains [AFP09,
[Fer04, [Fer05, [GGP09, Mon05, | [AGGI0,IGS10,/GSATI2l RIGFT2]
SB13|

pure linear systems + high precision — less precise
simple guards (e.g., reset) + easily handled + easily handled
other guards (e.g., saturation) | — cannot be handled + often handled
size of generated invariants — potentially huge + quadratic

Table 2.1: Pros and cons of linear domains with unrolling and quadratic domains.

05

03+

Figure 2.3: Invariant for our running example.

Remark 1 (Exact Reachable State Space is not an Ellipsoid). Despite the ability of quadratic invariants to
bound any stable linear system, it should be noted that the reachable state space of such systems is usually not
an ellipsoid. Thus, although ellipsoids are good invariants, they will not always yield the tightest possible
bounds. See [RG15, Example 3] for an example.

This section advocated how nice ellipsoids are to bound linear systems. Yet, they suffer a significant
disadvantage compared to classic abstract domains such as polyhedra, octagons, zonotopes,...: the set of
ellipsoids with the inclusion order can hardly be equipped with a sensible join operatorﬂ as seen in [RGIE,
Fig. 7]. This constitutes a major obstacle to practical computations through Kleene iterations on the whole
set of ellipsoids as usually done in the abstract interpretation framework. A common solution is to choose

— prior to the analysis — ellipsoid shapes and then only compute their radii. Section [2.3| reviews policy
iteration, an efficient technique to compute such radii, while Section offers a technique to determine
relevant ellipsoid shapes.

2.3 Policy Iterations: State of the Art

Computation of precise invariants on numerical programs can be hard to achieve using classic Kleene iterations

with widening. Policy iterations [AGG10, [CGG05, [GS07, [GS10, is one of the alternatives to simple
widening developed during the last decades [FG10, [GRO6), [ST11l and references therein|. This
technique allows computing precise postfixpoints, usually by relying on mathematical optimization solvers.
Such techniques have been developed for the computation of quadratic invariants for linear systems [AGGI0,
[GS10, m Policy iterations basically perform iterations with two phases

o Compute a policy, that is locally simplify the fixpoint problem;
o Solve the policy with efficient tools specialized for this simpler problem.

These two phases are alternatively performed until a good result is reached.

2.3.1 Template Domains

Policy iteration is performed on template domains. Given a finite set {¢1,...,¢,} of expressions on program
N

variables V, the template domain 7 is defined as R* = (R U {—o00, +0c0})" and the meaning of an abstract

value (by,...,b,) € T is the set of environments

A1, bn) ={p € (V= R) | [0](p) <bis.o. s [Ea](p) < bn}

where [t;](p) is the result of the evaluation of expression ¢; in environment p. In other words, the abstract
value (b1, ...,b,) represents all the environments satisfying all the constraints ¢; < b;.

5Although the minimum volume (Léwner-Johns) ellipsoid [BV04] Section 8.4] could be a least unreasonable choice.

2.3. POLICY ITERATIONS: STATE OF THE ART 9

zg:=0
T = 0
5:=0 zo := 0.9379 29 — 0.0381 21 — 0.0414 x5 4+ 0.0237 in

x
D———@—> —1<in<1, z:=—0.0404z5 + 0.968 7, — 0.0179 x5 + 0.0143in

T2 1= 0.0142 ¢ — 0.0197 21 + 0.9823 x5 + 0.0077 in

Figure 2.4: Control flow graph for our running example.

Example 2. Given the quadratic templates t1 = 6.2547x3 +12.18682% + 3.8775x% — 10.61z9x1 — 2.43062072 +
24182z w9, to := 23, t3 := 2% and ty := 3, the quadratic invariant from Example page@ can be written
(1.0029, 0.1795, 0.1136, 0.2757) € T.

Indeed, many common abstract domains can be rephrased as template domains. For instance the intervals
domain is obtained with templates —x; and z; for all variables x; € V and the octagon domain [Min01] by
adding all the +z; = 2;. The shape of the templates to be considered for policy iteration depends on the
optimization tools used. For instance, linear programming [GGTZ07, [GS07] allows any linear templates
whereas quadratic templates can be handled thanks to semidefinite programming [AGGI0, [GS10, IGSAT12].
This chapter focuses on the latter case.

2.3.2 System of Equations

While Kleene iterations iterate locally through each construct of the program, policy iterations require a
global view on the analyzed program. For that purpose, the whole program is first translated into a system
of equations which is later solved.

Starting from the control flow graph of the analyzed program, a system of equations is defined with a
variable b; ; for each template ¢; and each vertex j of the graph.

Example 3. Fz'gure displays the control flow graph for our running example (Figure page @ Here
is its translation as a system of equations:

bl,l = 4o b2’1 = 400 b3 3,1 = +00 b4}1 = 400
b2 = max{0]|be(l)} U max{r(t;)| (-1 <in <1)Abe(2)}
bao = max{0]|be(l)} U max{r(tz)| (-1 <in <1)Abe(2)} (2.1)
b3 = max{0|be(1)} U max{r(ts) | (-1 <in <1) Abe(2)}
by = max{0|be(l)} U max{r(ts) | (-1 <in <1) Abe(2)}
(

where be(j) denotes (t1 < by j) A (ta < baj) A(ts < b3 ;) A (ta < bay) and r(t) is the template t in which
variable xq is replaced by 0.9379 g — 0.0381 x1 — 0.0414 x5 4 0.0237 in, variable x1 is replaced by —0.0404 zo +
0.968 x1 — 0.0179 x5 + 0.0143 in and variable xo is replaced by 0.0142 zg — 0.0197 1 + 0.9823 x5 4+ 0.0077 in.
The usual mazimum on R is denotec@ L

Each b; ; bounds the template ¢; at program point j and is defined in one equation as a maximum over as
many terms as incoming edges in j. More precisely, each edge between two vertices v and v translates to a

term in each equation b; ,+ on the pattern: maxqr(t;) | cA A y (t; < bi,v)} where ¢ and r are respectively the

constraints and the assignments associated to this edge. This expresses the maximum value the template ¢,
can reach in destination vertex v’ when applying the assignments r on values satisfying both the constraints ¢
of the edge and the constraints ¢; < b; ,, of the initial vertex v. Finally, the program starting point is initialized
0 (+00,...,+00), meaning all equations for b; ;,, where jo is the starting point, become b; j, = +00.
Thus, for any solution (b1,1,...,bn1,...) of the equations, y7 (b1 ;,..., b, ;) is an overapproximation of
reachable states of the program at point j. According to the Knaster-Tarski theorem, this set of solutions
has a least element which then gives the best overapproximation of the reachable state space of the program.

2.3.3 Policy Iterations

Policy iterations intend to compute the least solution of the previous system of equations. They are an
iterative process with two phases. First, an abstraction of the problem is computed. This abstraction, called
policy, can then be solved using techniques which were not applicable on the original problem. This gives an
approximation of the final result enabling to find a better policy, itself giving a better approximation of the
result and so on.

Two different techniques, min- and max-policies, can be found in the literature. They basically apply the
previous scheme top down or bottom up respectively.

6V is often used instead in the policy iteration literature.

10 CHAPTER 2. CONVEX OPTIMIZATION AND POLICY ITERATIONS

bi1 £, £,
I 0V w/b171
—_— I :
—] ; ; ; b1
bg b1 bO

Figure 2.5: Illustration of Example

Min-Policy Iterations

To some extent, min-policy iterations [AGGI10] can be seen as a very efficient narrowing, since they perform
descending iterations from a postfixpoint towards some fixpoint, working in a way similar to the Newton-
Raphson numerical method. Iterations are not guaranteed to reach a fixpoint but can be stopped at any time
leaving an overapproximation thereof. Moreover, convergence is usually fast.

Writing a system of equations b = F(b) with b = (bw)ie[[l’n]]’jg[[l’p]] and F: R — R"™ (n being the
number of templates and p the number of vertices in the control flow graph), a min-policy is defined as
follows: F is a min-policy for F' if for every b € ™", F(b) < F(b) and there exist some by € R such that
F(by) = F(bg). We will only consider linear min-policies in the remaining of this chapter. For instance, for a
smooth concave function, its min-policies are the tangents to its graph.

Example 4. Considering the system of one equation by =0 L /by1 , where \/x is defined as —oo

for negative numbers x, F defined as F(b) := 0 U (blT‘l + 2) is a min-policy. Indeed, for all by € R,

Fb)y=0U /b1 <0U blT’l +2=F(b), and for by = 16, F(by) = V16 = 3 + 2 = F(by). This is illustrated
on Figure[2.9 on which F, is the above F.

The following theorem can then be used to compute the least fixpoint of F.

Theorem 1. Given a (potentially infinite) set F of min-policies for F. If for all b € R™ there exist a policy
F € F interpolating F at point b (i.e. F(b) = F(b)) and if each F € F has a least fizpoint fp F, then the
least fixrpoint of F satisfies

lfpF =[] pE.
FeZ

Remark 2. This enables to better understand the name min-policies since, in the hypotheses of the previous
theorem, F is the pointwise minimum of the min-policies F € F:

F=[]E

Iterations are done with two main objects: a min-policy F' and a tuple b of values for variables b; ; of the
system of equations. The following policy iteration algorithm starts from some postfixpoint by of F and aims
at refining it to produce a better overapproximation of a fixpoint of F. Policy iteration algorithms always
proceed by iterating two phases: first a policy is selected then it is solved. In our case:

 find a linear min-policy F;,; being tangent to I at point b;, this can be done thanks to SDP
solvers [GSAT12 Section 5.4];

» compute the least fixpoint b; 11 of policy I, thanks to linear programming.

Tterations can be stopped at any point (for instance after a fixed number of iterations or when progress
between b; and b; 41 is considered small enough) leaving an overapproximation b of a fixpoint of F'.

Example 5. We perform min-policy iterations on the system of equations of Example [}

o We start from the postfixpoint by = 16. This postfixpoint could be obtained through Kleene iterations for
instancd’l.

7Or a large enough guess can be used. Thanks to the fast convergence of min-policy iterations, there is often no need for this
postfixpoint to be close to the fixpoint eventually computed.

2.3. POLICY ITERATIONS: STATE OF THE ART 11

e For each term of the unique equation, we look for a hyperplane tangent to the term_at point by. 0 is
tangent to 0 at point by and blT’l + 2 is tangent to /b1 1 at point by (c.f., Figure , this gives the
following linear min-policy:

£ = {a=0u (B +2)
o The least fizpoint of F; is then: by = 1—76 ~ 2.2857.
o Looking for hyperplanes tangent at point by gives the min-policy:

£2= { bii=0U (%bm + \%)

e Hence by = % ~ 1.1295.

These two first iterations are illustrated on Figure|2.5 The procedure then rapidly converges to the fixpoint
b1 =1 (the next iterates being bs ~ 1.0035 and by ~ 1.0000) and can be stopped as soon as the accuracy is
deemed satisfying.

Remark 3. The Newton-Raphson method on a smooth concave function is a particular case of min-policy
iterations.

Example 6. We perform min-policy iterations on the running example (Equation , page @)
o We start from the postfizpoint by = (400, 400, 400, +00, 1000000, +00, +00, +00).

e For each term of each equation, we look for an hyperplane tangent to the term at point by. This can be
done thanks to SDP solverﬁ and gives the following linear min-policy:

El = b171 = 400 b271 = 400 bg’l = +o0 b4,1 = 400
b1o =0 L 0.9857 by o + 0.0152 by =0 U 0.2195 by o + 11.0979
b =0 L 0.1143by 5 + 4.8347 bz =0 LI 0.2669 by 5 + 3.9796.

o A linear programming solver allows computing the least fizpoint of Fy:

by = (+00, +00, +00, +00, 1.0664, 11.3324, 4.9568, 4.2644).

° EQ = bl,l = +o0 b2,1 = +00 63,1 = +00 b4,1 = +00
b1’2 =0 U 0.9857 bl,g + 0.0143 bg,g =0 U 0.2302 b1’2 +0.0120
b372 =0 U 0.1190 b1)2 + 0.0052 b4,2 =0 U 0.2708 b172 + 0.0042

e by = (+00, +00, +00, +00, 1.0029, 0.2429, 0.1245, 0.2757).

Four additional iterations lead to bg = (+00,+00, 400, +00, 1.0029, 0.1795, 0.1136, 0.2757) which is the
invariant given in Ezample[d] and depicted on Figure[2.3

Remark 4 (Number and size of semidefinite programs). At each iteration, one semidefinite program has to
be solved for each term of each equation in order to compute a new policy. This leads to many semidefinite
programs but each focusing on a single term, hence rather small. The computed policies being linear are then
solved through linear programming. This way, at the scale of the whole system, only linear programs are
solved, which scales better than semidefinite programming.

Max-Policy Iterations

Behaving somewhat as a super widening, max-policy iterations [GS10] work in the opposite direction compared
to min-policy iterations. They start from bottom and iterate computations of greatest fixpoints on a set
of max-policies until a global fixpoint is reached. Unlike the previous approach, this terminates with a
theoretically precise fixpoint, but the user has to wait until the end since intermediate results are not
overapproximations of a fixpoint.

Max-policies are the dual of min-policies: F is a max-policy for F if for every b € R™, F(b) < F(b) and
there exist some by € R such that F(by) = F(by). In particular, the choice of one term in each equation is
a max-policy. From now on, only this last kind of max-policies will be considered.

Theorem 2. Given the set F of maz-policies for F' as defined above (choice of one term in each equation),
any fizpoint of F is also a fixrpoint of some Fy € F.

8See [RG15, Example 9] for more details.

12 CHAPTER 2. CONVEX OPTIMIZATION AND POLICY ITERATIONS

Iterations are again done with two main objects: a max-policy F and a tuple b of values for variables
b;,; of the system of equations. The following policy iteration algorithm aims at finding a policy Fy as in
the above theorem by solving optimization problems. The initial value by := (—o0,...,—00) is chosen, then
policies are iterated:

o find an improving policy F;41 at point b;, i.e. that reaches (strictly) greater values evaluated at point b;,
this can be done by evaluating each term of the system of equations at point b; |[GSA™12, Section 6.2];
if none is found, exit;

o compute the greatest ﬁxpoimﬂ bi+1 of policy F;,; using SDP solvers [GSAT12, Section 3.7].
The last tuple b is then a fixpoint of the whole system of equations.

Remark 5. Although min and maz policies are dual concepts, we are in both cases looking for overapproximations
of the least fixpoint of the system of equations, thus the algorithms are not dual.

Example 7. We perform max-policy iterations on the running example (Equation , page @
o We start with the initial value by = (—00, —00, —00, —00, —00, —00, —00, —00).

o We now look for an improving policy F at point by. For the first four equations, there is no choice and
the term +o00 is chosen. For the four remaining equations, replacing the b; ; with values —oo from by in
be(1) and be(2) gives formula equivalent to false, hence both terms of these equations are mazimum of
the empty set and evaluate to —oco. We can then choose any of them:

F = big=+00 by =400 bsq =400 by1 =+00
b1 2 = max{0 | be(1)} bg2 = max{0 | be(1)}
b3 2 = max{0 | be(1)} by2 = max{0 | be(1)}.

e Hence by = (400, +00, +00, +00,0,0,0,0).

e Now by no longer has any —oo, so be(2) is no longer false and it becomes interesting to select the
second terms in the last four equations, hence:
Fy = b1 =400 by =+00 b3 =+00 by =+00

b12 = max{r(t1) | =1 <in <1 Abe(2
bao = max{r(tz) | =1 <in <1 Abe(2
b3 o = max{r(ts) | =1 <in <1 Abe(2
by = max{r(ts) | =1 <in <1 Abe(2)}.

o The greatest fizpoint of Fy can be computed thanks to SDP solver:
by = (400, +00, +00, 400, 1.0077, 0.1801, 0.1141, 0.2771).

e No more improving policy.
After three iterations, the algorithm has found the same least fizpoint than min-policies in Example [0

Remark 6 (Number and size of semidefinite programs). Contrary to min-policies (c.f., Remark , maz-
policies are not linear. Solving them then requires semidefinite programs whereas min-policies only solve
linear programs at the scale of the whole system.

The max-policy iteration builds an ascending chain of abstract elements similarly to Kleene iterations
elements. However it is guaranteed to be finite, while Kleene iterations require the use of widening to ensure
termination. Indeed, since there are exponentially many max-policies, we have a bound on the number of
iterations. And despite this exponential bound, in practice, only a small number of policies are usually
considered and the number of iterations remains reasonable.

2.4 Template Generation

Template domains used by policy iteration require templates to be given prior to the analyses. This greatly
limits the automation of the method. However, heuristics can be designed for linear systems of the form
T(hy1) = Az () + Buy), like our running example. Those are ubiquitous in control applications where the
vector x represents the internal state of the controller and u a bounded input.

After a brief introduction to Lyapunov stability theory, this section first focuses on generating templates
for pure linear systems then for guarded linear systems given as a control flow graph.

9More precisely, first determine which b; j are oo in the least fixpoint in R" greater than b;, then compute a greatest
fixpoint for the remaining values in R.
10See [RG1H, Example 11] for details.

2.4. TEMPLATE GENERATION 13

{A.T(k) + Bu ’ [[ul]oo < 1}

Figure 2.6: Illustration of the stability concepts: if x(;) is in the dark gray ellipse, then, after a time step,
Axyy is in the light gray one, which is exactly what is expressed by Equation . The white box represents
the potential values of z(;,1) after adding the effect of the bounded input). We see here the necessity
that the light gray ellipse be strictly included in the dark gray one, which is the stronger condition expressed

by Equation ({2.7).

2.4.1 Introduction to Lyapunov Stability Theory

One common way to establish stability of a discrete, time-invariant closed (i.e., with no inputs) system
described in state space form, (i.e., z(x41) = f(2))) is to use what is called a Lyapunov function. It is a
function V : R™ — R which must satisfy the following properties

V(0)=0AVz e R"\{0},V(z) >0A | lim V(z)=o0 (2.2)

||| =00

Yz € R™, V(f(z)) - V(z) < 0. (2.3)

It is shown, for instance in [HCO8], that exhibiting such a function proves the Lyapunov stability of the
system, meaning that its state variables will remain bounded through time. Equation expresses the fact
that the function k +— V(2 (1)) decreases, which, combined with ([2.2)), shows that the state variables remain
in the bounded sublevel-set {z € R"|V (z) < V(x())} at all instants k € N.

In the case of Linear Time Invariant systems [BEEFB94| (of the form x4,y = Az, with A € R"*"),
one can always look for V' as a quadratic form in the state variables of the system: V(x) = 27 Pz with
P € R™™ a symmetric matrix such that

P=0 (2.4)
ATPA—-P=0. (2.5)

Now, to account for the presence of an external input to the system (which is usually the case with
controllers: they use data collected from sensors to generate their output), the model is usually extended into
the form

I(k+1) = AI(k) + BU(;,C), Hu(k)Hoo S 1. (26)

The condition [|u)|leo < 1 reflects the fact that values coming from input sensors usually lie in a given range.
The bound 1 is chosen without loss of generality since one can always alter the matrix B to account for
different bounds. Then, through a slight reinforcement of Equation (2.5) into

ATPA—-P <0 (2.7)

we can still guarantee that the state variables x of will remain in the sublevel set (for some A > 0)
{:1: eR” | T Px <)\}, which is an ellipsoid in this case, as illustrated on Figure This approach only
enables us to study control laws that are inherently stable, i.e., stable when taken separately from the plant
they control. Nevertheless a wide range of controllers remains that can be analyzed. In addition, inherent
stability is required in a context of critical applications.

These stability proofs have the very nice side effect that they provide a quadratic invariant on the state
variables, which can be used at the code level to find bounds on the program variables. Furthermore, there
are many P matrices that fulfill the equations described above. This gives some flexibility as to the choice of
such a matrix: by adding relevant constraints on P, one can obtain increasingly better bounds.

14 CHAPTER 2. CONVEX OPTIMIZATION AND POLICY ITERATIONS

t
2 +
+
1.5+ B
+
Ll - 1 -
. - -
- +
0.5 +] i
HE.
[=+ —
- *
+ + +
- . - -
= mid
0 ~ ' : : % : | | |

2 3 4 5 6 7 8 9 10 11 12 VY

Figure 2.7: Time (¢ in seconds) spent performing min (— signs) and max (+ signs) policy iterations depending
on the number v of variables in the analyzed program. Fewer 4+ than — in a column indicates a failure of
max-policies on a benchmark. All computations were performed on an Intel Core2 @ 2.66GHz.

2.4.2 Generating Templates

Given a pure linear system (z(p11) = Az) + Bug) with |lugllee < 1), we want to generate a quadratic
template enabling policy iterations to bound the system. According to Section any positive definite
matrix P solution of the Lyapunov equation gives such a quadratic template ¢ := 27 P x. semidefinite
programming constitutes an efficient way to solve this equation. However, taking any random solution may
lead to very grossly overapproximated invariants. It would be interesting to constrain more the set of solutions.
Multiple approaches exist [RJGF12]. The one used to generate the template of Example [2| relied on looking
for a matrix P corresponding to a stable ellipsoid included in a sphere of minimal radius, see [RGI5, §5.2] for
more details.

2.5 Floating-Point Issues

Two fundamentally different issues arise with floating-point arithmetic:

The analysis itself is carried out with floating-point computations for the sake of efficiency, this usually
works well in practice but might give erroneous results, hence the need for some a-posteriori validation,
this will be the topic of next Chapter

The analyzed system uses floating-point arithmetic with rounding errors, making it behave differently
from the way it would using real arithmetic, this is rapidly discussed below.

Since the synthesized invariants are computed through numerical methods, they contain some margin.
The rounding errors performed by the analyzed programs being usually relatively small, they usually easily
fit in those margins. Obtaining invariants for the floating-point program can then be done by obtaining an
invariant for the ideal program computing in real arithmetic (as done until this point in this chapter), then
bounding the rounding errors performed by the program and finally checking that the previous invariant still
hold with additional errors within those bounds. More details can be found in [Roul6l §4.3], along with a
formalization in the Coq proof assistant.

Such use of abstract domains in the real field to soundly analyze floating-point computations is not
new [Min04] and some techniques even allow to finely track rounding errors and their origin in the analyzed
program [GP1I].

2.6 Experimental Results

All the elements presented in this chapter have been implemented as a new abstract domain in our static
analyzer. Experiments were conducted on a set of stable linear systems. These systems were extracted from
the literature [AGGI0, [Fer05, RIGF12l [SB13|]. The analyzer is released under GPL and available with all
examples at http://cavale.enseeiht.fr/practicalpolicy2014/.

http://cavale.enseeiht.fr/practicalpolicy2014/

2.6. EXPERIMENTAL RESULTS 15

n | Total (s) | Templates (s) Iterations (s) Check (s)
Ex. 1 3 0.12 0.05 0.03 0.01
) . 3 0.16 0.05 0.06 0.02
From [Fer(R}, slides] 41 050 0.15 0.22 T (0.01)
5 0.33 0.16 0.06 0.02
Ex. 2 51 0.44 0.15 0.10 0.04
From [Fer05. slides] 6| 077 0.15 0.28 0.12
3 0.20 0.07 0.10 0.02
Ex. 3
Discretized lead-lag controller 3 0.32 0.07 0.18 0.03
z & I 068 0.07 0.43 0.08
4 0.47 0.16 0.19 0.03
Ex. 4
Linear quadratic gaussian regulator 4 0.67 0.16 0.32 0.06
4 & & 51 1.3 0.20 0.64 0.13
Ex. 5 6 0.96 0.46 0.16 0.06
Observer based controller 6 1.25 0.47 0.33 0.11
for a coupled mass system 7 2.28 0.45 0.85 0.26
6 1.18 0.47 0.35 0.08
Ex. 6 6 1.76 0.45 0.77 0.15
Butterworth low-pass filter = 567 05 110 096
2 0.14 0.01 0.09 0.01
Ex. 7 2 0.23 0.01 0.16 0.02
Dampened oscillator from [AGGI0)] 3 036 0,01 030 T(0.01)
2 0.11 0.01 0.07 0.01
Ex. 8 2 0.19 0.01 0.12 0.03
Harmonic oscillator from [AGGIO0] 3 0.6 001 013 010

Table 2.2: Result of the experiments: quadratic invariants inference. For each of the eight examples, the
first line is for the bare linear system, the second for the same system with an added reset and the third
with a saturation. Column n gives the number of program variables considered for policy iteration while
column ’Total’ gives the time spent for the whole analysis. The remaining columns detail the computation
time: *Templates’ corresponds to the quadratic template computation (Section , 'Tterations’ to the actual
policy iterations (Section and "Check’ to the soundness checking (Section [2.5). L indicates failure of the
checking (in both cases because the template generation heuristic failed to generate an appropriate template).

Comparing Min- and Max-Policies As seen in Section two methods exist to compute invariants by
policy iterations, namely min- and max-policies. Figure compares analysis times with min and max-policy
iterations. In both cases, the number of iterations always remained reasonable. For min-policies, the number
of iterations performed lies between 3 and 7 when the stopping criterion is a relative progress below 10~*
between two consecutive iterates. For max-policies, the number of iterations was between 4 and 7. As shown
on Figure computation times for min and max-policies are comparable but the actual differences appear
on the largest benchmarks for which max-policies where unable to produce sound results while min-policies
did[ﬂ Finally, it can be noticed that, when both methods work, results obtained with min and max-policies
are the same. However, due to numerical issues, min-policies often yield slightly more precise results. For all
these reasons, min policies were made the default in our tool.

Benchmarks Figure only gave times for policy iterations. Total analysis times also include building
the control flow graph and the equation system, computing appropriate templates and eventually checking
the soundness of the result. Time needed for control flow graph construction and soundness checking is very
small compared to the time spent in policy iterations, whereas computing templates takes the same order of
magnitude in time than min-policies iteration. All this is detailed in Table for a subset of the benchmarks
from Figure Finally, Table details the bounds obtained for each benchmark and compares them with
the known maximum reachable values of the programs.

1 This is explained by the fact that max-policies have to solve larger SDP problems, incurring more numerical difficul-
ties |[GSAT 12, Conclusion] (c.f., Remarks pageand@ page .

16 CHAPTER 2. CONVEX OPTIMIZATION AND POLICY ITERATIONS
max || Bounds Reachable
15.98,15.98 14.84,14.84
Ex. 0.837 15.98,15.98 14.84,14.84
Fo0, +00 12.31,12.31
1.65,1.65,1.00,1.00 1.42,1.42,1.00,1.00
Ex. 0.837 1.65,1.65,1.00,1.00 1.42,1.42,1.00,1.00
2.20,0.50,1.00, 1.00 1.04,0.50, 1.00, 1.00
4.03,20.41 3.97,20.00
Ex. 0.999 4.03,20.41 3.97,20.00
1.14,21.41 2.04,1.68
0.43,0.35,0.54 0.38,0.26,0.48
Ex. 0.989 1.03,1.01,1.47 1.00,1.00,1.00
0.45,0.37,0.56 0.19,0.11,0.17
4.60,4.74,4.34,4.38 2.79,2.73, 3.50, 3.30
Ex. 0.840 4.60,4.74,4.34,4.38 2.79,2.73,3.50,3.30
3.58,7.04,5.54,6.17 1.28,1.69, 3.31,2.87
1.42,1.10,1.75,1.82,2.57 | 1.42,0.91,1.44,1.52,2.14
Ex. 0.804 | 1.42,1.76,2.63,3.14,4.45 | 1.42,0.91, 1.4, 1.52,2.14
1.03,1.37,1.99,2.95,4.02 | 1.03,0.65,0.77,0.88,1.16
1.74,1.74 1.29,1.00
Ex. 7 0.995 1.74,1.74 1.29,1.00
400, +00 1.00,1.00
1.27,1.27 1.10,1.00
Ex. 8 0.955 1.27,1.27 1.10,1.00
1.00,1.01 1.00,0.99

Table 2.3: Result of the experiments: quadratic invariants inference. The examples are the same as in
Table Column ’Bounds’ gives the bounds on absolute values of each variables inferred and proved by the
tool whereas column "Reachable’ gives underapproximations of the maximum reachable values (obtained by
random simulation) for comparison purpose. max |;| is the maximum of modules of eigenvalues of the linear
application considered, which gives an idea of "how contractive’ the linear application is.

2.7 Conclusion

In this chapter we attempted to describe a complete, yet practical, use of policy iterations to perform static
analysis of programs. Policy iteration is shown to be a strong candidate to support the computation of precise
post-fixpoints when over-approximating the collecting semantics of a program.

We presented the background of policy iterations and the rationale of its use, either using min-policy
decreasing iterations — a kind of smart narrowing, starting from a post-fixpoint — or max-policies, performing
increasing iterations. In both cases, bounds over template domains are obtained relying on numerical solvers,
at each step of the computation.

We supported the use of policy iteration, as a way to replace the widening operator when it is ineffective,
by addressing key points required by the technique and often left unaddressed by former works:

e the automatic computation of templates;
e handling the floating point semantics of the analyzed program;
o guaranteeing the soundness of the computation despite the possible errors of the numerical solvers used.

We believe our contribution could support a wider use of policy iterations within the abstract interpretation
framework and more generally the static analysis of programs. The setting in which the current work is
performed is specific: the analysis of control software, focusing on quadratic templates and using SDP solvers
as optimization solvers; but it is a first step towards more extensions and a wider applicability:

o more complex templates, e.g., disjunction of quadratic forms or polynomials (for instance thanks to
sum-of-squares (SOS) relaxations);

o wider class of programs analyzable precisely, e.g., complex discrete versions of controlled systems
including the system (also known as plant) behavior.

2.7. CONCLUSION 17

Another important aspect of the approach is the capability to express and analyze more complex behaviors
than just the boundedness of the considered system. The synthesized templates, even if constrained by a
bound, could express high level behavior of the program. In our setting of controllers, these templates can be
used to encode stability, robustness or performance properties, leading to a broader impact of static analysis
when applied to critical software and systems.

18

CHAPTER 2. CONVEX OPTIMIZATION AND POLICY ITERATIONS

Chapter 3

Verified Sum Of Squares Optimizations

The previous chapter gave us a motivation to use tools such as numerical optimization solvers, more precisely
SDP solvers, to synthesize program invariants. Unfortunately, it is easy to derive incorrect results through
these methods, as illustrated in Section[3.I] Thus, Section[3:2]explains how we can efficiently and automatically
perform rigorous proofs of such numerical results, then Section [3.3] describes how we made this available in
the Alt-Ergo SMT (Satisfiability Modulo Theories) solver [RICIS8] and finally Section [3.4] explains how we
made this available as a reflexive tactic in the Coq proof assistant, automatically producing fully mechanized

proofs [MR17].

3.1 Motivating Examples

In this section, we illustrate through two examples the scenario where numerical SDPs give seemingly sensible
solutions to simple invariant generation problems, and yet the generated invariants are not sound.

Consider the program in Figure Does there exist an inductive invariantEl that can be expressed as
{(z1,22) € R? | p(x1,32) > 0} for some polynomial p? A tractable sufficient condition that guarantees this
can be formulated using the SOS optimization approach (see Section , resulting in an SDP instance that
can be solved by numerical solvers. The widely used SDPT3 [TTT03] solver reports a solution. Although all
the DIMACS errors [SP] are less than 1078, not raising any suspicion, we found traces of the program that
violate this purported invariant (see Figure .

As another example, we consider a program from ADJE et al. [AGM15] and the “invariant” they offer,
generated with numerical solvers (Figure . Note that the purported invariant is indeed not inductive:
one can find points in it whose image after one iteration of the loop body exits the invariant (Figure [3.3).
Figure [3.3] also depicts an actual invariant, proved using the method in this chapter.

One could think that those inaccuracies come from the fact that the SDP solvers compute using floating-
point arithmetic. However, the very fact that the interior-point algorithm they implement only provides
approximate solutions, probably plays a much greater role. This means implementing an SDP solver using
exact rational arithmetic, if at all possible, would only be dramatically slower but wouldn’t immediately
provide sound results. We provide a more thorough analysis of the sources of inaccuracies when using SDP
solvers in [RVS18], §4]. The remaining of this chapter thus focuses on a-posteriori validation of solutions, as
well as simple tricks to obtain such valid solutions in practice.

LQuite often in this document, the word “invariant” is used for inductive invariant.

(x1, x2)€ {11,:122 | x%Jr:rg < 1.52}
while (1) { // Find Inv. p(zi,z2) >0
x1 = x1 % x2;
x2 = —x1;
}
()= 1+ 2.4627 + 2.4623 — 5 x 10~ "2}
P, ®2) = —2.463222 — 5 x 10~ ad

Figure 3.1: (Left) An example program, and “loop invariant” p(x1,x2) > 0 synthesized using numerical
solvers. (Right) The claimed “invariant” and dashed lines showing violations.

19

20 CHAPTER 3. VERIFIED SUM OF SQUARES OPTIMIZATIONS

(x1, x2)€[0.9,1.1] x [0,0.2]

while (1) { 2.510902467 + 0.00501 + 0.0148z2 — 3.0998z2
r;;e—(ﬁ; 11;(2 E;ezf 17 >{<2 ; +0.803723 + 3.02972% — 2.592422
x1 = pre_x172 + pre_ x273: — 1.5266z1 22 4 1.9133z3 22 4 1.812221 23 — 1.6042z]
, ﬁsz I{Jre—xlA?’ + pre_x272; —0.051223 25 + 4.44302222 + 1.8926x123 — 0.54642%
xl = 0.5 % pre_x173 +0.2084x5 — 0.5866z w2 — 2.2410z5 02 — 1.571422 43
= — o j g;: ilggefﬁﬁ% + 0.0890z1 24 4 0.9656z5 — 0.009825 + 0.032023 22
4 0.3 * pre x272; +0.0232x 22 — 0.2660x5 25 — 0.7746x3 275
, } —0.9200z123 — 0.641125 > 0

Figure 3.2: (Left) An example program taken from from ADJE et al. [AGMI5, Example 4].
(Right) Purported invariant at loop head synthesized using SDP solvers [AGMI5].

1 | 1 |
0 | 0 |
1k . 1 .
| | | | | |
-1 0 1 2 3 4 -1 0 1

Figure 3.3: (Left) The candidate invariant from Figure with arrows showing concrete transitions. The
arrows leaving it are counterexamples to its inductiveness. (Right) The invariant of degree 8 whose soundness
is proved using the approach in this chapter.

3.2 On paper

3.2.1 Sum of Squares (SOS) Programming

The sum of squares relaxation [Las01} [Par03] is an incomplete but efficient way to numerically solve polynomial
problems. This section aims at recalling its main ideas which are required to understand the main contribution
of the chapter.

A multivariate polynomial p € R[z] is said to be a sum of squares when there exist polynomials h; € R[z]
such that, for all x € R™,

pla) = 3" (a).

Although not all nonnegative polynomials are sum of squares, being a sum of squares is a sufficient condition
to be nonnegative.

Example 8. Considering p(z1,r2) = 22} +2x3x0—2303+523, there exist hy (w1, 22) = \/LE (223 — 323 + z122)

and ho(x1,22) = \/LE (23 + 3x132) such that p = h3 + h3. This proves that for all x1,z2 € R, p(z1,22) > 0.

Any polynomial p of degree 2d (a nonnegative polynomial is necessarily of even degree) can be written as
a quadratic form in the vector of all monomials of degree less or equal d:

pla) = 7Q (31)
where z = [1,21,..., @y, 2122,..., 22| and Q is a constant symmetric matrix.

Remark 7. If the polynomial p is homogeneous, that is if all its monomials have the same degree 2d (as in
Ezxample @), then only monomials of degree exactly d are required in the vector z.

Example 9. For p(z1,7s) = 221 + 22329 — 2323 4 523, according to the above Remark, we can use the vector

3.2. ON PAPER 21

. T
of monomials z = [ac%, 33%,.131332] . We then have

p(z1,x2) = 2:U‘11 + 2:@:02 - x%x% + 5;53

21T 2

xry qi11 412 413 xy

2 2

=1 232 gi2 422 Q23 3
T1T2 q13 ¢23 Q33 172

= gt + 2137572 + (¢33 + 2q12)T7 23 + 2q0321 75 + o073,
Thus q11 = 2, 2q13 = 2, q33 + 2q12 = —1, 2g23 = 0 and g22 = 5. Two possible examples for the matriz Q) are
shown below:
1 2 -3
Q=1|-3 5
0

O Ot =
o
ol O =

2
Q=1
1

The polynomial p is then a sum of squares if and only if there exists a positive semidefinite matrix @)
satisfying (3.1]). A matrix @ is said positive semidefinite when, for all vectors =, 7 Q2 > 0. This will be
denoted by @ > 0.

Example 10. In the previous example, the first matriz Q is not positive semidefinite (for x = [0,0, l]T,
2TQa = —3). In contrast, the second matriz Q' is positive semidefinite as it can be written Q' = LT L with
1 _

Lo L2 -3

V210 1 3

(then, for all v, 7 Qx = (Lz)T (Lz) = || Lz||2 > 0). This gives the sum of squares decomposition of Ezxample @
p(z1,22) = 2(22% — 323 + z122)% + 2 (23 + 3z122)2.

3.2.2 Semidefinite Programming (SDP)

Given symmetric matrices C, Ay,..., A, € R**® and scalars ay,...,a, € R, the following optimization
problem is called semidefinite programming

minimize tr(CQ)

subject to tr(41Q) = a1
: (3.2)

tr(AmQ) =an
Q=0

with symmetric matrix @ € R®**® as variable and where tr(M) =). M, ; denotes the trace of the matrix M.

Remark 8. Since the matrices are symmetric, tr(AQ) = tr(ATQ) = > AijQij. The constraints
tr(AQ) = a are then affine constraints between the elements of the matriz Q, the variable Q; ; being assigned
to the coefficient A, ;.

Semidefinite programming is a convex optimization problem for which there exist efficient numerical
solvers [BV04], [VB96].

As we have just seen in Section [3.2.1] existence of a sum of squares decomposition amounts to existence
of a positive semidefinite matrix satisfying a set of affine constraints, that is a solution of a semidefinite
program. Thus, semidefinite programming provides an efficient way to numerically solve problems involving
polynomial inequalities, by relaxing them as sum of squares constraints.

Example 11. The affine constraints computed in Ezample[d can be encoded as a semidefinite program with
the following constraints:

100 00 1 010
tr|{ 0 0 0lQ|l=2 t||o o0 o0olQ|=2 t||1o0o0Q|=-1
00 0 100 00 1

tr tr

coco
— oo
o~o
O
I
o
coco
o~ o
coco
Q
I
5

22 CHAPTER 3. VERIFIED SUM OF SQUARES OPTIMIZATIONS

3.2.3 Parameterized Problems

Up to now, we have only seen how to check whether a given fized polynomial p is sum of squares (which
implies its nonnegativeness). One of the great strength of SOS programming is to enable to solve problems
with unknown polynomials.

An unknown polynomial p € R[z] with n variables and of degree d can be written

p= E [N A e

a1+ tan<d

where the p, € R are scalar parameters. The p,, then just translate to additional variables in the resulting
SDP problem. This enables to relax polynomial problems with polynomial constraints.

Example 12. Given two polynomials p and q, to prove that p(x) > 0 whenever q(x) > 0 (said otherwise:
Va,q(z) >0 = p(x) >0), one can exhibit a polynomial o such that

p—oq>0Ao >0.

Indeed, for any x, if q(x) > 0 then p(z) > o(x) q(x) > 0. Thus, the nonnegativity constraints can be relaxed
to sum of squares constraints and the problem can be encoded as some SDP program (for some degree for o).

The reader interested in more details is referred to the literature [Las09, [L6f09].

3.2.4 Approximate Solutions from SDP Solvers

In practice, the matrix @ returned by SDP solvers upon solving an SDP problem does not precisely
satisfy the equality constraints. Therefore, although the SDP solver returns a positive answer for a SOS
program, this does not translate to a valid proof that a given polynomial is SOS. This section details an
incomplete but efficient validation method to address this issue.

Most SDP solvers start from some @ > 0 not satisfying the equality constraints (for instance the identity
matrix) and iteratively modify it in order to reduce the distance between tr(A;Q) and a; while keeping @
positive semidefinite. This process is stopped when this distance is deemed small enough.

Therefore, we do not obtain a @ satisfying tr(A4;Q) = a; but rather tr(4;Q) = a; + d; for some smalﬂ)
such that |d;| < ¢ for all 4. This has a simple translation in terms of our original SOS problem. The equality
constraints tr(A;Q) = a; correspond to equality between corresponding monomials of the polynomials p and
2TQ z. As a result, there exists a matrix E such that for all 4,7, |E; ;| < &, with

p=2"(Q+E)-=. (3.3)
Proof scheme (soscheck_correct in our Coq code). Just take the matrix F with coefficients

o (p—2TQ2) [z 2]

Y | e 2 = iz}

where p[m] stands for the coefficient of monomial m in polynomial p and #S denotes the cardinal of the set S.
Then, each (p — 27Qz)[z; z;] corresponds to some d; and #{(i’, j') | zi zj» = z; z;} > 1, hence |E; ;| < 6. O

E

It is worth noting that we cannot trust the value of ¢ reported by the solver, as it is just computed in
floating-point arithmetic. However, it is easy to recompute as § := max; [tr(4;Q) — a;|.

3.2.5 A Validation Method

Our goal is now to check that @ + E > 0 which would prove, along with that p is SOS (and then
nonnegative). The matrix @ is a floating-point matrix provided by the SDP solver and the above proof
scheme provides a way to compute E, hence also Q + E. However, we don’t want to exactly compute Q + E
as, unlike @, there is no guarantee for it to contain only floating-point values. We will rather attempt to
prove the stronger result that for any matrix M whose elements are bounded by €, the inequality @ + M = 0
holds. Figure [3.4] gives a geometrical intuition of this.

The following property then provides a sufficient condition.

Property 1 (posdef_check_itv_correct in Coq). For any Q € R**® and § € R, if
Q — s6l = 0,

then for any E € {M | ¥i,j,|M; ;| <6},
Q+E 0.

2Typically, § ~ 10~8 when the order of magnitude of the a; is 1.

3.2. ON PAPER 23

{M | M = 0} {M | M =0} {M | M = 0}

{M’p:zTMz} {M|p=zTMz}

(c¢) Cannot conclude.

(a) p is proved SOS. (b) Cannot conclude.

Figure 3.4: Given a polynomial p, all matrices M such that p = 27 M z give an expression of p in the
monomial basis z. Among these expressions, positive semidefinite matrices M > 0 correspond to sum of
squares. To prove that p is SOS, we then need to prove that the subspace {M ‘ p=2zI'M z} (dark diagonal
line on the figure) intersects the positive semidefinite cone {M | M > 0} (light grey rounded shape). The
SDP solver returns a matrix @) close to the subspace, i.e., such that the ball {Q + E'| Vi, j, | E; ;| < ¢} (darker
grey disc, denoted { @ + E } on the figure) intersects it. Thus, proving that this ball is included in the cone,
as on (a), enables to conclude. The proof can also fail, either because @ is too close to the border of the
cone (b) or because p is simply not SOS (c).

R :=0;
for j from 1 to n do
for i from 1 to j — 1 do

i—1
R; ;= <M'L] — ZRk,iRk,j> /Ris;
k=1

od

Figure 3.5: From a matrix M, the Cholesky decomposition attempts to compute a matrix R such that
M = RTR. The algorithm succeeds if and only if M = 0, assuming exact real arithmetic.

Thus, we are left having to prove that a given matrix @ — sdI is positive semidefinite instead of @ itself.
We use a Cholesky decomposition to do so. Given a matrix M, if M > 0, the Cholesky decomposition
algorithm, given on Figure computes a matrix R such that M = RT R which provesE| that M > 0. If
M is not positive semidefinite, the Cholesky decomposition fails by attempting to take the square root of a
negative value. The execution of the algorithm requires ©(s®) arithmetic operations.

However, for the sake of efficiency, a floating point Cholesky decomposition is used, which prevents the
exact equality M = RT R. The following theorem gives an incomplete but efficient method that allows us to
conclude the positive definiteness of a matrix M using an unreliable floating point Cholesky decomposition of
a slightly modified floating point matrix M.

Theorem 3. [Rum06, Corollary 2.4] (corollary_2 4_with_c_upper_bound in Coq) Assume a floating-point
format F with relative error ¢ and absolute error n. For M € R**¢ et c be

(s+1)e

———tr(M)+4 (2 1 M; 1) .

e + s (25 1)+ max M)

If the floating-point Cholesky decomposition of M — cI succeeds (i.e., without taking the square root of a
negative value), then the Cholesky decomposition of M with real numbers would succeed as well, which implies
that M is positive definite.

SFor any z, s M & = (Rz)T (Rz) = ||Rz||3 > 0.

24 CHAPTER 3. VERIFIED SUM OF SQUARES OPTIMIZATIONS

So according to this theorem, the positive definiteness of Q — séI can be established by first computing an
upper boundﬁ of the constant ¢, subtracting it from the diagonal of our matrix and applying the floating-point
Cholesky decomposition.

Remark 9. € and n are constants characterizing the errors due to normalized and denormalized numbers
in the floating-point format F. For instance, for the IEEE75/ [IEE08] binary64 format with rounding to
neares e=27% (=10716) and n = 271075 (~107323). Thus, for typical values (s < 1000 and elements of
M of order of magnitude 1), ¢ < 10710, This is negligible in front of s§ ~ 1000 x 10~8 = 10=5 which means
that the incompleteness of this positive-definiteness check is not an issue in practice.

To sum up, we designed the following verification method to prove that a given polynomial p is SOS.
Given the approximate solution @ returned by an SDP solver for the problem p = 27Q z,Q > 0:

1. Check that all monomials of the polynomial p are in the monomial base 27 z.

2. Bound the difference § between the corresponding coefficients of p and 27 Q z.
3. Check that Q — sdI = 0.

Step [1] is a purely symbolic computation, step |2[can be achieved using floating-point interval arithmeti(ﬂ
in ©(s?) operations (the size of Q) and step |3 can be done in O(s®) floating-point operations thanks to the
above theorem. Thus, the whole validation method takes ©(s®) floating-point operations which in practice
constitutes a very small overhead compared to the time taken by the SDP solver to compute Q.

We formally proved all results in Sections and with the Coq proof assistant. The proofs can be
found in the ValidSDP librar codeveloped with Erik MARTIN-DOREL. The proofs rely on the MathComp
library [GMTOS] for matrices, on the Flocq library [BM11] for the formalization of floating-point arithmetic
and on MathComp-Multinomials [BBRS16] for multivariate polynomials. See Section [3.4] for more details on
the ValidSDP library.

3.2.6 Making it Work in Practice

As seen on Figure the validation method from Section can easily fail when the matrix @ returned by
the SDP solver is close to the border of the positive semidefinite cone. In practice, it is common to use some
optimization objective function, which tends to push the solution @ to the border of the positive semidefinite
cone. We thus need a solution to ensure that Q) is well inside the cone, so that @Q — s6I > 0 holds. This can
be obtained by asking the SDP solver for a matrix @ satisfying @) — sdI = 0 rather than just @ > 0 in the
first place. An intuition is given on Figure [3.6]

However, according to the method in Section [3.2.5] it seems that ¢ is computed from the value of @
returned by the solver, so we don’t know its value before running the solver. In fact, § being the distance
between () and the subspace {M ’ p=2zTM z} it is one of the measures of the quality of the numerical
solution computed by the solver. More precisely, solvers implement interior-point algorithms that start from
some matrix inside the cone and iterate steps to decrease such measures, while remaining inside the cone.
They stop these iterations when the measures drop below a given predetermined threshold, called stopping
criterion. Knowing the stopping criterion of the solver, we thus know beforehand an overapproximation of 4.

Finally, as noted in Remark [the constant ¢ from Theorem [3] is orders of magnitude smaller than 4,
hence in some sense already accounted for in our overapproximation of §.

3.3 Inside the Alt-Ergo SMT Solver

This section mostly sums ups our TACAS 2018 paper [RICIS§|, that makes the method of the previous
Section [3.2) available inside the Alt-Ergo SMT solver. This work was done in collaboration with Mohamed
IGUERNLALA and Sylvain CONCHON, authors of Alt-Ergo. The authors would also like to thank Rémi
DEeLMAS for insightful discussions and technical help, particularly with the dReal solver.

Systems of nonlinear polynomial constraints over the reals are known to be solvable since Tarski proved
that the first-order theory of the real numbers is decidable, by providing a quantifier elimination procedure.
This procedure has then been much improved, particularly with the cylindrical algebraic decomposition.
Unfortunately, its doubly exponential complexity remains a serious limit to its scalability. It is now integrated
into SMT solvers [JdM12]. Although it demonstrates very good practical results, symbolic quantifier

4For instance using floating-point arithmetic with directed rounding.

5Type double in C.

6 Although we currently use rational arithmetic for this step in our Coq development, as it appeared cheap enough thanks to
the reasonably small amount of computation involved.

7 Available at https://github.com/validsdp/validsdp

https://github.com/validsdp/validsdp

3.3. INSIDE THE ALT-ERGO SMT SOLVER 25

{X | X — 61 = 0}

equality constraints

Figure 3.6: In order to ensure that the solution @ returned by the SDP solver is not too close to the border
of the positive semidefinite cone, we ask the solver for a solution inside the padded cone {X | X — sdI = 0}.

elimination seems to remain an obstacle to scalability on some problems. In some cases, branch and bound
with interval arithmetic constitutes an interesting alternative [GACI2]. We show in this section how the
method introduced in previous Section [3.2] can be used to design a sound semi-decision procedure that
outperforms symbolic and interval-arithmetic methods on problems of practical interest.

A noticeable characteristic of the algorithms implemented in the SDP solvers is to only compute approxi-
mate solutions. We explain this by making a comparison with linear programming. There are two competitive
methods to optimize a linear objective under linear constraints: the interior point and the simplex algorithms.
The interior point algorithm starts from some initial point and performs steps towards an optimal value.
These iterations converge to the optimum but not in finitely many steps and have to be stopped at some point,
yielding an approximate answer. In contrast, the simplex algorithm exploits the fact that the feasible set is a
polyhedron and that the optimum is achieved on one of its vertices. The number of vertices being finite,
the optimum can be exactly reached after finitely many iterations. Unfortunately, this nice property does
not hold for spectrahedra, the equivalent of polyhedra for semidefinite programming. Thus, all semidefinite
programming solvers are based on the interior-point algorithm, or a variant thereof. This is illustrated on
Figure [3.7

To illustrate the consequences of these approximate solutions, consider the proof of e < ¢ with e a
complicated ground expression and ¢ a constant. e < ¢ can be proved by exactly computing e, giving a
constant ¢/, and checking that ¢’ < ¢. However, if e is only approximately computed: e € [¢ — €, + €], this
is conclusive only when ¢’ 4+ € < c. In particular, if e is equal to ¢, an exact computation is required. In the
SDP programming setting, this corresponds to problems whose feasible space has an empty interior, also
called nonstrictly feasible problems, as illustrated on Figure 3.8 This inability to prove inequalities that are
not satisfied with some margin is a well known property of numerical verification methods [Rum10] which
can then be seen as a trade-off between completeness and computation cost.

The main point of this section is that, despite their incompleteness, numerical verification methods
remain an interesting option when they enable to practically solve problems for which other methods offer an
untractable complexity. Our contributions are:

(1) a comparison of two sound semi-decision procedures for systems of nonlinear constraints, which rely on
off-the-shelf numerical optimization solvers,

(2) an integration of these procedures in the Alt-Ergo SMT solver,

(3) an experimental evaluation of our approach on a set of benchmarks coming from various application
domains.

The rest of this section is organized as follows: Section gives a practical example of a polynomial
problem, coming from control-command program verification, better handled by numerical methods. In
Section we offer another method (after the one of Section to derive sound solutions to polynomial
problems from approximate answers of semidefinite programming solvers. Section [3.3.4] provides some

26 CHAPTER 3. VERIFIED SUM OF SQUARES OPTIMIZATIONS

simplex: exact solution interior-point: approximate solution

no simplex equivalent interior-point: approximate solution

Figure 3.7: Comparison of SDP programming (bottom) with the linear case (top).

{X X =0}

equality constraints

cannot conclude

Figure 3.8: SDP problem with empty interior: the feasible space is limited to the intersection point between
the equality constraints and the cone, which has an empty interior. Numerical methods then can’t conclude,
as the { @ + E'} ball cannot be included in the positive semidefinite cone. Compare with Figure

3.3. INSIDE THE ALT-ERGO SMT SOLVER 27

typedef struct { double x0, x1, x2; } state;
/*Q predicate inv(state xs) = 6.04 * s—>x0 x s—>x0 — 9.65 * s—>x0 x s—>xl
@ — 2.26 * s—>x0 % s—>x2 + 11.36 * s—>x1 * s—>xIl
@ + 2.67 % s—>x1 % s—>x2 4+ 3.76 * s—>x2 x s—>x2 <= 1;
@ requires \valid(s) && inv(s) && —1 <= in0 <= 1;
@ ensures inv(s); */
void step(state *s, double in0) {
double pre_x0 = s—>x0, pre_x1 = s—>x1, pre_x2 = s—>x2;

s—>x0 = 0.9379 x pre_x0 — 0.0381 % pre_x1 — 0.0414 x pre_x2 + 0.0237 % inO;
s—>x1 = —0.0404 * pre_x0 + 0.968 * pre_x1 — 0.0179 * pre_x2 + 0.0143 * inO;
s—>x2 = 0.0142 % pre_x0 — 0.0197 % pre_x1 4+ 0.9823 % pre_x2 + 0.0077 % inO;

Figure 3.9: Example of a typical control-command code in C.

implementation details and Section [3.3.5] discusses experimental results. Finally, Section [3.3.6] presents related
work and concludes.

3.3.1 Example: Control-Command Program Verification

Control-command programs usually iterate linear assignments periodically over time. These assignments take
into account a measure (via some sensor) of the state of the physical system to control (called plant by control
theorists) to update an internal state and eventually output orders back to the physical system (through
some actuator). Figure gives an example of such an update, in0 being the input and s the internal
state. The comments beginning by @ in the example are annotations in the ACSL language |[CKK™12]. They
specify that, before the execution of the function (requires), the pointer s must be valid, satisfying the
predicate inv and |in0| < 1 must hold. Under these hypotheses, s still satisfies inv after executing the
function (ensures).

To prove that the internal state remains bounded over any execution of the system, a quadratic polynomiaﬂ
can be used as invariantﬂ Checking the validity of these invariants then leads to arithmetic verification
conditions (VCs) involving quadratic polynomials. Such VCs can for instance be generated from the program
of Figure by the Frama-C/Why3 program verification toolchain [CKK™12, [FP13]. Unfortunately, proving
the validity of these VCs seem out of reach for current state-of-the-art SMT solvers. For instance, although
Z3 [dMBOS§| can solve smaller examples with just two internal state variables in a matter of seconds, it ran
for a few days on the three internal state variable example of Figure without reaching a conclusiorﬂ In
contrast, our prototype can prove it in a fraction of second, as well as other examples with up to a dozen
variables. This is illustrated on Figure [3.10)

Verification of control-command programs is a good candidate for numerical methods. These systems are
designed to be robust to many small errors, which means that the verified properties are usually satisfied
with some margin. Thus, the incompleteness of numerical methods is not an issue for this kind of problems.

3.3.2 Emptiness of Semi-algebraic Sets

Our goal is to prove that conjunctions of polynomial inequalities are unsatisfiable, that is, given some
polynomials with real coefficients p1, ..., p., € Rlz], we want to prove that there does not exist any assignment
for the n variables x1, ..., x, € R™ such that all inequalities pi(x1,...,2,) > 0,...,pm(21,...,2,) > 0 hold
simultaneously. In the rest of this paper, the notation p > 0 (resp. p > 0) means that for all x € R™, p(x) >0

(resp. p(x) > 0).

Theorem 4. If there exist polynomials r; € Rlz] such that

—Zripi >0 and Vi,7; >0 (3.4)

then the conjunction N\, p; > 0 is unsatisﬁablﬁ.

Proof. Assume there exist € R™ such that for all ¢, p;(x) > 0. Then, since r; > 0, we have r;(x) p;(z) > 0
hence (>, 7 pi) () > 0 which contradicts —), 7; p; > 0. O

8For instance, the three variables polynomial in inv in Figure

9Control theorists call these invariants sublevel sets of a quadratic Lyapunov function. Such functions exist for linear systems
if and only if they do not diverge.

10This is the case even on a simplified version with just arithmetic constructs, i.e., expurgated of all the reasoning about
pointers and the C memory model.

1 Or, with different words, the semi-algebraic set {x € R™ | Vi, p;(z) > 0} is empty.

28 CHAPTER 3. VERIFIED SUM OF SQUARES OPTIMIZATIONS

import Memory.Memory
c, line ::meort oedoed

&23 (4.5.0) . :!mport int.Abs as IAbs
import Cmath.Cmath

N Alt-Ergo (1.30) - import Cfloat.Cfloat
import real.Abs as RAbs
import Axiomatic.Axiomatic
import Compound.Compound

forall r : real.

forall t : map int int.
forall t_1 : map addr real.
forall a : addr.

let a1l
let r 1
let a 2
let r 2
let a_3
let r 3

import Memory.Memory
import Qed.Qed

import int.Abs as IAbs
import Cmath.Cmath

import Cfloat.Cfloat
import real.Abs as RAbs
import Axiomatic.Axiomatic
import Compound.Compound

forall r : real.

forall t : map int int.
forall t 1 : map addr real.
forall a : addr.

Figure 3.10: SMT solvers fail on main verification condition for the code of Figure (top), while our
modified solver succeeds in a fraction of second (bottom).

3.3. INSIDE THE ALT-ERGO SMT SOLVER 29

In fact, under some hypotheseﬁ on the p;, the condition is not only sufficient but also necessary, as
stated by the Putinar’s Positivstellensatz [Las09, §2.5.1]. Unfortunately, no practical bound is known on the
degrees of the polynomials r;. In our prototype, we restrict the degrees of each r; tﬂ d — deg(p;) where
d := max;(deg(p;)), so that >, 7; p; is a polynomial of degree d. This is a first source of incompleteness,
although benchmarks show that it already enables to solve many interesting problems.

3.3.3 Rounding to an Exact Rational Solution

The most common solution to verify results of SOS programming is to round the output of the SDP solver to
an exact rational solution [Har07, KLYZ12, IMC11].

To sum up, the matrix @ returned by the SDP solver is first projected to the subspace {M | p=2zTMz
then all its entries are rounded to rationals with small denominators (first integers, then multiples of %, %, e
For each rounding, positive semidefiniteness of the resulting matrix @ is tested. The rationale behind this
choice is that problems involving only simple rational coefficients can reasonably be expected to admit simple
rational solutiond™]

Using exact solutions potentially enables to verify SDP problems with empty relative interiors. This
means the ability to prove inequalities without margin, to distinguish strict and nonstrict inequalities and

even to handle (dis)equalities. All of this nevertheless requires a different relaxation scheme than (3.4)).

Example 13. To prove z1 > 0Az2 > 0Aq1 = 0Aqe = 0Ap > 0 unsatisfiable, with q1 := 22 + 23 — 23 — 25 -2,
Q2 = 2123 + Toxy and p = T3T4 — T1X2, one can look for polynomials ly,ls and SOS polynomials s1, ..., ss
such that l1q1 + laga + S1 + Sap + 31 + S421p + S5%2 + Sexap + S7x1Ts + Sgr1x2p + p = 0.

Rounding the result of an SDP solver yields 1, = —% (x129 — x324), o = f% (xoxs + x124), S2 =
% (:E§ + xi), S7 = % (x% + 22+ x?,) + xﬁ) and s1 = §3 = 84 = 85 = s¢ = sg = 0. This problem has no margin,

since when replacing p > 0 by p > 0, then (x1, T2, x3,24) = (0,4/2,0,0) becomes a solution.

Under some hypotheses, this relaxation scheme is complete, as stated by a theorem from Stengle [Las09]
Th. 2.11]. However, similarly to Section no practical bound is known on the degrees of the relaxation
polynomials.

Complexity

The relaxation scheme involves products of all polynomials appearing in the original problem constraints.
The number of such products, being exponential in the number of constraints, limits the scalability of the
approach.

Moreover, to actually enjoy the benefits of exact solutions, the floating-point Cholesky decomposition
introduced in Section cannot be used and has to be replaced by an exact rational decomposition@
Computing decompositions of large matrices can then become particularly costly as the size of the involved
rationals can blow up exponentially during the computation.

Soundness
The exact solutions make for an easy verification. The method is thus implemented in the HOL Light [Har07]
and Coq [Bes06] proof assistants.

Incompleteness

Although this verification methods can be applied to SDP problems with an empty interior, the rounding
heuristic is not guaranteed to provide a solution. In practice, it tends to fail on large problems or problems
whose coefficients are not rationals with small numerators and denominators.

3.3.4 Implementation
The OSDP Library

The SOS to SDP translation, as well as the validation methods, described in Section [3.2]have been implemented
in our OCaml library OSDP (Ocaml SemiDefinite Programming library). This library offers a common

12For instance, when one of the sets {x € R™ | p;(z) > 0} is bounded.

13More precisely to 2 I'%g(m)w

as deg(r;) is necessarily even since r; > 0.
14In practice, to ensure that the rounded matrix Q still satisfy the equality p = 27'Q 2, a dual SDP encoding is used, that
differs from the encoding introduced in Section This dual encoding is also called image representation [Par03, §6.1].
15However, there exist rational SDP problems that do not admit any rational solution.

16The Cholesky decomposition, involving square roots, cannot be computed in rational arithmetic, its LDLT variant can.

30 CHAPTER 3. VERIFIED SUM OF SQUARES OPTIMIZATIONS

(1) AC(LA) framework

AC-Completion > linear equalities Union-Find

s=t ' Modulo Theories

[
I
I
I
I
I
I
I
I
I
I
I
I
I
Y

SAT-Solver [encoding

Bounds inference — Fourier-Motzkin Map from terms

T to Intervals
—_—— e e e —
v

s<=t

unsat/upknown

(2) Interval Calculus

Figure 3.11: Alt-Ergo’s arithmetic reasoning framework with OSDP integration.

interface to the SDP solvers Csdp [Bor99], Mosek [ApS15] and SDPA [YENT10|, giving simple access to SOS
programming in contexts where soundness matters, such as SMT solvers or program static analyzers. It is
composed of 5 kloc of OCaml and 1 kloc of C (interfaces with SDP solvers) and is available under LGPL
license at https://github.com/Embedded-SW-VnV/osdp.

Integration of OSDP in Alt-Ergo

Alt-Ergo [BCCT14] is a very effective SMT solver for proving formulas generated by program verification
frameworks. It is used as a back-end of different tools and in various settings, in particular via the Why3 [FP13]
platform. For instance, the Frama-C [CKK™12] suite relies on it to prove formulas generated from C code,
and the SPARK [HMWCI5] toolset uses it to check formulas produced from Ada programs. It is also
used by EasyCrypt [BDG™13| to prove formulas issued from cryptographic protocol verification, from the
Cubicle [CGK™12] model-checker, and from Atelier-B [Abr05].

Alt-Ergo’s native input language is a polymorphic first-order logic ¢ la ML modulo theories, a very suitable
language for expressing formulas generated in the context of program verification. Its reasoning engine is
built on top of a SAT solver that interacts with a combination of decision procedures to look for a model for
the input formula. Universally quantified formulas, that naturally arise in program verification, are handled
via E-matching techniques. Currently, Alt-Ergo implements decision procedures for the free theory of equality
with uninterpreted symbols, linear arithmetic over integers and rationals, fragments of nonlinear arithmetic,
enumerated and record datatypes, and the theory of associative and commutative function symbols (hereafter
AQC).

Figure shows the simplified architecture of arithmetic reasoning framework in Alt-Ergo, and the
OSDP extension. The first component in the figure is a completion-like algorithm AC(LA) that reasons
modulo associativity and commutativity properties of nonlinear multiplication, as well as its distributivity over
additiorﬂ AC(LA) is a modular extension of ground AC completion with a decision procedure for reasoning
modulo equalities of linear integer and rational arithmetic [CCI12]. It builds and maintains a convergent
term-rewriting system modulo arithmetic equalities and the AC properties of the nonlinear multiplication
symbol. The rewriting system is used to update a union-find data-structure.

The second component is an Interval Calculus algorithm that computes bounds of (nonlinear) terms: the
initial nonlinear problem is first relaxed by abstracting nonlinear parts, and a Fourier-Motzkin extensioﬂ is
used to infer bounds on the abstracted linear problem. In a second step, axioms of nonlinear arithmetic are
internally applied by interval propagation. These two steps allow to maintain a map associating the terms of
the problems (that are normalized w.r.t. the union-find) to unions of intervals.

Finally, the last part is the SAT solver that dispatches equalities and inequalities to the right component
and performs case-split analysis over finite domains. Of course, this presentation is very simplified and the
exact architecture of Alt-Ergo is much more complicated.

The integration of OSDP in Alt-Ergo is achieved via the extension of the Interval Calculus component of
the solver, as shown in Figure terms that are polynomials, and their corresponding interval bounds, form
the problem which is given to OSDP. OSDP attempts to verify its result with the method of Section
When it succeeds, the original conjunction of constraints is proved unsat. Otherwise, (dis)equalities are
added and OSDP attempts a new proof by the method of Section In case of success, unsat is proved,
otherwise satisfiability or unsatisfiability cannot be deduced. Outlines of the first algorithm are given in
Figure whereas the second one follows the original implementation [Har07].

17 Addition and multiplication by a constant is directly handled by the LA module.
18We can also use a simplex-based algorithm [BCC* 12| for bounds inference.

https://github.com/Embedded-SW-VnV/osdp

3.3. INSIDE THE ALT-ERGO SMT SOLVER 31

P = (p1 —a1)(b1 = p1), -, D) = (P — ar)(bx — i)
// or p; :=p; — a; when b; = +00 or p, := b; — p; when a; = —o0
d := max { deg(p;) }
k
encode —Zrip’i is SOS, ry is SOS, ...r is SOS

i=1

as an SDP problem — Y r;p} = 28'Qo 20, 11 = 21 Q1 21, ..., ri. = 2L Qy. 2,
. d—deg(p)

with deg(r;) := 2 [%

call an SDP solver and retrieve 71, rp and Qq, Q1, ..., Q&

overapproximate d; := max { |c4|
(0%

T fe}
ri — 2 Qi zi = g Ca }

if 1€ 20N Qo — #|z20|00] = 0A Q1 — #|z1|01L = 0OA ... AQp — #|2k|0x] > 0 then return Unsat
else return Unknown
end if

k
Figure 3.12: Semi-decision procedure to prove /\ p; € [a;, b;] unsat. #|z| is the size of the vector z and > 0
i=1
is tested with a floating-point Cholesky decomposition [Rum06].

Our modified version of Alt-Ergo is available under CeCILL-C license at https://cavale.enseeiht.fr/
osdp/aesdp/!|

Incrementality

In the SMT context, our theory solver is often successively called with the same problem with a few additional
constraints each time. It would then be interesting to avoid doing the whole computation again when a
constraint is added, as is usually done with the simplex algorithm for linear arithmetic.

Some SDP solvers do offer to provide an initial point. Our experiments however indicated that this
significantly speeds up the computation only when the provided point is extremely close to the solution. A
bad initial point could even slow down the computation or, worse, make it fail. This is due to the very different
nature of the interior point algorithms, compared to the simplex, and their convergence properties [BV04], Part
II1]. Thus, speed ups could only be obtained when the previous set of constraints was already unsatisfiable,
i.e., a useless case.

Small Conflict Sets

When a set of constraints is unsatisfiable, some of them may not play any role in this unsatisfiability.
Returning a small subset of unsatisfiable constraints can help the underlying SAT solver. Such useless
constraints can easily be identified in when the relaxation polynomial r; is 0. A common heuristic to
maximize their number is to ask the SDP solver to minimize (the sum of) the traces of the matrices Q;.

When using the exact method of Section the appropriate r; are exactly 0. Things are not so clear
when using the approximate method of Section [3:2.5] since the r; are only close to 0. A simple solution is
to rank the r; by decreasing trace of (); before performing a binary search for the smallest prefix of this
sequence proved unsatisfiable. Thus, for n constraints, log(n) SDPs are solved.

3.3.5 Experimental Results

We compared our modified version of Alt-Ergo (v. 1.30) to the SMT solvers ran in both the QF_NTA
(Quantifier Free Nonlinear Integer Arithmetic) and QF_NRA (Quantifier Free Nonlinear Real Arithmetic)
sections of the last SMT-COMP (at the time of writing [RIC18]). We ran the solvers on two sets of benchmarks.
The first set comes from the QF__NIA and QF__NRA benchmarks for the same SMT-COMP. The second
set contains four subsets. The C problems are generated by Frama-C/Why3 [CKK™12 [FPT3] from control-
command C programs such as the one from Section with up to a dozen variables [CSC12| RJGF12].
To distinguish difficulties coming from the handling of the memory model of C, for which Alt-Ergo was
particularly designed, and from the actual nonlinear arithmetic problem, the quadratic benchmarks contain
simplified versions of the C problems with a purely arithmetic goal. To demonstrate that the interest of our
approach is not limited to this initial target application, the f1lyspeck benchmarks come from the benchmark
sets of dRea[™| [GKC13] and global-opt are global optimization benchmarks [MNT3]. All these benchmarks

19Removing problems containing functions sin and cos, not handled by our tool.

https://cavale.enseeiht.fr/osdp/aesdp/
https://cavale.enseeiht.fr/osdp/aesdp/

32 CHAPTER 3. VERIFIED SUM OF SQUARES OPTIMIZATIONS
AE AESDP AESDPap AESDPex CVC4 Smtrat Yices2 73

unsat time unsat time unsat time unsat time unsat time unsat time unsat time unsat time

AProVE (746) 103 7387 319 23968 359 7664 318 22701 586 10821 185 3879 709 1982 252 5156

calypto (97) 92 357 88 679 88 489 89 816 87 7 89 754 97 409 95 613

LassoRanker (102) 57 9 62 959 64 274 63 878 72 27 20 12 84 595 84 2538

LCTES (2) 0 0 0 0 0 0 0 0 1 [0 0 0 0 0 0

leipzig (5) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

mcm (161) 0 0 0 0 0 0 0 0 4 2489 0 0 0 0 4 2527

UltimateAutom (7) 1 0.35 7 0.73 7 0.62 7 0.69 6 0.03 1 7.22 7 0.04 7 0.31

UltimateLasso (26) 26 118 26 212 26 126 26 215 4 66 26 177 26 6 26 21

total (1146) 279 7872 502 25818 544 8553 503 24611 780 13411 321 4829 924 2993 468 10855

Table 3.1: Experimental results on benchmarks from QF_NTA.

AE AESDP AESDPap AESDPex CVC4 Smtrat Yices2 Z3
unsat time unsat time unsat time unsat time unsat time unsat time unsat time unsat time
Sturm-MBO (300) 155 12950 155 13075 155 13053 155 12973 285 1403 285 620 2 0 47 21
Sturm-MGC (7) 0 0 0 0 0 0 0 0 1 7 1 0 0 0 7 ()
Heizmann (68) 0 0 0 0 0 0 0 0 1 16 1 0 11 2083 3 41
hong (20) 1 0 20 28 20 24 20 27 20 1 20 0 8 240 9 6
hycomp (2494) 1285 15351 1266 15857 1271 16080 1265 14909 2184 208 1588 13784 2182 1241 2201 4498
keymaera (320) 261 36 291 356 278 97 291 360 249 4 307 13 270 359 318 2
LassoRanker (627) 0 0 0 0 0 0 0 0 441 32786 0 0 236 30835 119 1733
meti-tarski (2615) 1882 10 2273 91 2267 65 2241 73 1643 804 2520 3345 2578 2027 2611 337
UltimateAutom (13) 0 0 0 0 0 0 0 0 5 0.52 0 0 12 57.19 13 19.23
zankl (85) 14 1.00 24 15.46 24 16.09 24 15.67 24 9.40 19 13.47 32 7.22 27 0.43
total (6549) 3571 28348 4029 29423 4015 29334 3996 28357 4853 35239 4740 17775 5331 36849 5355 6658

Table 3.2: Experimental results on benchmarks from QF_NRA.

are available at https://cavale.enseeiht.fr/osdp/aesdp/. Since our solver only targets unsat proofs,
benchmarks known sat were removed from both sets.

All experiments were conducted on an Intel Xeon 2.30 GHz processor, with individual runs limited to
2GB of memory and 900 seconds. The results are presented in Tables and For each subset of
problems, the first column indicates the number of problems that each solver managed to prove unsat and
the second presents the cumulative time (in seconds) for these problems. AE is the original Alt-Ergo, AESDP
our new version, AESDPap the same but using only the approximate method of Section and AESDPex
using only the exact method of Section All solvers were run with default options, except CVC4 which
was run with all its -nl-alg* options.

As seen in Table [3.1] and despite an improvement over Alt-Ergo alone, our development is not
competitive with state-of-the-art solvers on the QF_NIA and QF_NRA benchmarks. The most commonly
observed source of failure for AESDPap here comes from SDPs with empty relative interior. For instance,
the sqrt-circles-2-chunk-0008.smt2 file from the meti-tarski directory essentially asks for a proof of
Vdyz € R y(2+2d —y) <1+d(2+d)+ 2? whereas the equality is reached for d = 1, y = 2 and = = 0.
Although AESDPex can handle such problems, it is impaired by its much higher complexity.

However good results are obtained on the more numericaF_U] second set of benchmarks. In particular,
control-command programs with up to a dozen variables are verified while other solvers remain limited to
two variables. Playing a key point in this result, the inequalities in these benchmarks are satisfied with some
margin. For control command programs, this comes from the fact that they are designed to be robust to
many small errors.

Although solvers such as dReal, based on branch and bound with interval arithmetic, could be expected
to perform well on these numerical benchmarks, dReal solves less benchmarks than most other solvers?!]
Geometrically speaking, the C benchmarks require to prove that an ellipsoid is included in a slightly larger
one, i.e., the borders of both ellipsoids are close to one another. This requires to subdivide the space between
the two borders into many small boxes so that none of them intersects both the interior of the first ellipsoid
and the exterior of the second one. Whereas this can remain tractable for small dimensional ellipsoids, the
number of required boxes grows exponentially with the dimension, which explains the poor results of dReal.

3.3.6 Related Work and Conclusion

Related work. MONNIAUX and CORBINEAU [MC11] replaced the rounding heuristic of HARRISON [Har(7]
by a facial-reduction heuristic. This has unfortunately no impact on the complexity of the relaxation scheme.
PLATZER et al. [PQRO9] compared their early versions with the symbolic methods based on quantifier
elimination and Grobner basis. An intermediate solution is offered by MAGRON et al. [MAGW15] but only
handling a restricted class of parametric problems.

Branch-and-bound and interval arithmetic constitute another numerical approach to nonlinear arithmetic,
as implemented in the SMT solver dReal by GAO et al. [GACI2, [GKCI3|]. These methods easily handle

20Involving polynomials with a few dozen monomials or more and whose coefficients are not integers or rationals with small
numerators and denominators.
21Except for its flyspeck benchmarks (16 out of 20 proved).

https://cavale.enseeiht.fr/osdp/aesdp/

3.4. INSIDE THE COQ PROOF ASSISTANT 33
AE AESDP AESDPap AESDPex CvVC4 Smtrat Yices2 Z3 dReal
unsat time unsat time unsat time unsat time unsat time unsat time unsat time unsat time unsat time
C (67) 11 0.05 63 39.78 63 40.01 13 1.18 0 0 0 0 0 0 0 0 0 0
quadratic (67) 13 0.06 67 14.68 67 15.44 15 0.08 14 2.46 18 1.26 25 357.20 25 257.39 13 23.36
flyspeck (20) 1 0.00 19 26.35 19 26.62 3 0.01 6 695.59 9 36.54 10 0.05 9 0.05 16 11.77
global-opt (14) 2 0.01 14 8.72 14 8.83 5 0.20 5 0.12 12 41.18 12 0.16 13 683.45 9 0.05
total (168) 27 0.12 163 89.53 163 90.90 36 1.47 25 698.17 39 78.98 47 357.41 47 940.89 38 35.18

Table 3.3: Experimental results on benchmarks from [CSC12| [GKC13| MN13| RJGF12].

nonlinear functions such as the trigonometric functions sin or cos, not yet considered in our prototypﬂ
In the case of polynomial inequalities MUNOZ and NARKAWICZ [MN13] offer Bernstein polynomials as an
improvement to simple interval arithmetic.

Finally, VSDP [HJL, [JCKO07] is a wrapper to SDP solvers offering a similar method to the one of
Section Moreover, an implementation is also offered by LOFBERG [Lof09] in the popular Matlab
interface Yalmip but remains unsound, since all computations are performed with floating-point arithmetic,
ignoring rounding errors.

Using convex optimization into an SMT solver was already proposed by Nuzzo et al. [NPSS10}, ISNS™17].
However, they intentionally made their solver unsound in order to lean toward completeness. While this
can make sense in a bounded model checking context, soundness is required for many applications, such
as program verification. Moreover, this proposal was limited to convex formulas. Although this enables to
provide models for satisfiable formulas, while only unsat formulas are considered in this paper, and whereas
this seems a perfect choice for bounded model checking applications, nonconvex formulas are pervasive in
applications such as program veriﬁcatiorﬂ

The use of numerical off-the-shelf solvers in SMT tools has also been studied in the framework of
linear arithmetic [FNOROS, Mon09]. Some comparison with state-of-the-art exact simplex procedures show
mitigated results [dIOM12] but better results can be obtained by combining both approaches [KBT14].

Conclusion. We presented a semi-decision procedure for nonlinear polynomial constraints over the reals,
based on numerical optimization solvers. Since these solvers only compute approximate solutions, a-posteriori
soundness checks were investigated. Our first prototype implemented in the Alt-Ergo SMT solver shows that,
although the new numerical method does not strictly outperform state-of-the-art symbolic methods, it enables
to solve practical problems that are out of reach for other methods. In particular, this is demonstrated on
the verification of functional properties of control-command programs. Such properties are of significant
importance for critical cyber-physical systems.

3.4 Inside the Coq Proof Assistant

This section mostly sums ups our CPP 2017 paper [MR17], that makes the method of the previous Section
available as an automatic tactic inside the Coq proof assistant. This work was done in close collaboration
with Erik MARTIN-DOREL.

The main contribution of this section is to demonstrate that the rigorous proofs introduced in section [3.2.5
can be mechanized in a proof assistant with nice computation capabilities such as Coq [Coq24]. We also
identify which mechanisms could be added to Coq in order to make this kind of rigorous proofs based on
floating-point computations much more efficient.

After the next section describing related work, Section [3.4.2] presents the data refinements that were needed
in order to obtain an executable version of the algorithms described in Section Then, Section [3.4.3
details our tactic that is able to automatically discharge polynomial inequality goals thanks to the previous
programs. Finally, Section [3:4.4] comments the results on some benchmarks and compares our tactic to other
tools while Section concludes.

3.4.1 Related Work

There have been several works for developing (semi)decision procedures for nonlinear inequalities in formal
proof assistants. Some of them follow the so-called autarkic approach and perform all the required computations
within the prover itself. Others follow the so-called skeptical approach and delegate most of the computations
to some external, possibly unsound yet efficient, oracle. In this latter case the prover only needs to verify the
witnesses generated by the oracle, by using a dedicated algorithm that has been formally verified.

First, let us focus on the HOL Light proof assistant. The REAL_SOS decision procedure [Har07] relies
on the CSDP library [Bor99] for semidefinite programming. It generates a semidefinite programming problem

22Polynomial approximations such as Taylor expansions should be investigated.
23Typically, to prove a convex loop invariant I for a loop body f, one need to prove I = I(f), that is =1 V I(f) which is likely
nonconvex (—/ being concave).

34 CHAPTER 3. VERIFIED SUM OF SQUARES OPTIMIZATIONS

from the user’s goal, calls CSDP and tries to infer an “exact” solution. This is done by rounding the
approximation solution returned by the SDP solver to “rational numbers with moderate coefficients”, as
discussed in Section B.3.3l

Another decision procedure for the HOL Light proof assistant has been developed as part of the Flyspeck
projec@ verify _ineq [SH13|. It does not involve SDP computations but relies on the computation of Taylor
polynomials, using interval arithmetic and bisection. To be more specific, it uses an external search procedure
to precompute a “solution certificate” that is useful to speed-up the a posteriori verification. These certificates
notably describe how the input domain should be split. Then, the verification procedure computes order-1
Taylor-Lagrange enclosures (i.e., with quadratic remainders) using interval arithmetic and floating-point
numbers. Contrarily to REAL__SOS, verify_ ineq supports transcendental functions such as cos and arctan.

Focusing on the Coq proof assistant, Laurent THERY has isolated the HOL-independent code of REAL_ SOS
that Frédéric BESSON has then integrated in several decision procedures within the Micromega Coq library
[Bes06]. The approach of Micromega is the same as that of REAL_SOS: it depends on CSDP and relies on
the Positivstellensatz.

Another decision procedure that is amenable to Coq formal proof has been developed with a special focus
on certifying SDP problems with empty interior [MC11]. This package has been written in Sage and relies
on DSDP [BY08] and prL it can be viewed as an enhancement of [Har(Q7]’s approach, with the simple
rounding heuristic replaced by an actual facial-reduction, that takes advantage of the LLL algorithm [LLLS2].

The Coqglnterval library provides a decision procedure for nonlinear inequalities with transcendental
functions. It has been developed with a special focus on verifying approximation errors for univariate
expressions, but is also able to solve quasi-multivariate problems [MDM16]. It follows the autarkic approach
and involves floating-point and interval arithmetic, bisection, and computation of univariate order-n Taylor
polynomials.

Within the Flyspeck project, a decision procedure named NLCertify has been devised for the Coq proof
assistant [Magl4]. It relies on the SDPA solver, on an OCaml backend that generates positivity certificates,
and on a Coq verification procedure that mainly relies on the ring tactic. NLCertify supports nonlinear
multivariate inequalities with transcendental functions over a hyperbox, but only the polynomial goals are
formally certified currently.

Two decision procedures are available for the PVS proof assistant: interval [NM13] and bernstein
[MN13]. Both rely on a branch-and-bound algorithm and follow the autarkic approach. The interval PVS
strategy supports transcendental functions and uses interval arithmetic with rational bounds. The bernstein
PVS strategy relies on a representation of multivariate polynomials in Bernstein form to easily infer bounds
on them.

It is worth noting that all the above work performing proofs in exact rational arithmetic may be able to
prove “sharp” inequalities. In contrast, the tactic presented in this paper will usually only be able to prove
inequalities satisfied within some margin (i.e., inequalities p < ¢ such that p + & < ¢ holds for some £ > 0).
This is inherent in the floating-point arithmetic roundings.

3.4.2 Verification of Effective Computation using Data Refinement

The Coq proofs mentioned in section deal with abstract versions of the algorithms, which are not
suitable for computation. For instance, Mathcomp’s matrices have been specifically designed to ease reasoning
on them, but one cannot compute with them as most functions about matrices do not permit evaluation. So
we rely on the CoqEAL library [CDM13] which has been devised to facilitate the design and the proof of
effective computation, notably for linear algebra. We thus apply the following methodology that is typical
when using CoqEAL:

o We implement the algorithms in a general way (using polymorphic functions and Type Classes).

o We specialize the algorithms with proof-oriented datatypes and prove these algorithms correct. This
step often requires doing some “program refinement”, i.e., proving that the considered algorithm is
extensionally equal to a simpler algorithm.

o We specialize the algorithms with effective datatypes and prove them correct with respect to the
proof-oriented datatypes. This amounts to doing some “data refinement”.

We elaborate on the last step in the rest of this section.

To obtain an effective version of our verification algorithm, we need to compute with rational numbers,
floating-point numbers, matrices, vectors of monomials and multivariate polynomials. To this aim, we rely
on the following Coq libraries : (i) BigQ from the bignums |[GT06] libraryF_q for efficient arbitrary precision

24nttps://github. com/flyspeck/flyspeck
25https://github.com/fplll/fplll
26https://github.com/coq- community/bignums/

https://github.com/flyspeck/flyspeck
https://github.com/fplll/fplll
https://github.com/coq-community/bignums/

3.4. INSIDE THE COQ PROOF ASSISTANT 35

arithmetic (based on machine integers); (i7) The floating-point kernel of Coqlnterval [MDMI6] for emulating
Binary64 floating-point numbers; (iii) The CoqEAL library for effective matrices based on lists of lists; (iv)
Lists of binary integers (seq N) for vectors of monomials; (v) The FMapAVL standard library for efficient
maps (based on AVL trees).

Relying on these datatypes, a major contribution of our work was to formalize effective multivariate
polynomials using FMaps, and prove them correct with respect to MathComp Multinomialﬂ by taking
advantage of CoqEAL’s framework. This formalization is now integrated in CoqEAL (file multipoly.v).

We also needed to refine proof-oriented rational numbers (of type rat, which is endowed with a
realFieldType Mathcomp algebraic structure) to effective rationals, and provide functions to go back
and forth between rationals and floating-point numbers.

3.4.3 An Automated Tactic for Verifying Positivity Witnesses
Calling SDP Solvers Through an OCaml Module

The main ingredients of the positivity proofs using SOS polynomials, as described in Section [3.2.5] are the
vector of monomial z and the matrix) computed by the numerical SDP solvers.

We developed an OCaml library called OSDP, already described in Section A Coq module written
in OCaml then uses this library. This module, called soswitness, only requires 0.3 kloc of OCaml to read a
polynomial from Coq, call OSDP and translate the resulting z and @ back to Coq terms. It is worth noting
that all this OCaml code and the underlying SDP solvers are only used as untrusted oracles, just making
the main proof ingredients available to the formally verified Coq tactic discussed in the remainder of this
section. The main advantage of this skeptical approach is to enable the use of any off-the-shelf solver and easy
implementation of arbitrary optimizations in the SOS to SDP translation, without any risk of jeopardizing
the eventual proof soundness.

Verification of the Witness

The verification of witnesses is performed by a computational boolean function soscheck_eff_wrapup whose
type is as follows:

seq R — p_abstr_poly — seq (seq N) * seq (seq (s_float bigZ bigZ)) — bool

The first two arguments (the list of real variables involved in the user’s goal and the abstract syntax tree
corresponding to the polynomial under study) will be obtained after the reification of the user’s goal (c.f.,
the upcoming section). The third argument is the witness (z, Q) obtained after calling the external SDP
solver, i.e., a list (seq) of monomials (list of degree for each variable seq N) and a matrix of floating-point
values (seq (seq (s_float bigZ bigZ))). It can be noted that we relied on CoqEAL’s approach for data
refinement (see Section on every building block involved in the definition of soscheck_eff_wrapup.
We then prove the main correctness claim associated to this function by relying on the previously presented
material:
Theorem soscheck_eff wrapup_correct :

V (vm : seq R) (pap : p_abstr_poly) (zQ : seq(seq N) * seq(seq(s_float bigZ bigZ))),
soscheck_eff_wrapup vm pap zQ = true — (0 < interp_p_abstr_poly vm pap)%R.

Overview of the Tactic

Finally, we developed some dedicated Ltac2 code to reify the user’s goal and obtain an element of the
p_abstr_poly abstract syntax tree. This syntax involves rational constants (defined as a separate inductive
p_real_cst built from nonnegative integers, opposites and divisions thereof), real variables, and the usual
polynomial operations including exponentiation (with positive, constant exponents). As usual with a Coq
reflexive tactic, the Ltac2 code then applies the correctness claim soscheck_eff_wrapup_correct to the
user’s goal and discharges the obtained subgoals by computation. One can find an overview of the tactic in
Figure 3.13

As a result, our validsdp tactic recognizes goals that are inequalities between polynomial expressions,
involving atomic real variables as well as rational constants.

The complete development is available at https://github.com/validsdp/validsdp/. It amounts to
13.6 kloc, that can be decomposed as 5.1 kloc for the proof of the Cholesky decomposition algorithm, 3.0 kloc
for the refinement of the algorithm to an executable program (relying on an arithmetic parameterized with
Type Classes), 1.3 kloc for the refinement of Coglnterval floating-point arithmetic, 2.2 kloc for the refinement
of multivariate polynomials and finally 2.0 kloc for the main tactic and the related correctness proofs.

2"https://github.com/math-comp/multinomials/

https://github.com/validsdp/validsdp/
https://github.com/math-comp/multinomials/

36 CHAPTER 3. VERIFIED SUM OF SQUARES OPTIMIZATIONS

Goal

Ltac2
reification (Ltac2)
;R EFO<r { (z,p) : list(R)xAST‘
transform to effective datatypes
_ ’ P : list(list(N) xQ) ‘
convertibility soswitness (OCaml)
: rule
' ’ (2,Q) : list(list(N))Xlist(list(]F))‘
computation
’ 0 < interp(z, p) ‘4—{ check(z, p, (2,Q)) = true ‘
correctness

theorem

Figure 3.13: Overview of the validsdp reflexive tactic.

3.4.4 Benchmarks

We evaluated the performances of our tactic with respect to the related works mentioned in Section on
a set of benchmarks. These benchmarks are composed of three subsets:

e A set of global optimization problems consisting in proving bounds for polynomials on given hyperboxes.
These problems are taken from [MNI3] and correspond to the global-opt category in previous

Section B.3.5

e A set of problems on 6 variable polynomials coming from some inequalities of the Flyspeck project.
Most of them require to prove that a given polynomial is positive on a given hyperbox. Some require
to prove that at least one of two or three polynomials is positive on any point of a given hyperbox
(two polynomials in £s868, £s884 and £s890, three polynomials in £s260 and £s491). They mostly
correspond to the flyspeck category in previous Section @

o A set of problems on loop invariants of programs [AGMI5lL [RVS16]. They require to prove that a given
polynomial p is nonnegative when some initial conditions are met and that whenever p is nonnegative,
then po f also is, for given polynomials f (representing the loop body assignments).

Note that some benchmarks are known to be falsﬁ (viz. ex4_d4, ex4_d6 and ex7_d4), so the absence of
proof is the expected result. Others are known to be correc@ (£s884, ex4_d8 and ex7_d8). Finally, the
status of the remaining unproved benchmarks is unknown (£s859, ex4_d10, ex7_d10, ex8_d6, ex8_d8 and
ex8_d10).

Table [3.4] presents the results on a Core i5-4460S CPU clocked at 2.9 GHz. Unfortunately, some of the
tools (PVS/Bernstein, NLCertify and HOL Light/Taylor) were not applicable on some benchmarks as they
require a hyperbox. It is also worth noting that for methods based on SDP solvers (i.e., all methods but
PVS/Bernstein and HOL Light/Taylor), its choice can have a slight influence on the results. As a matter of
fact, NLCertify uses SDPA. Monniaux and Corbineau 2011 can use either CSDP, DSDP or SDPA and we
chose CSDP as it gave the best results. Finally, OSDP (hence ValidSDP) can use either CSDP, Mosek or
SDPA. Although Mosek tends to give the best results on large problems and is about ten times faster, we
chose SDPA for the sake of fairness of the comparison.

These results indicate that while our tactic, based on floating-point arithmetic, is competitive with other
tools on the simplest benchmarks it, more noticeably, enables to perform proofs that seem out of reach for
other methods, mostly based on rational arithmetic. It may be noted that those benchmarks could be seen as
quite unfair to other tools, implementing rounding to exact solutions, as described in Section [3.3.3] Indeed,
other tools could thus solve some nonstrictly feasible problems on which our tool will always fail, but all
benchmarks are strictly feasible (at least all of those that are known to be feasible).

The OSDP column in the table is included to give some insight on what is lost, in terms of performance,
by running the verification procedure inside the Coq virtual machine (ValidSDP column). Indeed, most of
the time in the OSDP column is spent running SDP solvers. The table then indicates that our Coq tactic
commonly incurs a factor ten to fifty overhead. This is somewhat disappointing as the verification of results

28Counter examples can easily be found.
29 Another SDP solver and/or some symbolic preprocessing enables the proof to go through with OSDP.

3.4. INSIDE THE COQ PROOF ASSISTANT 37

g o g
3 i 2% % T

of oz 2 22% 5P B 7%

A = jop} gL e O @) = =

@09 = > S32 =28 = o =
Problem n d OF > A~ b= ONa4 £ z o=
adaptativeLV 4 4 0.70 8.73 14.93 2.67 1.12 2.61 12.31
butcher 6 4 0.84 21.14 48.44 — 1.05 8.36 15.62
caprasse 4 4 0.47 8.91 25.89 1.82 0.88 2.63 17.68
heart 8 4 0.99 37.99 131.13 268.75 — — 26.15
magnetism 72 0.24 4.68 245.52 2.04 1.64 14.50 16.07
reaction 3 2 1.02 4.05 11.48 1.56 024 196 1241
schwefel 3 4 0.88 5.67 14.72 2.45 2.76 56.13 17.46
260 6 4 0.26 12.32 — — — — —
fs461 6 4 0.26 11.24 621.06 11.18 0.87 7.46 22.70
fs491 6 4 1.02 14.93 — 21.81 — — —
fs745 6 4 0.29 12.20 623.17 11.74 0.94 6.90 22.48
fs752 6 2 0.43 3.88 54.52 1.81 0.90 7.88 13.34
fs859 6 8 — — — — — — —
860 6 4 0.97 11.09 73.65 10.53 1.11 7.34 14.28
fs861 6 4 0.25 11.13 69.74 10.48 1.20 7.87 14.28
fs862 6 4 0.79 10.81 73.54 79.25 1.25 7.58 14.14
fs863 6 2 — — — 1.50 — — 13.85
fs864 6 2 0.97 4.50 — 2.05 — — 13.28
fs865 6 2 0.93 4.56 — 2.11 — — 13.76
fs867 6 2 0.47 3.90 — 2.09 1.74 8.04 —
fs868 6 4 0.72 12.65 — — — — —
fs884 6 4 — — — — — — —
fs890 6 4 — — — 7.78 — — —
fs8 6 2 0.65 4.58 52.63 1.53 148 6.62 13.40
ex4d d4 2 12 — — — — — — —
ex4 d6 2 18 — — — — — — —
ex4 d8 2 24 — — — — — — —
ex4 dl10 2 30 — — — — — — —
exb_d4 3 8 0.73 22.67 — — — — —
exb_d6 3 12 3.41 85.34 — — — — —
exH_d& 3 16 20.54 324.29 — — — — —
ex5 dl10 3 20 150.86 — — — — — —
ex6_d4 4 8 2.44 57.97 — — — — —
ex6_d6 4 12 56.19 502.17 — — — — —
ex7 d4 2 12 — — — — — — —
ex7_d6 2 18 0.84 43.87 — — — — —
ex7_dS8 2 24 — — — — — — —
ex7_dl10 2 30 — — — — — — —
ex8 d4 2 8 0.13 10.53 — 15.72 — — —
ex8 d6 2 12 — — — — — — —
ex8 d8 2 16 — — — — — — —
ex8 dl10 2 20 — — — — — — —

“

Table 3.4: Running time (elapsed real time, in s) for various tools on a set of benchmarks. “—” indicates
either that a tool is not applicable or that it failed to produce a proof within the time limit (900s). n is
the number of variables of the polynomials and d is their degree. “OSDP” is our OCaml implementation of
our proof procedure and “ValidSDP” our Coq tactic, “PVS/Bernstein” corresponds to [MN13], “Monniaux
and Corbineau 11” corresponds to [MC11], “NLCertify” corresponds to [Magl4], and “HOL Light/Taylor”
corresponds to [SH13|.

()Remark: it should be noted that each running time in the last column includes the time (around 11s) for
loading the image of the HOL Light libraries, checkpointed beforehand using DMTCP.

() Remark: although this column doesn’t include verification time by a proof assistant, it can ben done via
the ring tactic of Coq, just like the further NLCertify column.

38 CHAPTER 3. VERIFIED SUM OF SQUARES OPTIMIZATIONS

from SDP solvers should ideally imply a negligible overhead. However, most of this overhead comes from
the emulation of floating-point arithmetic that is typically three orders of magnitude slower than native
operations performed by the hardware floating-point unit. This means that a native implementation of
floating-point arithmetic in the Coq kernel, as done with 31 bit integers [AGST10], could yield a speedup of
our tactic of one or two orders of magnitude. Such an implementation will be presented in next Chapter [4] It
is also worth noting that the memory footprint of the Coq implementation appears to be about ten times the
memory footprint of the OCaml implementation.

Finally, one can notice that all computations in our tactic are performed with the vm_compute instead of the
more recent native_compute mechanism [BDG11]. We did experiment with this mechanisnﬂ Unfortunately,
at the time of writing, the large terms, corresponding to the @ matrices, produced by our OCaml module
led to huge OCaml source codeﬂ whose compilation time made native_compute a few times slower than
vm_compute. This has since been fixed and next chapter will show that native_compute can indeed be a
few times faster on large problem instances.

3.4.5 Conclusion and Future Work

We developed a reflexive Coq tactic for proving multivariate polynomials positivity. This tactic, relying on
intensive floating-point computations, demonstrates that performing rigorous proofs inside a proof assistant
using floating-point implementations of nontrivial algorithms is tractable. The fact that our tactic is able to
discharge proof obligations that seem untractable with other state of the art methods even indicates that
such proof methods can be profitable. This, more generally, opens to proof assistants a wide range of rigorous
proofs based on floating-point computations [Rum10].

Our experiments also indicate that this kind of proof methodology would greatly benefit from having
native floating-point operations available in the proof assistant, rather than having to emulate them, which
will be the focus of next Chapter [4]

30https://coq.inria.fr/bugs/show_bug.cgi?id=4714
31For instance, 10MB, 100 kloc OCaml source code for medium size benchmarks.

https://coq.inria.fr/bugs/show_bug.cgi?id=4714

Chapter 4

Hardware Floats in Coq

This chapter mostly sums ups our JAR 2023 paper [MMR23], that makes hardware floating-point operators
available in the Coq proof assistant. This work was done in close collaboration with Erik MARTIN-DOREL.
The initial implementation was done by Guillaume BERTHOLON in summer 2018 during his excellent L3
internship from ENS Paris, coadvised by Erik and myself. We then completed the implementation and
got the feature integrated in Coq 8.11, released in November 2019. We also collaborated with Guillaume
MELQUIOND, particularly for the integration of the feature into the Flocq and Coqlnterval libraries.

4.1 Introduction

Efficient and reproducible floating-point computations are widely available nowadays, from embedded
processors to supercomputers, thanks to the internationally recognized IEEE-754 standard [TEE0S]. The
primary use of floating-point arithmetic is to perform approximate computations over real numbers. Due to
the limited precision and range of floating-point numbers, various numerical issues arise: rounding errors,
overflows, underflows, loss of algebraic properties, and so on.

These issues have not stopped people from using floating-point arithmetic for serious applications. In
fact, given sufficient care in the implementation, intensive floating-point computations can even be used in
proofs of mathematical theorems, e.g., the existence of a strange attractor for Lorenz’ equations [Tuc02]. To
do so, the algorithms not only compute a floating-point approximation of the ideal real result but also a
bound on the approximation error. This bound might be computed dynamically, as is the case with interval
arithmetic [Moo63]. This approach is easy to use and correct by construction but it is more expensive
than traditional floating-point arithmetic. Another approach consists in mathematically bounding the
approximation error by performing a comprehensive floating-point analysis. Correctness becomes much more
tedious to guarantee (though tools for static analysis might help in some specific cases), but this offers a wide
range of efficient yet rigorous algorithms [Rum10].

Both approaches have been used to formally prove theorems with the Coq proof assistant. On the
one hand, the use of interval arithmetic can be illustrated by the Coglnterval library [MDMI16], which
automatically and formally proves properties on real expressions by computing their floating-point enclosures.
To do so, it specifies, implements, and verifies an ad-hoc floating-point arithmetic in Coq: arbitrary radix,
arbitrary precision, unbounded exponent range, neither infinities nor signed zeros. On the other hand, the
use of precomputed error bounds can be illustrated by the formal verification of the rigorous variant of
Cholesky decomposition [Roul6]. This time, the underlying arithmetic complies with the IEEE-754 standard,
so one can use the reference implementation provided by the Flocq library to perform the floating-point
computations [BM11]. In either case, computations on floating-point numbers are emulated inside the logic
of Coq using integer arithmetic, and thus they do not benefit from the highly efficient floating-point unit of
the processor running the proof assistant.

To improve on this unfortunate state of affairs, support for hardware floating-point numbers was added
to Coq [BMDRI9], in a way reminiscent of the support for machine integers [AGST10, [Dénl3]. In both
cases, the process was as follows. One first declares an abstract type as well as some operations over it:
addition, multiplication, and so on. Then, one provides some dedicated reduction rules, which delegate the
operations to the arithmetic unit of the processor. This makes it possible to formally prove an equality
such as 1.0 + 2.0 = 2.0 + 1.0 by reducing it to 3.0 = 3.0. But short of enumerating all the finitely-many
pairs of floating-point numbers (which is practically impossible), this is not sufficient to formally prove
Vz,y, * +y =1y + x. So, one also has to relate these abstract operations to some concrete definitions that
are much slower but exhibit suitable mathematical properties.

Section focuses on the latter part, that is, how these concrete definitions are formalized in Coq. A

39

40 CHAPTER 4. HARDWARE FLOATS IN COQ

peculiarity of this specification of floating-point arithmetic is that it is complete but hardly useful in isolation,
as it explains how the numbers are computed but not what their properties are. We thus extended this
specification using the Flocq library to obtain a meaningful formalization that bridges the gap between the
hardware floating-point numbers provided by Coq and the real numbers.

Section then focuses on the actual implementation. It presents how the various conversion and
reduction engines of Coq were modified to support hardware floating-point computations [BMDR19], as well
as various improvements to make this support more useful and usable. In particular, it explains some design
choices related to rounding modes (which are critical for interval arithmetic) and to parsing and printing.
Finally, it discusses the issue of trust, as both the specification and implementation amount to adding a large
numbers of axioms. In particular, we analyze all the soundness bugs that were found (and fixed) during the
four years that followed the original implementation.

Even once a consistent system has been recovered, relying on the hardware floating-point unit in a proof
assistant would be pointless if it required too much of a proof effort or if the performance gain was too
small. So, we have converted two preexisting, representative, Coq developments, so as to evaluate the costs
and the benefits. Section 4] describes what kind of work this conversion entailed. It also benchmarks how
proofs relying on hardware floating-point arithmetic compare to those based on emulated computations,
performance-wise.

4.2 Specification: Coq and Flocq

From the point of view of the logic of Coq, the type float of floating-point numbers is completely abstract.
Similarly, basic operations on these numbers are declared as axioms. Except for some hardcoded reduction
rules for these operations (which are delegated to the floating-point unit of the processor), no property is
known. Thus, a specification describing this arithmetic is needed. Its role is twofold.

First, it should precisely characterize what the floating-point operations compute. In other words, one
should be able to prove properties about what is being computed without performing the computation, e.g.,
commutativity of addition. The axioms describing this part of the specification are shipped with Coq’s
standard library. It provides an inductive data type spec_float representing floating-point numbers, as well
as conversion functions from and to the abstract type float. It also provides some naive implementation
of the arithmetic operations over spec_float, and then states as axioms that the conversion function is a
morphism from float to spec_float. Section [4.2.1] gives more details about this specification.

This first specification is complete but useless in practice, as it is purely operational. It is no different from
a software floating-point emulator such as SoftFloatE One should not have to look at the implementation to
make use of floating-point numbers inside proofs. So, we need higher-level properties about floating-point
operations. In particular, the IEEE-754 standard states that an arithmetic operation shall be performed
as if it first computed the result with infinite precision and then rounded it to the target floating-point
format [IEEO§]. By “infinite precision”, the standard simply means that, except for the exceptional values,
floating-point numbers are just real numbers, and operations behave the same, rounding notwithstanding.
With such a specification, it becomes possible to perform floating-point computations to prove properties
about real numbers. This higher-level specification is provided by the Flocq library [BM11]. If not for the
large and intricate proofs that relate both specifications, the Flocq specification could also have been shipped
with Coq’s standard library. Section gives more details about it.

4.2.1 On Coq’s side

Support for hardware floating-point arithmetic in Coq was inspired by two libraries: the Flocq library [BM11],
which offers an IEEE-754-compliant executable formalizatiorﬂ and the formalization of primitive 63-bit
integers [Dénl13], now part of the standard library of CoqE| The former provides a precise specification in the
form of a reference implementation of floating-point operators, while the latter guided the implementation
methodology.

Flocq defines an inductive type full_float that represents unbounded floating-point numbers. Our
alm was to extract a subset of this Flocq theory sufficient to completely specify floating-point numbers and
operators, so that Coq does not depend on Flocq at compilation time. We started by porting this definition,
just removing the NaN payloads because they are not fully specified by the IEEE-754 standard, which can
lead to implementation discrepancies between hardware vendors. Thus, ignoring these payloads in Coq is
paramount to guarantee the portability of computations and proofs performed with the same Coq script on
different processors.

Thttp://www.jhauser.us/arithmetic/SoftFloat.html
2Former IEEE754.Binary module https://gitlab.inria.fr/flocq/flocq/-/blob/flocq-3.2.1/src/IEEE754/Binary.v
3In the UInt63 module https://coq.github.io/doc/V8.17.0/stdlib/Coq.Numbers.Cyclic.Int63.Uint63.html

http://www.jhauser.us/arithmetic/SoftFloat.html
https://gitlab.inria.fr/flocq/flocq/-/blob/flocq-3.2.1/src/IEEE754/Binary.v
https://coq.github.io/doc/V8.17.0/stdlib/Coq.Numbers.Cyclic.Int63.Uint63.html

4.2. SPECIFICATION: COQ AND FLOCQ 41

Variant spec_float : Set :=
| 8754_zero (s : bool) (x +0 and -0 *)
| S754_infinity (s : bool) (* +oo and -oo *)
| S754_nan (* no payload *)
| S754_finite : (s : bool) (m : positive) (e : Z). (* m*27e and -m*27e *)

The types positive and Z are offered by Coq standard library to represent unbounded integers, respectively
positive and signed.

Values of type spec_float are neither normalized nor bounded, since no bound is enforced on mantissas
and exponents. But in practice, all the operators will make sure that the exponent e is bounded, and that the
mantissa m contains 53 bits for normalized numbers, and at most 52 for subnormal numbers, thus ensuring
that the number belongs to the binary64 format of the IEEE-754 standard.

Note that this definition actually matches Flocq’s original formalization of the IEEE-754 standard [BJLM13].
But the set of NaN values was later extended to make it suitable for the semantics used in the CompCert C
compiler [BJLMI5]. Indeed, even if nothing can be specified about NaN payloads, they can still be distin-
guished by a C program and thus need to exist. As part of this work, the original formalization was added
back to Flocq, in the module IEEE754.BinarySingleNaN.

Next, following the same methodology as that of the primitive 63-bit integers formalization, we have
declared an abstract type and some arithmetic operations:

Primitive float := #float64_type.
Primitive add := #float64_add. (* and so on *)

Here, the Primitive vernacular amounts to introducing Parameters (i.e., axiomatic symbols) that the kernel
maps to hardware operations whenever they are fully applied to concrete floating-point values, as explained
in Section [£3]

After declaring various axiomatic symbols to manipulate float values (e.g., is_nan, of _uint63), the
types float and spec_float are linked through two mappings Prim2SF and SF2Prim, implemented as regular
definitions (using the axiomatic symbols):

Definition Prim2SF (f : float) : spec_float := (* body omitted *).
Definition SF2Prim (f : spec_float) : float := (* body omitted *).

Unlike Prim2SF which is injective, the function SF2Prim will typically map many spec_float to the same
float, since spec_float enforces no constraint at all on the range of the mantissa and exponents. We thus
have the following axioms:

Axiom SF2Prim_Prim2SF : Vp : float, SF2Prim (Prim2SF p) = p.
Axiom Prim2SF_valid : Vp : float, valid_binary (Prim2SF p).
Axiom Prim2SF_SF2Prim : Vs : spec_float, valid_binary s — Prim2SF (SF2Prim s) = s.

where valid_binary expresses bounds on the mantissa and exponent.

Finally, the computational content of all the operators is axiomatized with respect to reference implemen-
tations of the algorithms over the spec_float type. For example, in the case of the addition, we first define
a naiveﬁ implementation SFadd for any precision prec and maximal exponent emax:

Definition SFadd (prec emax : Z) (x y : spec_float) :=
match x, y with

| 8754_nan, _ | _, S754_nan => S754_nan

| S754_infinity sx, S754_infinity sy => if Bool.egb sx sy then x else S754_nan

| 8754_infinity _, _ => x | _, S754_infinity _ => y

| S754_zero sx, S754_zero sy => if Bool.egb sx sy then x else S754_zero false

| S754_zero _, _ =>y | _, S754_zero _ => x

| S754_finite sx mx ex, S754_finite sy my ey =>
(* let ez be the minimum of ex and ey *)
(* shift mx and my to the left, i.e., mx := mx * 27 (ex - ez) *)
(* take signs into account: mx := (-1)7sx * mx; idem for my *)

(* round the result (mx + my) * 27ez to nearest (according to prec and emax) *)
end.

Then, an axiom relates the axiomatic symbol add to this reference implementation instantiated for the
binary64 format (prec = 53 and emax = 1024):

Axiom add_spec : Vx y, Prim2SF (add x y) = SFadd 53 1024 (Prim2SF x) (Prim2SF y).

4The naivety of the approach can be seen in that both mantissas mx and my are aligned by shifting them left according to the
smallest exponent min ex ey. A fast implementation would instead shift them right according to the largest exponent, as done
in hardware. This is much trickier to get right and the improved performance is not required for our specification purpose.

42 CHAPTER 4. HARDWARE FLOATS IN COQ

Users wanting to load all floating-point operations and axioms just need to Require Import Floats. In
addition, to enjoy decimal literals and notations without explicit quoting, users can Open Scope float_scope.

The implementation provides the following floating-point primitives. First, come some arithmetic
operations: “+”, “=” (opposite and subtraction), “*”, “/”, abs, and sqrt. All these operations are rounded
to nearest, ties breaking to even.

Second, some comparison functions return a boolean result: “=?”, “<?” “<=?7". These comparison functions
comply with the IEEE-754 standard, that is, comparing to a NaN is always false. In addition, there is a
generic comparison function “?=" that returns a four-valued result: FEq, FLt, FGt, or FNotComparable (in
case one or both inputs are NaN). We also provide a classify function that tells whether a number is
NaN, zero, infinite, normal, or subnormal and, except for NaN, what its sign is. Note that there is a lot
of redundancy between the comparison functions “=7", “<?” “<=7" and “?=" as most could be emulated
using the others. It is difficult to choose which ones are more useful than others, so we ended up providing
hardcoded reduction rules for all of them.

Finally, there are some dedicated operations to manipulate numbers. The function of _int63 rounds a 63-
bit unsigned integer to the nearest floating-point number, ties breaking to even. Conversely, normfr_mantissa
takes a number in [0.5,1.0) and returns its integral mantissa. There are also functions frshiftexp and
ldshiftexp that behave like frexp and ldexp from the standard library of the C language. The first one
decomposes a floating-point number into a mantissa (i.e., a floating-point number f such that |f| € [0.5,1))
and an integer exponent e. The second one is the converse operation which computes f - 2°. There is a small
peculiarity though, as Coq’s hardware integers were unsigned at the time hardware floating-point numbers
were implemented (signed integers have since been added). So, the exponent e is represented with a bias, to
make it nonnegative. The functions next_up and next_down return the successor and predecessor of a given
floating-point value.

The reference implementation amounts to about 500 lines of Coq code in the standard library. But let us
recall that the material provided in the Floats module is purely algorithmic. It does not axiomatize nor
prove any meaningful floating-point properties and is thus basically useless in isolation.

4.2.2 On Flocqg’s side

Comprehensive formalizations of floating-point arithmetic exist for several proof assistants, e.g., HOL
Light [Har99] and PVS [Min95, BM0G]. In the case of Coq, the largest formalization is provided by the
Flocq library [BM11]. A whole hierarchy of formats is provided, ranging from real numbers with bounded
mantissas but unbounded exponents to computable numbers with all the floating-point special values: signed
zeros, infinities, and NaNs. Along with these formats and the links between them, the library contains many
classical results about roundings and error-free transformations.

When verifying properties of floating-point algorithms, two families of formats are commonly encountered:

e Numbers with an unbounded exponent range, i.e., without underflow nor overflow. Although unrealistic,
this model is attractive for its simplicity and commonly used for error bounds [Hig96].

e Numbers with an exponent range only lower bounded, i.e., with underflow but without overflow. This
is slightly more realistic, since overflows can often be studied separately, while this is usually much
harder for underflows [Roul6].

To make Coq’s basic floating-point specification useful, we need to establish a link with one of Flocq’s
formats, namely the binary_float type. This is basically a dependent product of spec_float and a proof
that the mantissa and exponent are bounded:

Inductive binary_float :=
| B754_zero (s : bool)
| B754_infinity (s : bool)
| B754_nan : binary_float
| B754_finite (s : bool) (m : positive) (e : Z)
valid_binary (S754_finite s m e) — binary_float.

The Coq theory Flocq. IEEE754.PrimFloa‘f| provides two functions Prim2B : float -> binary_float
and B2Prim : binary_float -> float that convert back and forth between values of Coq’s abstract type
float and Flocq’s concrete type binary_float. These conversion functions act as morphisms, as illustrated
by the following theorem.

Theorem add_equiv : Vx y, Prim2B (x + y) = Bplus mode_NE (Prim2B x) (Prim2B y).

Shttps://gitlab.inria.fr/flocq/flocq/-/blob/flocq-4.1.1/src/IEEE754/PrimFloat.v

https://gitlab.inria.fr/flocq/flocq/-/blob/flocq-4.1.1/src/IEEE754/PrimFloat.v

4.3. IMPLEMENTATION 43

In the above theorem, the + operator on the left stands for Coq’s hardware float addition whereas Bplus
mode_NE on the right stands for Flocq’s addition rounded to nearest, with ties breaking to even, which is the
default rounding mode of the IEEE-754 standard.

The main purpose of these morphisms is to give access to Flocq’s theorems which state that floating-point
operations amount to rounding the corresponding operation in the real field R, as mandated by the IEEE-754
standard. For instance, Flocq provides a formal proof of the following theorem:

Theorem Bplus_correct : Vm x y, is_finite x — is_finite y —
let z : R := round radix2 fexp (round_mode m) (B2R x + B2R y) in
if R1t_bool (Rabs z) (bpow radix2 emax) then B2R (Bplus m x y) = z (* no overflow *)
else B2SF (Bplus m x y) = binary_overflow m (Bsign x)

This theorem mainly states that, if x and y are finite floating-point numbers, the real value of their floating-
point sum (Bplus m x y) is exactly the rounding z of the mathematical addition (B2R x + B2R y) of x and
y seen as real numbers, assuming the addition did not overflow. The actual theorem in Flocq also gives the
sign of the result, which is useful to distinguish +0 and —0, but it is omitted here for the sake of conciseness.

By relating the addition of real numbers with the addition of floating-point numbers, this theorem brings
confidence in the correctness of the nontrivial bit-level specification of floating-point operations described in
Section at least for finite inputs. For infinite and NaN inputs, exhaustive testing is achievable [BJLMI15].
Moreover, this theorem gives access to the extensive set of results proved in the Flocq library. This includes
cases where floating-point operations are exact or where the round-off error is represented as a floating-point
number or bounded. The latter enables the use of the standard model of floating-point arithmetic to derive
bounds on errors of elaborate expressions or algorithms [JRIS, Roul6].

Building this link between Flocq’s formalization and Coq’s specification of hardware floating-point numbers
has provided the opportunity to add to the IEEE754 layer of Flocq several new functions, such as the Boolean
comparisons Begb, Bltb, and Bleb, which complement the already available and more general Bcompare
function. Some other added functions provide ways to precisely craft or destruct floating-point values from
their integer mantissa and exponent: Bnormfr_mantissa, Bldexp, and Bfrexp. Of particular interest for
interval arithmetic are the predecessor and successor functions Bpred and Bsucc as well as the unit in the
last place Bulp. Finally, the two constants Bone and Bmax_float are provided for convenience.

In terms of implementation, changes to Flocq required adding 4900 lines and removing 1600 lines.

4.3 Implementation

While the reference implementations described in Section[d.2.1]can effectively perform floating-point operations,
they are excruciatingly slow. So, we want to delegate them to hardware units instead. Section shows
how the kernel of Coq was extended to make it possible.

To minimize the trusted computing base, only the default rounding direction of the IEEE-754 standard
is supported by Coq, as it remains the most portable one. Unfortunately, applications such as interval
arithmetic depend on the availability of directed rounding modes. Section [£.3.2] explains how the functions
predecessor and successor can be used instead, and how the performance overhead was mitigated.

While floating-point numbers are usually hidden deep inside proofs of theorems about real numbers, it
might happen that the user wants to directly manipulate floating-point numbers. To cover this use case, our
implementation also provides some facilities for parsing and printing numbers (Section .

Finally, this whole work would be moot if the implementation did not match the specification described
in Section So, Section discusses the issue of trust and what has been done to offer the highest
level of guarantee.

4.3.1 Reduction engines

As explained in Section Coq provides an abstract type float as well as operations over it, and Coq’s
version of A-calculus is extended with dedicated reduction rules for these operations. This means that these
rules have to be implemented in the software. Unfortunately, Coq supports various engines, each one with its
own implementation of the rules of Coq’s calculus.

First, comes the conversion engine, which is responsible for checking that two A-terms are equivalent
according to the rules of the calculus. The conversion engine works great in general, but it falls short
when performing a proof by computational reflection. Indeed, in that case, the archetypal goal to prove is
f(x) = true for some given x. This is a proof by reflexivity, which means that Coq has to check that the
term f(x) = true is equivalent to the term true = true. Since true is already in normal form, this amounts to
computing the normal form of f(x). But the conversion engine tries hard to never normalize terms, as the
size of the normal form explodes in the general case. So, it is unable to handle this use case efficiently.

44 CHAPTER 4. HARDWARE FLOATS IN COQ

That is why Coq provides two reduction engines that are solely designed to compute normal forms. The
first one, invoked by the vm_compute tactic, compiles the A-term to bytecode and then evaluates it using an
interpreter derived from the bytecode interpreter for the OCaml language [GL02]. The second one, invoked
by the native_compute tactic, follows a similar approach. It turns the A-term into an OCaml function,
compiles it to machine code using the OCaml compiler, and then loads it and executes it [BDG11].

For all three engines, the underlying runtime comes from the OCaml language. As a consequence, we
chose to represent floating-point numbers the same way as OCaml, if only to please the garbage collector.
Thus, floating-point numbers in Coq are boxed, that is, they are represented by a pointer to an allocated
memory cell containing a single floating-point number.

The implementation of the arithmetic operations, however, is not as straightforward, as we cannot just
follow OCaml’s guidance. Indeed, contrarily to standard OCaml functions, Coq A-terms can contain free
variables, which are irreducible. In turn, even if the type of a A-term is float, it does not mean that its
reduced value is a floating-point number, it might be an arbitrary irreducible expression. So, we follow the
same approach as in previous works for hardware integer support [AGST10, [Dén13|]. The implementation
first checks if the inputs are actual floating-point numbers. Thanks to the boxing format, this information
is readily available. If the inputs are numbers, the floating-point operation is performed. Otherwise, an
irreducible term is built from the inputs and the operation.

This causes a discrepancy with the OCaml runtime. Indeed, while floating-point numbers are usually
boxed, the runtime optimizes the representation of floating-point arrays, so that they directly store numbers
rather than pointers to boxes. This is problematic for Coq, since irreducible terms of floating-point types
are not numbers and thus cannot be stored as unboxed values. The original implementation failed to fully
circumvent this runtime optimization, which led to an inconsistency, as explained in Section [4.3.4]

4.3.2 Rounding directions

As mentioned above, only rounding to nearest is supported by our implementation. Yet, the IEEE-754 standard
specifies some other rounding directions, some of which are especially useful for proofs by computation. Let
us illustrate this with interval arithmetic. This arithmetic reliably approximates a real expression z with a
pair (z,7) of floating-point numbers that enclose it [Moo63|. Given some enclosures of w and v, an enclosure
of u + v is then represented by the pair (u + v,u + 7). To make sure this is an actual enclosure, the lower
bound u + v is computed using a floating-point addition rounded toward —oco, while the upper bound is
rounded toward +o0o. Indeed, simply rounding to nearest would be unsound; for instance, 1 € [0;1] and
2780 € [0;2789] whereas the real sum 1 + 273 does not lie in [0 & 0;1 @ 273%] = [0;1], denoting by & the
floating-point addition rounded to nearest. A similar approach is used for multiplication, division, and so on.

Unfortunately, while rounding to nearest is readily available in floating-point units, this is not the case
for directed rounding. And even if it was, there is no foolproof way of performing floating-point operations
with directed rounding in programming languages such as OCaml and C. For instance, as of writing this,
the GCC compiler still does not handle dynamically changing the rounding mode in a safe way, let alone an
efficient oneﬁ So, to ensure portability, we had to stop at rounding to nearest.

But since interval arithmetic is such an ubiquitous paradigm when it comes to proving properties about
real numbers, we have provided two more primitives to ease its implementation: predecessor and successor.
Indeed, interval arithmetic does not really care whether the bounds of the enclosures are correctly rounded
toward —oo and +o0o. If the lower bound is even smaller (or the upper bound larger), the enclosure is still
valid, though less tight. In other words, this might cause some proofs to fail, but cannot lead to unsound
results. Thus, rather than rounding u + v toward —oco to compute the lower bound, an interval library can
instead round u + v to nearest and then take its floating-point predecessor.

The original implementation of these two primitives was a trivial wrapper over the nextafter function
of the C standard library [BMDRI9]. Unfortunately, neither LLVM nor GCC properly optimize it, even if
the second operand is an infinite constant. So, we replaced nextafter by our own specific implementationm
which brought a noticeable speedup.

Still, performance of the bytecode interpreter (vm_compute) was poor, due to the boxing of floating-point
numbers. Indeed, any arithmetic operation would cause two memory allocations in a row, one for the result
of the floating-point operation rounded to nearest, and another one for the predecessor or successor. A simple
way to fix it would have been to provide variants of all the arithmetic operations composed either with the
predecessor or the successor, that is, ten more floating-point primitives. The C implementation of these new
primitives would then be able to elide the first allocation.

But adding ten more primitives to Coq just for the sake of one single library felt wasteful. So, we explored
a different approach. Instead of eliding the first allocation, we elide the second one in some specific cases.
Indeed, if the first allocation is no longer needed once the predecessor /successor has been computed (and thus

Shttps://gcc.gnu.org/bugzilla/show_bug.cgi?id=34678
"https://github.com/coq/coq/pull/12959/commits/ef3ec53e4f74f32a705489b332b037569680d28e

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=34678
https://github.com/coq/coq/pull/12959/commits/ef3ec53e4f74f32a705489b332b037569680d28e

4.3. IMPLEMENTATION 45

would be collected by the garbage collector), these functions can reuse it to store their own result. This case
can easily be detected by the peephole optimizer of the bytecode compilerﬁ As a consequence, immediately
computing the predecessor/successor of a floating-point result is now so cheap that removing the calls to
these functions from Coglnterval (which would be unsound) does not bring any noticeable speedup, and thus
neither would having some dedicated primitives.

4.3.3 Parsing and printing

Parsing and particularly printing the floating-point constants in Coq appeared to be a nontrivial point. Coq
basically offers two levels for printing terms. The most commonly used level applies library- and user-defined
notations to display concise terms that are as readable as possible. At the lower level, terms are displayed in
a raw form to ensure that no details are hidden by some notation. The user can switch between the two levels
with the Set and Unset Printing A1l commands. Printing of floating-point constants supports both levels.

As suggested by its name, the binary64 floating-point format, implemented by processors and wired into
Coq’s hardware floating-point numbers, is a binary format. This means that its finite values are the rational
numbers m x 2° for bounded integers m and e. In the binary64 format, the mantissa m is encoded in 53
bits while the exponent e is encoded in 11 bits. Thus, all finite values can be exactly encoded in the standard
hexadecimal format [+-]0x(m)p[+-](e) where (m) is an hexadecimal encoding of m, spreading on at most 14
characters, and (e) a decimal encoding of e, taking at most 4 characters. This is the way floating-point values
are displayed as raw terms, offering an exact and compact display, with at most 23 characters.

Unfortunately, this hexadecimal printing lacks readability for humans, used to work with decimal
representations. It is worth noting that 10 being a multiple of 2, any binary value can be exactly represented
as a decimal one. Indeed, when e > 0, the number m x 2¢ is an integer and when e < 0, we have
m x 2° = (m x 57¢) x 10° that is a decimal value since m x 57¢ is an integer. For the binary64 format,
|m| < 2% —1 and —1074 < e < 971, which means that, in the first case, the integer m x 2¢ can be represented
with at most 309 digits and in the second case, the integer m x 57°¢ can be represented with at most 767
digits. Thus, although an exact decimal representation exists, using up to nearly 800 characters to display
numeric constants is utterly unpractical. However, it is known that printing values in a decimal format
with at least 17 significant digits and implementing parsing as a rounding to nearest guarantees that no
information is lost [MBdD™18| Table 3.16]. Printing with 17 decimal digits is thus the choice made in the
default printing mode, see [MMR23], §3.3] for more details (including the statement of the Coq proof). This
means that one can verify the following script:

Goal (0.99999999999999999 = 1)%float.
Proof. reflexivity. Qed.

Indeed, the constants 0.99999999999999999 and 1 are the same, as clearly seen when displaying the goal
under its raw form: @eq float Ox1p+0%float Oxlp+0%float. To avoid any surprise to the user, a warning
is displayed by Coq: The constant 0.99999999999999999 is not a binary6/ floating-point value. A closest
value 0x1p+0 will be used and unambiguously printed 1.

4.3.4 Soundness

When we originally reported on the implementation of hardware floating-point numbers in Coq [BMDRI19],
we had identified three main potential threats to soundness. We recall them below, along with a discussion of
the few soundness bugs that were discovered since the merge of the feature in Coq in November 2019. All
known bugs are now fixed. It is worth noting that all these bugs pertain more to the usual implementation
mishaps than fundamental issues and that barring such implementation bugs, the approach is theoretically
sound.

Specification issues A mismatch with respect to the implementation would break the soundness. Of
course, such errors in the specification can only be harmful when the offending axioms are used (we recall
that all the axioms used in a proved theorem explicitly appear in the result of the Coq command Print
Assumptions). So far, two such bugs have been reported and fixed:

e incorrect specification of PrimFloat.lebﬂ

« inconsistent classification of zeros[]

8https://github.com/coq/coq/pull/12959/commits/5c7£63fa7a88cf2cb9b6837eb2797268c5843030
9https://github.com/coq/coq/issues/12483
1Ohttps://github.com/coqg/coq/issues/16096

https://github.com/coq/coq/pull/12959/commits/5c7f63fa7a88cf2cb9b6837eb2797268c5843030
https://github.com/coq/coq/issues/12483
https://github.com/coq/coq/issues/16096

46 CHAPTER 4. HARDWARE FLOATS IN COQ

Both bugs were due to some typo in the specification, and it should be noted that the former would now be
automatically spotted, thanks to a new warning raised by Coq for unused variables in pattern-matching.

As seen in Section our Coq specification happens to be executable (although this can be pretty
slow). This allowed us to add to Coq’s test-suite some consistency checks between the specification and the
implementation. These checks, however, can obviously not be exhaustive.

Incompatible implementations If evaluation tactics (native_compute, vm_compute, compute, simpl,
hnf, and so on) were to evaluate a same term to different results depending on the hardware, this would
lead to a proof of False. In particular, it happens that the payload of NaNs is not fully specified by the
IEEE-754 standard (different hardwares can produce different NaNs for a same computation), so we have
chosen to consider all NaNs as equal and not distinguish them. Thus incompatible bit-level implementations
remain compatible at the logical level.

Double roundings due to the legacy x87 unit on old 32-bit architectures could also be harmful [Mon0g].
The OCaml compiler systematically relies on it when it is available, which led us to implement all floating-point
operators in C for 32-bit architectures, and use the appropriate compiler flags. To double-check the absence of
double roundings, we have also added a runtime test|E| to prevent Coq from running in case of miscompilation.

As with the specification, some tests of consistency between the various evaluation mechanisms have been
added to Coq’s test-suite.

Incorrect convertibility test Distinguishing two values that should not be distinguished, or vice versa,
would also be a threat. In particular, implementing the convertibility test using the equality test on floating-
point values (as defined in the IEEE-754 standard) would be wrong, as not only NaNs cause issues, but also
signed zeroes. Indeed, the standard equates —0 and 40, while 1+ (—0) = —oo # 1+ (4+0) = +oo. Fortunately
enough, a very simple implementation is feasible; it amounts to the following OCaml code:

equal f1 f2 =
if f1 = £2 then f1 <> 0. || sign f1 = sign f2 else is_nan f1 && is_nan f2

When £1 and £2 compare equal in the guard, they are either nonzero, and are then the same floating-point
value, or they can be 40 or —0 which are distinguished by the then branch. Otherwise, 1 and £2 are
different floating-point values unless they are both NaNs, since nan = nan is false by the IEEE-754 equality.
The else branch thus checks for that case.

Interaction with other primitive types in Coq This can also be a source of soundness issues. To
be more precise, unsigned hardware integers were completely reworked in February 2019 (9 months before
floating-point numbers); primitive persistent arrays were added in July 2020; finally, signed hardware integers
were added in February 2021. First, the fact that the hardware integers used in the specification of hardware
floating-point numbers were unsigned did require some care. Next, the way OCaml optimizes arrays of
floating-point values did raise a few issues during the development, although it seemed unlikely that such
bugs could lead to a proof of False. This nonetheless happened with the introduction of primitive persistent
arrays that were developed concurrently to hardware floating-point numbers, and whose interactions had
not been properly tested before thenE Lastly, a similar bug involving the OCaml binary representation
of floating-point arrays and the native_compute mechanism, but independent from primitive arrays, was

discovered and fixed [[7]

4.4 Applications

A few Coq libraries rely on intensive floating-point computations to formally prove properties involving real
numbers. We have adapted two of them to take advantage of the hardware support for floating-point arithmetic.
The first one is ValidSDP [MR17], which uses floating-point numbers to verify positivity certificates. The
adaptation was rather straightforward, since ValidSDP was already formalized in a way that made it robust
against underflow and overflow. See [MMR23| §4.1] for more details.

This was not the case for the second library, Coqlnterval [MDMI6], which uses pairs of floating-point
numbers to enclose real numbers. Indeed, Coglnterval was performing computations using a floating-point
format with unbounded exponents and, in numerous places, the proofs were implicitly relying on some of its
nonstandard properties. Making this formalization compatible with IEEE-754 floating-point numbers required
some large and intrusive changes. Since version 4.0, the Coqlnterval library uses hardware floating-point
numbers by default. This implementation of interval arithmetic lives alongside the original implementation,

Uhttps://github.com/coq/coq/blob/V8.17.0/kernel/float64_63.m1#L28-L35
12nttps://github.com/cog/coq/issues/15070
13https://github.com/coq/coq/issues/17871

https://github.com/coq/coq/blob/V8.17.0/kernel/float64_63.ml#L28-L35
https://github.com/coq/coq/issues/15070
https://github.com/coq/coq/issues/17871

4.5. BENCHMARKS 47

which emulates floating-point numbers using arbitrary-precision integers bigZ from the bignums library [GT06].
See [MMR23], §4.2] for details of the adaptation.

The use of hardware floating-point numbers provides a speedup of about one order of magnitude, as
illustrated by the following proof of

8
/ sin(t 4+ exp t)dt — 0.3474| < 0.1.
0

From Coq Require Import Reals.

From Coquelicot Require Import Coquelicot.
From Interval Require Import Tactic.

Open Scope R_scope.

Goal Rabs ((RInt (fun t => sin (t + exp t)) 0 8) - 0.3474) < 0.1.
Proof.

Time integral with (i_fuel 600, i_prec 30).

(* emulated 30-bit FP computations: 32.7s *)

Undo.

Time integral with (i_fuel 600).

(* hardware FP computations: 3.7s; 9x faster! x)

Qed.

The main drawback stems from the fact that we do not use directed rounding modes but instead
approximate them by composing rounding to nearest with successor or predecessor, as explained in Section[£.3:2}
Thus, proofs that rely on correct directed rounding cannot be performed with hardware operations, as
illustrated by the following example.

Goal 1 + 1 < 2.

interval with (i_prec 1).

(* exact rounding with emulated FP works (even with a single bit) *)
Undo.

Fail interval.

(* but hardware FP fails as next_up(l + 1) is larger than 2 *)

This happened to yield a disastrous effect on proofs involving square roots such as follows.

Goal Vx, -1 < x <1 — sqrt (1 - x) < 3/2.
Proof. intros; interval. Qed.

Indeed, since the interval computed for 1 - x now contains negative values (e.g., the predecessor of zero),
the interval version of sqrt started returning Inan, which is the interval containing all the real numbers as
well as Xnan. We have alleviated this issue by modifying the interval square root so that it ignores negative
inputs. This is made possible because the sqrt function in Coq’s standard library defines sqrt x = 0 for
any negative x, rather than some arbitrary result.

Many proofs, however, do not rely on exact rounding and work just as well with hardware floating-point
numbers as with emulated ones. For the few cases where exact rounding is required, users can tell the tactics
to fall back to emulated numbers by providing an explicit precision with the i_prec argument.

4.5 Benchmarks

We have evaluated the benefit of implementing reduction rules using hardware floating-point arithmetic for
the applications ValidSDPand Coglnterval libraries, presented in Section [£.4]

The experimental results of the upcoming sections have been obtained using a Debian GNU /Linux
workstation based on an Intel Core i7-7700 CPU clocked at 3.60 GHz, with 16 GB of RAM. All the benchmarks
have been executed sequentially (namely, without the -j option of make).

Our benchmarks rely on a large set of dependencies that can take about an hour to compile. For greater
convenience, we devised some Docker images containing the benchmark environments, based on Debian
11, opam 2 (the OCaml package manager), and OCaml 4.07.1. The source code of all the benchmarks
as well as guidelines to run them are gathered at the following URL: https://github.com/validsdp/
benchs-primitive-floats!

https://github.com/validsdp/benchs-primitive-floats
https://github.com/validsdp/benchs-primitive-floats

48 CHAPTER 4. HARDWARE FLOATS IN COQ
Source | Emulated Hardware | Speedup
mat0050 0.228s +9.5% | 0.013s +16.7% 17.3x
mat0100 1.451s +2.4% | 0.113s £8.2% 12.9%
mat0150 4.572s £6.8% | 0.276s +£13.0% 16.6 %
mat0200 | 10.724s +3.4% | 0.557s +9.8% 19.2x
mat0250 | 21.839s +1.2% | 1.032s +3.5% 21.2x
mat0300 | 37.706s +1.6% | 1.810s +4.7% 20.8x%
mat0350 | 60.616s +1.5% | 2.802s +4.1% 21.6x
mat0400 | 89.343s +£1.5% | 4.110s +£0.9% 21.7x

Table 4.1: Proof time for the reflexive tactic posdef_check using vm_compute. Every test is run 5 times.
The table indicates the average and relative variability among the timings of 5 runs.

Source Emulated ‘ Hardware ‘ Speedup
mat0050 | 0.702s +£1.4% | 0.602s +4.2% 1.2x
mat0100 | 1.034s +£2.3% | 0.674s +2.5% 1.5x%
mat0150 | 1.735s £2.7% | 0.694s +2.6% 2.5x%
mat0200 | 3.207s £5.6% | 0.836s £4.5% 3.8x
mat0250 | 5.624s +£4.2% | 0.924s +2.2% 6.1x
mat0300 | 9.359s +4.1% | 1.080s +3.3% 8.7x
mat0350 | 14.524s +£3.6% | 1.307s +3.8% 11.1x
mat0400 | 21.650s +£3.0% | 1.641s +5.3% 13.2x

Table 4.2: Proof time for the reflexive tactic posdef _check using native_compute. Every test is run 5 times.
The table indicates the average and relative variability among the timings of the 5 runs.

4.5.1 Benchmark with ValidSDP 1.0.1 and Coq 8.15

We first run the posdef_check tactic on ValidSDP’s test-suite and compare its execution time between
emulated and hardware floating-point numbers. The results are displayed in Table for vm_compute and
Table for native_compute.

Notice that the measured speedups are far from the three order of magnitudes separating emulated
floating-point operations from equivalent OCaml implementations. From the above results, it appears that
arithmetic operators constitute most of the computation time when using emulated numbers (at least 95%
with vm_compute) but nothing tells us this is still the case with hardware numbers. In fact, with hardware
numbers, most of the computation time is spent on manipulating lists as our matrices are implemented
using them [CDM13]. This could be improved using primitive “persistent arrays” now that they have been
integrated in Coq.

To get an idea of the time actually devoted to floating-point arithmetic in the total proof time of our
reflexive tactic, we use the following simple methodology: replace every arithmetic operator over emulated
floating-point numbers with a version that uselessly performs the computation twice, then measure the
execution time of both the original program (denoted “Op” in Table and the modified program (denoted
“Opx2”). The difference between both timings gives the cost of performing only the arithmetic operations.
In the case of hardware operations, they are performed 1001 times instead, as the difference would otherwise
be of the same order of magnitude as the variability of the measured timings. The results are given in
Table [£.3] for vm_compute and native_compute. The tested operations are addition and multiplication, as
they constitute the vast majority of the arithmetic computations performed during a Cholesky decomposition.
It is worth noting that these speedups should be taken as coarse orders of magnitude rather than precise
measurements. Indeed, the time difference “Opx N—Op” also includes the cost of the duplication machinery
itself. As a consequence, the speedups are presumably largely underestimated, as this extra cost is far from
negligible in the case of hardware floating-point arithmetic (“Opx1001—Op”).

4.5.2 Benchmark with Coqlnterval 4.5.2 and Coq 8.15

The second benchmark comprises 101 mathematical properties verified using the Coglnterval library. Figure[L.]
shows that, except for the shortest examples, hardware floating-point numbers usually offer a 10x to 20x
speedup over emulated computations when the latter are performed at the same precision, i.e., 53 bits.
Earlier versions of Coqlnterval, however, were using a default precision of 30 bits, which is sufficient for a
large number of examples from the benchmark. As shown in Figure this made proofs up to twice faster

4.5. BENCHMARKS 49

Op compute Emulated Hardware Speedup
CPU times (Opx2—0p) CPU times (Opx1001—Op)

add vm 101.54+1.6% — 77.914+1.2% | 163.5040.5% — 4.124-0.9% 148 %

mul vm 116.6841.5% — 77.914£1.2% | 163.54+0.5% — 4.124-0.9% 243 x

add native 25.0842.0% — 20.104+4.8% 88.67+2.2% — 1.664-0.9% 57X

mul native 29.134+1.2% — 20.104+4.8% 92.794+1.7% — 1.6640.9% 99 x

Table 4.3: Computation time for individual operations obtained by subtracting the CPU time of a normal
execution from that of a modified execution where the specified operation is performed twice (resp. 1001
times). Every test is run 5 times. The table indicates the average and relative variability among the timings
of the 5 runs.

hardware-vm (s)
103 X X X

102 x10
x 20

10!

10° X x

107! x =
#
102 w

X

03+ prech3-vim (s
103 1072 107! 10° 10' 10% 10°)

Figure 4.1: Comparison of proof times between hardware and emulated 53-bit floating-point arithmetic using
vm_compute. The graph uses a log-log scale, so diagonals represent equivalent speedups. Out of the 101
examples, 4 proofs fail with hardware numbers due to the pessimistic outward rounding, as explained in
Section Flzq The corresponding points appear at the top of the graph.

50 CHAPTER 4. HARDWARE FLOATS IN COQ

in that case, but nowhere near the speedup achieved using hardware floating-point numbers.

Figure shows that using the native_compute reduction mechanism instead of vm_compute can bring a
3% speedup, but only for the longer examples. Indeed, native_compute performs an invocation of the OCaml
compiler, which incurs a systematic latency. In particular, hardware floating-point numbers bring such a
large speedup over emulated ones that using native_compute is often detrimental, except for a handful of
examples, as shown in Figure [£.4]

Finally, Figure shows that the 10x to 20x speedup from hardware floating-point numbers observed in
Figure also holds when using native_compute instead of vm_compute, but only for the longest examples.
For shorter examples, the native OCaml compilation dominates the timings, so any speedup brought by
hardware floating-point numbers goes unnoticed.

4.6 Conclusion

The work described in this chapter explains how we added support for hardware floating-point numbers to
the Coq proof assistant. Formally proving properties of real numbers using floating-point computations is
nothing new, but up to now, these computations were slowly emulated in the logic of Coq [MDMI6]. Given
that modern processors come with a floating-point unit whose semantics are specified by the IEEE-754
standard [IEEOQ§|, such an emulation is a waste of computational resources. The same motivation had already
led to delegating arithmetic on 31-bit integers (and later 63-bit integers) to hardware units [AGST10]. This
work follows a similar approach for floating-point computations: the three conversion/reduction engines of
Coq have been extended, so as to use the processor whenever floating-point inputs are not open terms.

While the approach is similar on the implementation side, there is a large difference on the specification
side. Indeed, while both integer and floating-point computations are axiomatized using their operational
semantics, floating-point arithmetic is so peculiar that one should not blindly believe that the semantics
expressed in the logic of Coq matches the behavior of the floating-point hardware. To restore the trust in
the formal system, this operational semantics has been proved equivalent to that of the Flocq library, which
had already been proved to comply with the IEEE-754 standard [BM11) BJLMI5]. But as usual with any
software implementation, a few bugs were introduced along the way. Those are now fixed and, barring such
implementation bugs, the approach is theoretically sound and does not allow any incorrect proof.

Since the IEEE-754 standard relates floating-point computations to infinitely precise ones, i.e., real
numbers, the theorems from Flocq make it easy to use hardware floating-point numbers to formally prove
properties on real numbers. There are two main ways to do so. One is to formalize a careful error analysis of
floating-point computations, as in the ValidSDP library [Roul6]. The other is to use directed rounding, as in
the CoqInterval library [MDM16]. Our work accommodates both approaches. But in the latter case, directed
rounding is only approximate, which has forced us to rewrite large parts of Coglnterval to enable the use of
hardware floating-point numbers.

Thanks to this work, some proofs by computational reflection have been sped up by a factor 10. While
they would have necessarily been run offline before, some of them can now be performed in an interactive
setting. This makes for a much friendlier user experience when tactics fail earlier. This speedup comes at the
expense of a larger trusted computing base, but the opposite could also be said of this work. Indeed, the
speedup is so large that the point of the native_compute mechanism becomes largely moot for this use case,
thus making it possible to greatly reduce the trusted computing base.

Hardware floating-point arithmetic is not a panacea though, as the numbers are constrained to a bounded
range of exponents and, more importantly, a precision of 53 bits. Whenever a higher precision is needed,
the tactics provided by, e.g., Coglnterval have to fall back to emulating floating-point arithmetic. But this
problem is nothing new, and whichever solution the scientific computing community comes with, we hope it
can be adapted to a proof assistant.

4.6. CONCLUSION 51

prec30-vim (s)

103 X X XX X X X X

X2

102

1
10 x

10°

10!

10~2

X

103 precb3-vm (s
10=% 1072 10=% 10° 10' 10% 103)

Figure 4.2: Comparison of proof times between emulated 53-bit and 30-bit floating-point arithmetic using
vm_compute. Out of the 101 examples, 14 proofs fail with the reduced precision.

prec53-native (s)
10°%

X3

102

10!
X
0 !
10 a *sx
P x X)
X X000ma MR X

101

10~2

103 precb3-vm (s
10-3 1072 10-* 10° 10* 10%2 10°)

Figure 4.3: Comparison of proof times for emulated 53-bit floating-point arithmetic between vm_compute
and native_compute.

hardware-native (s)
10°%

X3

102

10!

10° =

X XOBOMSNK

1071

1072

103 hardware-vm (s)
10=% 1072 10' 10° 10! 10%® 10°

Figure 4.4: Comparison of proof times for hardware floating-point arithmetic between vm_compute and
native_compute. The 4 proofs that fail in both cases appear as a cluster at the top right of the graph.

52

hardware-native (s)

CHAPTER 4. HARDWARE FLOATS IN COQ

102

102

10!

10°

101

1072

103
1073 1072 101

100

10

102

x 10
%20

prechb3-native (s)

10°

Figure 4.5: Comparison of proof times between hardware and 53-bit emulated floating-point arithmetic using
native_compute. The 4 proofs that fail with hardware numbers appear as a cluster at the top of the graph.

Chapter 5

Verifying Network Calculus

This chapter presents work done in collaboration with Marc BOYER and Lucien RAKOTOMALALA. Marc is
a colleague at ONERA and expert in Network Calculus who coadvised with me the PhD thesis of Lucien.
Contrary to the three previous chapter that offered some logical progress, this chapter is more orthogonal.
Nevertheless, we’ll see that this new subject was an opportunity to reuse some of the technologies introduced
in the previous chapters.

5.1 Real-Time Networks

For some critical applications, such as in the aerospace industry, it is required to guarantee that embedded
networks meet some constraints on traversal time, as well as the absence of buffer overflow. That is, we want
to ensure that a packet emitted on the network will reach its destination within a given time bound and
won’t be dropped due to some buffer overflow in any intermediate switch. Figure [5.1] shows a basic network
example.

There are two main approaches to real-time networks:

time-triggered networks are networks in which the emission date of each packet is statically precompute(ﬂ
in order to ensure that no pair of packets will ever be sent at a time that could yield a conflict between
them. Computing this schedule can be a complex task but is done offline and the network then only
needs to apply the resulting schedule. However, for the precomputed schedule to work flawlessly, all
the elements of the network must share a common clock. Some clock synchronization protocol is thus
required to adjust each element clock, that tends to naturally drift.

rate constrained networks are networks in which emission rates of each emitter are bounded. Some static
analysis is then used to ensure that, even when packets conflict, this doesn’t result in excessive delays.
No global clock is thus required as it is enough for the static analysis to accommodate some bounded
clock-drift that can have a small impact on emission rates.

Network calculus [LBTO01l, BBLCIS] is one such static analysis. The method is used to certify networks such
as AFDX networks (Avionics Full DupleX, a kind of extension of ethernet) used in large modern commercial
aircrafts [BNF12]. The remaining of the current chapter will focus on this method. First Section [5.2| will give
an overview of how we formalized network calculus in Coq, then Section will explain how we automatically
verified in Coq the specific computations performed during network-calculus analyses.

5.2 Formalizing Network Calculus in Coq

The first part of Lucien’s thesis was dedicated to formalizing in Coq the network calculus theory. All the
basic concepts were formalized and a few archetypal theorems were formally proved. This mostly proved
uneventful besides a few statements that needed to be made more precise or fixed. The current section will
presents such a theorem fix, along with the basic definitions required to state it.

5.2.1 Concrete Model

Network calculus models the amount of data that goes through each network point by a function from time
Ry :={z € R |z > 0} to amount of data R;. The delay experienced by a flow between two network points
will then be the maximum horizontal deviation between the two functions. This is illustrated on Figure

INetworks can usually run for an unbounded amount of time, but do this on a periodic schedule, so it’s enough to plan for a
single period.

93

54 CHAPTER 5. VERIFYING NETWORK CALCULUS

sw2 AB

AB,C

=

X

C
ES4
ES1-SW1 [AT] B1 | [A2T B2 | fime_y
ES2-SW1 C-1 C-2 time_y
SW1-SW2 [[ATTCIT B1 | [A2T B2 JC2] timey
SW2-ES3 A-1 B-1 | A2] | B2 | time_y
SW2-ES4 [CT] C2] fimey
GC-1-00) {rrrnns C-Zrannnd >

Figure 5.1: Example of a basic network with four end-systems (white rounded squares) connected via two
switches (grey squares). There is a conflict between packets B-1 and C-1 that want to cross the SW1-SW2
link at the same time. The switch SW1 has to send one of the two first and keep the other in some internal
buffer until the link is available again. Here C-1 goes before B-1 whereas later B-2 will go before C-2. This
leads to different delays (represented as dotted arrow on the bottom of the figure) for packets C-1 and C-2.
Our goal is to guarantee such delays remain below a given bound. (Figure by Marc BOYER)

data

d(A, D) D

time

Figure 5.2: Example of arrival flow A and departure flow D for a server S. The delay between A and D is
the horizontal deviation between the two curves.

5.2. FORMALIZING NETWORK CALCULUS IN COQ 95

Definition 1. (F in our Coq development) F := R, — R is the set of functions from R, to R.

With R := RU { —o0,+00}. Our Coq development can be found at https://gitlab.mpi-sws.org/
proux/nc-coq. The real numbers are taken from the MathComp Analysis library [ACK™20]. An initial
version used the Coquelicot library [BLM15] but since we were already using the MathComp library, for
instances for the ¥ summations or for algebra, using Analysis proved much more consistent and convenient,
with nicer and more uniform definitions and lemmas, as well as some nice automation, for instance for
nonnegative numbers, enabling shorter proofs overall.

Definition 2. (Fplus) F := {f € F |0 < f} is the subset of functions from F that are nonnegative.

Definition 3. (Fup) F':={f € Fy |Vay,z <y = f(z) < f(y)} is the subset of nondecreasing functions
from Fy.

Now equipped with these basic definitions, we can define the main object of network calculus: data flow
cumulative curves. These are the A and D functions in the example of Figure [5.2]

Definition 4. (flow_cc) A cumulative curve is a function f € F' satisfying
e f(0)=0
o f is left continuous
o f only takes finite values: Vt, f(t) € Ry
We denote C the set of cumulative curves.
Network calculus defines delays using the notion of horizontal deviation between two cumulative curves.

Definition 5. (hDev_at, hDev) For f,g € F and t € R, the horizontal deviation hDev(f, g,t) € Ry between
f and g at t is defined as
hDev(f,g,t) :=inf{d € Ry | f(t) < g(t +d)}

and the horizontal deviation hDev(f,g) € Ry between f and g is defined as
hDev(f,q) := sup {hDev(f,g,t) | t € Ry}
Finally, servers constitute the last main notion of network calculus to model concrete behaviors.

Definition 6. (partial_server) A partial server S is a relation on C (i.e., S C C x C) satisfying the
following constraint

« VAD,(A,D)eS=D<A

The constraint expresses the fact that, at any time, there cannot be more data that departed the server
than data that arrived in it.

Definition 7. (server) A server S is a partial server satisfying the additional constraint
e VA, AD,(A,D)€e S

This second constraint means that for any input, there is, at least one, output. Servers crossed by n flows
are defined similarly.

Definition 8. (nserver) Given n € N\ {0}, a n-server S is a relation on C™ (i.e., S CC" x C") satisfying
the following two constraints

e VAD,(A,D) € S,Vi,= D,; < A;
e VA,3D,(A,D) e S
It will sometime be convenient to see a n-server as a simple server for the sum of the flows that cross it.

Definition 9. (aggregate_server) Given a n-server S, its aggregate server is the server

{(ACD’)

JAD, (A, D) eS/\A’:ZAi/\D’:ZD,}.

Conversely, we will sometime need to “extract” a server for one of the flows of a n-server.

Definition 10. (residual_server) Given a n-server S, the ith residual server of S is

{(A',D') | 3AD,(A,D) € SAA' = A; AD' = D;}.

https://gitlab.mpi-sws.org/proux/nc-coq
https://gitlab.mpi-sws.org/proux/nc-coq

56 CHAPTER 5. VERIFYING NETWORK CALCULUS

5.2.2 Contracts

Whereas cumulative curves C model the concrete behaviors of the studied networks, there are usually infinitely
many such behaviors and it is not practical to directly manipulate them. Thus, instead of dealing with sets
of concrete behaviors in C, network calculus abstract them using arrival curves.

Definition 11. (is_maximal_arrival) A function o € F is an arrival curve for some cumulative curve
A € C when
Vt,d e Ry, A(t+d) — A(t) < a(d).

This will later be denoted arrival (A, a).

While arrival curves are used as contract for emissions of the end systems, we also need a way to express
the minimal performances of the network switches. We will use service curves to that end.

Definition 12. (backlog_itv) Given A,D € F, an interval I C Ry is a backlog interval for A and D
when: Vo € I, D(z) < A(z). We will denote this backlog(A, D, I).

Definition 13. (strict_min_service) Given S CC x C, a function € F is a strict service curve for S
when

VAD,(A,D) € S = VYu,v € Ry, u <v= backlog (A, D, (u,v]) = B(v —u) < D(v) — D(u).

Intuitively, on any backlog interval (u,v] (i.e., any interval on which more data has been received than
emitted by the server), the server must emit at least S(v — u).

Given those definitions, the network calculus method will then manipulate arrival and service curves
according to various theorems to propagate constraints through the analyzed network. Then, for a given flow,
another theorem will state that the horizontal deviation between the computed arrival curves at initial and
end point of the flow is an upper bound for the horizontal deviation between any cumulative curves that
satisfies the considered contracts.

Remark 10. This looks a lot like static analysis of programs by abstract interpretation where the cumulative
curves A, D are the concrete world and the arrival curves « are the abstract world. In practice, most embedded
networks are such that there is no need for any actual fizpoint computation, propagating constraints from
emission points of the flows to their destinations (e.g., from left to right on the example of Figure 18
enough. That’s called “absence of circular dependency” I'd still like to write a paper “network calculus is
abstract interpretation”, not just to be pedantic, not just because it would be fun (networks make for quite
an unusual “programming language” to analyze) but also because I believe this could open the door to some
crossfeeding between the two approaches, particularly in the case of circular dependencies where network
calculus might benefit from the many widening strategies developed in abstract interpretation. For instance,
it would be interesting to study the applicability of the policy iteration techniques mentioned in Chapter[3
For real-time calculus, an approach similar to network calculus, the paper [IPTY0S] identifies many of the
elements of abstract interpretation but falls short of naming abstract interpretation. In particular, they miss
the widening method to overapproximate fixpoints and only deal with convergence in the mathematical analysis
understanding of the term, without explaining how to actually compute sound postfizpoints.

For instance, here is one of those theorems for the case of static priority servers.
Let’s first define static priority servers.

Definition 14. (preemptive_SP) Let S C C™ x C™ be a n-server and prior : {1,...,n} = N, the server S
is a preemptive static-priority server when

VAD,(A,D) €S =ViVsteR,, s <t= backlog ZAj,ZDj, [s,t] | = Di(s) = D;(t)

j=<i =i
noting j < i for prior(j) < prior(i).

Intuitively, for each flow 7, whenever there is some backlog for the (sum of) higher-priority flows, nothing
gets out on ¢ (i.e., D; remains constant on the interval).

Theorem 5. (Theorem 7.6 in [BBLCIS]) Let prior : {1,...,n} — N be an injective function and S
be a preemptive static priority n-server offering an aggregate strict service curve 3. Suppose that for all
ie{l,....,n},a; € F is an arrival curve for each flow i. Then, §; is a strict service curve offered to flow 1,
with
+
Bi = |B— Z a;

j <1
J 1

5.3. VERIFYING MIN-PLUS COMPUTATIONS o7

First, when trying to formalize the statement, we notice that the scope of the universal quantification of
the flows A, in the definition of service curve, makes it impossible to express that the service curve (; is only
valid when the A; satisfy some arrival curve ;. For that, we first need a new definition of residual server
under constraints.

Definition 15. (residual_server_constr) Given a n-server S and a n-tuple oo € F", the ith residual
server of S constrained by « is the partial server

{(A,D")|3AD,(A,D)e SANA" = A; ND' = D; AVj,arrival (4;, o)}
Let’s try again

Theorem 6. (next attempt at static priority) Let prior : {1,...,n} — N be an injective function and S
be a preemptive static priority n-server whose aggregate server satisfies a strict service curve 8 € F, for

a € F, the function
+

B— Zoéj
j=i N

s a strict service curve for the ith residual server of S constrained by «.

Now, we can write that statement in Coq. Unfortunately, the proof in the book looks perfectly fine on
paper but when trying to replicate it in Coq, this appeared impossible and made us discover that the theorem
is in fact not exactly a theorem, as shown by the following counterexample.

Example 14. Consider the 2-server S := {((A1, A2), (D1, D2)) } with Ay := step(2), Dy := step(4),
As = step(1) and Dy := step(2) with step(x) defined as t — 0 when t < x and t — 1 otherwise. One can
check that this is indeed a preemptive static priority server with the priority 1 < 2. Let’s also consider 3
defined as
d { 0 whend <2
1 otherwise.

Note that B is right-continuous. One can check that 5 is a strict service curve for the aggregate server of S.
Now, for a constant functions equal to +oo (we don’t really need them here), the theorem states (for i =1)
that B should be a service curve for the first residual server (i.e., { (A1, D1)}) which is not the case: the
interval (2,4] is a backlog interval but D1(4) — D1(2) =0<1=3(4—2).

Fortunately enough, assuming that 3 is left-continuous is enough to fix the theorem. This assumption
is in practice almost always satisfied by all service curves considered when applying the network calculus
method to real case studies, which is probably why the error went unnoticed for so many years. Here is
finally the theorem that we managed to prove in Coq.

Theorem 7. (SP_residual_service_curve) Let prior: {1,...,n} — N be an injective function and S be
a preemptive static priority n-server whose aggregate server satisfies a strict service curve 8 € C, for a € F7,

the function
+

B— Z%‘
j<i N

s a strict service curve for the ith residual server of S constrained by «.

5.3 Verifying min-plus Computations

It’s not obvious in Theorem [7}, which involves mostly additions and subtraction, but network calculus is
mostly based on tropical algebra, more precisely the min-plus dioid of functions on real numbers (used
to represent both time and amounts of data). Thus, as an intermediate step in any analysis, the method
produces algebraic formulas in this dioid, whose computation eventually gives actual numerical bounds.
Soundness of the bounds then crucially relies on both the soundness of the network calculus theory and of
those computations. Soundness of the theory was adressed in the previous Section [5], we will focus here on
verification of computations of algebraic operators in the min-plus dioid of functions.

Efficient algorithms are known for these computations and a few effective implementations do ex-
ist [BCGT09, [BTO8, BMFTI]. However, these algorithms are rather tricky, hence the interest in formal proofs
to greatly increase the level of confidence in their results. We use the proof assistant Coq [Coq24] to provide
formal proofs of correctness of such results. This section essentially sums up our NFM 2021 paper [RRB21].

58 CHAPTER 5. VERIFYING NETWORK CALCULUS

t t

Figure 5.3: Two functions f,g (on the left) and their convolution f * g (on the right). Intuitively, the
convolution of two functions can be obtained by sliding one function along the other and taking the minimum
hull.

Sections [5.3.1] and [5.3.2] introduce a few notations and give an overview of the objects and operations
manipulated throughout the remaining of the current chapter. Then, Section [5.3.3| recalls the state of the art.
Sections and detail the formalization of these objects, while Sections and prove some of
their fundamental properties. Finally Section proves the core soundness arguments of the expected
verifiers, Section [5.3.9] discusses the implementation and Section [5.3.10] concludes.

5.3.1 Notations

As already used above, R will denote the real numbers, Ry := RN [0; +-00[and R := RU{—o00, +00}. Similarly,
let Q denote the rational numbers, Q4 := QN[0; +-00[and Q% := Q4 \ {0}. Let N denote the natural integers,
N*:= N\ {0}. For any finite set S, let #S € N denote its cardinal and for any sequence s, last(s) denote its
last element.

In Coq code appearing below, nat will stand for N, R for R, \bar R for R, {nonneg R} for R, rat for
Q, {nonneg rat} for Q, {posnum rat} for Q3 and && for logical conjunction A.

We also use some list manipulating functions of Coq: nth, head and last. nth x0 1 i returns the
element of index i (starting at 0) of the list 1 or x0 if 1 contains less than i elements. n.+1 and n.-1 are
the successor and the predecessor of any natural number n (the predecessor of 0 is 0). The notation %/ is
used for euclidean division. To ease readability of the Coq code, we omit scope annotations below. For each
result, we give the name of its Coq implementation: for instance F_UPP for Definition [L6| below. The code is
available at https://gitlab.mpi-sws.org/proux/nc-coq/-/tree/master/minervel

5.3.2 (min, plus) Operators on Functions

Network calculus handles functions in F and uses (min, plus) operations over this set: addition, minimum,
convolution and deconvolution. We assumeﬂ that +00 + —oo = +00. We first present these operators. Then,
we introduce sub-classes of F stable for these operators and amenable for effective computations.

(min, plus) Operators

The addition f + g and the minimum min (f, g) of two functions f and g of F are pointwise extensions of the
corresponding operators on R, that is f +g¢g = t+— f(¢) + ¢(¢t) and min (f,g) = t+— min(f(¢),g(t)). We
also use two operators, the convolution f x g and the deconvolution f @ g that are not pointwise operators,
defined as:

frg =t inf (f(u) +g(0)) fog = wt{h|f<hsg} (5.1)
u+v_:t

where inf on a set S C F is defined as inf{S} := ¢+~ inf {f(¢) | f € S}. On Figure we plot an example
of convolution. More details can be found in [BBLCIS| §2].
Sub-classes of Functions for Effective Computation

network calculus tools do not manipulate the complete F set of functions but only subclasses with good
stability properties and effective computations [BT0S].

2In the min-plus semiring, min is the first (additive) operator and + the second (multiplicative) one, the neutral element of
the first operator (the zero), here 400, should then be absorbing for the second.

https://gitlab.mpi-sws.org/proux/nc-coq/-/tree/master/minerve

5.3. VERIFYING MIN-PLUS COMPUTATIONS 99

Repetitive pattern

Prefix

d time

Figure 5.4: Example of function in Fypp.pa. An initial part appears in the interval [0, 7], then a periodic
part of length d is repeated every period d while being translated vertically by some increment ¢. To record
such a function, it is then enough to keep its representation on [0, + d].

In network calculus, it is quite common to have periodic behaviors. To describe them, we use functions
that are ultimately pseudo-periodic (UPP), denoted Fypp. A function f € F belongs to the subset Fypp if,
given a point 7' € Q4 (called initial segment), a period d € Q% and an increasing element ¢ € Q, it holds, for
all t > T that f(t+ d) = f(t) + c¢. To store a concrete description of such a function, it is then enough to
store the values of T', d and ¢ and the description of the function on the initial segment plus one period.

We consider the sub-class of F made of the Piecewise Affine (PA) functions, denoted Fpa. For these
functions, it is sufficient to give, for each segment, the point of discontinuity on one side of the segment, the
slope and the offset on the segment. These parameters can be recorded in a list, although this list can be
infinite.

We define Fypp.pa := Fupp N Fpa. Its elements can be finitely represented by giving T, d and ¢ from
Fupp and the initial segment of the list from Fpa representing the function on [0; T + d]. This is illustrated
on Figure

Our initial idea, for instance with the addition, was to let some external tool provide three functions
f, g and h while claiming that f 4+ g = h, and then check this relation with a finite number of tests. To
this end, we would prove that checking the equality f(¢;) + g(t;) = h(t;) on a set of points t1,...,t,, plus
some compatibility tests on initial segments, periods and increments, is enough to ensure the equality on R .
However, in practice, it is just as easy to recompute the sum f + g as to compute the set of points ¢, ..., ¢y,
so we simply implement and prove the addition operator in Coq. We similarly implemented minimum and
convolution.

Regarding the deconvolution, in practice network calculus only requires, given two functions f and g, a
function h such that h > f @ g. It is then enough to check that h* g > f, that is min(f, h * g) = f which
only involves already implemented minimum and convolution.

5.3.3 State of the Art

Two main classes of curves are used in network calculus: the set of concave or convex piecewise linear functions,
C[x]PL [SCP99], and the, strictly larger, set of ultimately pseudo-periodic piecewise linear functions UPP-PA,
commonly known as UPP [BTO0S].

The class of the CPL linear functions has nice mathematical properties: it is stable under the addition
and the minimum, and moreover, the convolution can be implemented as a minimum plus a constant. The
data structure and related algorithms are so simple that they, to our knowledge, have never been published.
The class of convex piecewise linear functions has very similar properties, replacing minimum by maximum,
and its (min,plus) convolution can also be implemented very efficiently [BBLCIS8|, Sect. 4.2]. Nevertheless,
they cannot accurately model packetized traffic, whereas the UPP-PA class gives better results at the expense
of higher computation times [BMEFT11].

An open implementation of the operators on the C[x]PL class can be found in the DISCO network calculus
tool [BS14].

The algorithms of the operators on the UPP-PA class are given in [BT08]. An open implementation
has been developed but is no longer maintained [BCG™09| to our knowledge. An industrial implementation
exists, which is the core of the network calculus tool PEGASE [BNOTI0]. The UPP-PA implementation can

60 CHAPTER 5. VERIFYING NETWORK CALCULUS

be accessed through an on-line console [MPC].

The Real-Time Calculus toolbox (RTC) does performance analysis of distributed real-time systems [Wan06,
WTOG]. Its kernel implements minimum, sum, and convolution on Variability Characterization Curves (VCC’s),
a class very close to UPP-PA, but no explicit comparison of those two classes has been done up to now.

None of these implementations were formally proved correct.

The first works on the formal verification of network calculus computation were presented in [MBFM13].
The aim was to verify that a tool was correctly using the network calculus theory. An Isabelle/HOL library
was developed, providing the main objects of network calculus (flows and servers, arrival and service curves)
and the statement of the main theorems, but not their proofs. They were assumed to be correct, since they
had been long established in the literature. Then, the tool was extended to provide not only a result, but
also a proof on how that network calculus has been used to produce this result. Then, Isabelle/HOL was in
charge of checking the correctness of this proof.

Another piece of work, presented in [RBR19] and summarized in previous Section consists in proving,
in Coq, the network calculus results themselves: building the min-plus dioid of functions, the main objects of
network calculus and the main theorems (statements and proofs).

The PROSA library also provides proofs of correctness for the response time of real-time systems, but
focuses on scheduling tasks for processors [CSB16].

5.3.4 Ultimately Pseudo Periodic Functions

We now present the formal definition of the set of UPP functions.

Definition 16. (Ultimately Pseudo Periodic Functions, F_UPP) Fypp is the set of functions f € F such
that there exists T € Q4, d € Q% and c € Q for which

VtE Ry, t>T = f(t+d) = f(t) +ec (5.2)

Remark 11. The values of T,d and ¢ could have been in R. However, we know from [BT08] that Fypp is
stable over more operators if T, d and c are rationals. It is not a practical restriction since Q is the set used
in computation.

We represent Fypp in Coq as follows.

1 Record F_UPP := {

2 F_UPP_val :> F;

3 F_UPP_T : {nonneg rat}; F_UPP_d : {posnum rat}; F_UPP_c : rat;

4 _ : ¥Vt : {nonneg R}, ratr F_UPP_.T < t —

5 F_UPP_val (t%:num + ratr F_UPP_d)%:nng = F_UPP_val t + (ratr F_UPP_c)/:E }.

This code means that a value of type F_UPP is:

line 2 a function F_UPP_val of type F, i.e., from {nonneg R} to \bar R. The notation :> is a Coq notation
for coercion: Coq introduces automatically F_UPP_val whenever we give a value of type F_UPP whereas
a function from {nonneg R} to \bar R is expected.

line 3 F_UPP_T, F_UPP_d and F_UPP_c, the three parameters T',d and ¢ of (5.2).

lines 4 and 5 the property (5.2]). We use ratr to cast a rational as a real. The other %: things are merely
casts too: %:num casts from {nonneg R} to R while %:nng is the reverse castﬂ and %:E is a cast from R
to \bar R.

The command Record creates a constructor of F_UPP named Build_F_UPP. To declare a value in F_UPP, Coq
will then require a function of type F, three parameters and a proof of (5.2).

5.3.5 UPP and Piecewise Affine Functions

We briefly presented in section @ the set Fupp.pa of functions that are both UPP and PA. We give in
this section a formal definition.

In [BTO8], this set was introduced as the intersection of two sets of functions: Fypp and Fpa, the set
of PA functions. Here, we rather choose to formalize the subset of functions in Fypp that are PA, as this
greatly simplifies the formalization, by avoiding any requirement for infinite lists (a.k.a., streams).

To define PA functions, we need to record points of discontinuities and change of slopes, we call this data
structure jump sequences.

31t automatically infers a proof of nonnegativity, here because the two terms of the sum are nonnegative themselves.

5.3. VERIFYING MIN-PLUS COMPUTATIONS 61

Figure 5.5: The function f is piecewise affine. a := {0,1,3} and b := {0,1,2,3} are JS of this function:
a € JS(f) and b € JS(f). We notice that ¢ := {0,2,4} € JS but ¢ ¢ JS(f).

Definition 17. (Jump Sequence, JS) For any n € N*, we call Jump Sequence (JS) a tuple a € Q" such
that ag = 0 and: Vi € {0,...,n—2},a; < a;41. We call n the size of the JS and the set of JS of size n is
denoted JS,,.

Each piece is linear on an interval with a slope and an offset.

Definition 18. ((p, 0)-affine on, affine_on) Given p,0c € Q x Q and z,y € Q, a function f € F is called
(p, o)-affine on |z;y[when, for all t € |x;y[:

f@&)=pt—2)+o. (5.3)
PA are then functions that are affine on all intervals of a JS.

Definition 19. (JS of a Function, JS_of) Let n € N*, a € JS,, and f € F. We say that a is a JS of f,
denoted a € JS(f), when for alli <n —1, f is affine on |a;; a;y1].

So, according to the previous definition, each PA function is associated to a JS but it is not unique. We
illustrate this in Figure Also notice that a function f € F with a € JS(f) is a PA function at least up to
the last point of a.

Definition 20. (UPP-PA Functions, F_UPP_PA) The set Fypp.pa of UPP-PA functions is the set of functions
f € Fupp with T for initial segment and d for period, such that there exists a € JS(f) and last(a) =T + d.

The functions presented in Figure belong to Fupp-pa- The list of abscissas of discontinuities given in
the caption are jump sequences of the functions.

A UPP-PA function with initial segment T" and period d is PA in [0;T + d] by construction, and also PA
after T'+ d by periodicity. This point is developed in the following property.

Lemma 1. (F_UPP_PA_JS_upto_spec) Let f € Fypp.pa with a € JS(f). For any | € Q4 such that
last (a) <, there exists o’ € JS such that o' € JS(f) and last(a’) = 1.

5.3.6 Stability of UPP Functions by (min, plus) Operators

We now want to prove stability of Fupp by (min, plus) operators: addition, minimum and convolution.
These operators have been presented in Section [5.3.2] We need another operator on rational numbers:
a notion of least common integer multiple such that, for any d,d’ € Q, there exists k, k' € N satisfying
kd =kd =lecmg(d,d').

Definition 21 (lcm@i, lcm_pos_rat). For all d,d’ € QY, for all a,a’ € Z and b,b" € N* such that d = ¢

!
and d' = ¢, we define

/ lem (alcm(bb,b’) d lcmé{),b/))
lemg: (d,d’) == Tem (5.} (5.4)

where lem is the least common multiple on Z.
We developed an expansive theory of lch*+ in file ratdiv.v, including for instance the following lemma.

Lemma 2. (dvdq_lcml) Ford,d" € Q7, there is k € N s.t. lemg- (d,d) = kd.

To ease notations, we want to transform this binary operator, into a set operator such as Z?:I i=(142)+3.
There exists a library in Coq designed with this objective: the bigop theory of Mathcomp [BGOBPOS|]. To
fully use this library, at the time of writing, we needed to prove that lchi satisfies the monoid laws. In
other words, we needed to prove that lcmg- is associative and has a neutral element. However, lemg: does

62 CHAPTER 5. VERIFYING NETWORK CALCULUS

not have a neutral element. The lem on N* has a neutral element 1. It is not the case for lemg- : for instance
lch»«+ (1, %) = 2. To get out of it, a common trick extends the definition of the binary law on option types.
The option type is used to extend the type of {posnum rat} with a None element. Then, this element is
the neutral element for this optional definition of lcrn@jr. Since then, we extended MathComp’s bigops with a

theory of (idempotent) semi-groups, making the trick now mostly useless. This was made possible thanks to
the switch of MathComp to Hierarchy-builder, see Section [6.1.2 for more details.
The following lemmas prove stability of Fypp by addition and minimum.

Lemma 3. (F_UPP_add) Given f, ' € Fypp with initial segments T,T" € Q, periods d,d" € Q% and
increments ¢, € Q respectively, the sum [+ [’ is a UPP function with an initial segment max(T,T"), a
period lemq: (d,d’) and an increment lemgs (d, d’) (5 + %)

Lemma 4. (F_UPP_min) Given f, f" € Fypp with initial segments T,T" € Q, periods d,d" € Q% and
increments ¢, ¢’ € Q respectively, and assuming there exists M, m € Q such that:

a7
V(s<ga(eT+d,f0) SM+50)A (Ve TT+d,m+5t< (1) (5.5)
Vv g>§—l,/\(Vt€(T7T+d],f’(t)SM—i—%t)/\(Vte(T,T—&-d],m—i-gtgf(t))

the function min(f, f') is UPP with an initial segment T, a period d and an increment ¢ with

/ c_ ¢

max (T, T") when § = &

~ N M-—m c ¢
7.) max max(T,T"), ri when § < &
max (max(T,T"), M=) when & > <

’ voe_ ! d d’

alo
1Y

) lemg: (d,d") when § =
d:=< d when § < 2—:,
d when § > o

lemg (d,d')S when § =<

c:=1 c when § < 2—:,
c when 5 > 2.

Remark 12. In the case of PA functions, it is easy to find values for M and m; satisfying (5.5)) by computing
bounds like sup,e(p r4q) {f(t) = <t} and infyerria) {f’(t) - fl—l, } That’s what our implementation does.

Regarding the convolution, considering f, f/ € Fuypp, we first decompose f and f’ into their initial and
periodic part f1, fo and fi, f4 such that f = min(fy, f2) and f' min(f], f3) respectivelyﬁ We then use the
algebraic properties of the (min, plus) semi-ring to derive f x f' = min(fy * fi, f1 * f3, fa = f1, fo = f1) (c.f.,
F_UPP_conv_aux), and prove that each of the four convolutions is UPP (c.f., F_UPP_conv_f1_f1’ and the
two following lemmas).

5.3.7 Stability of UPP-PA Functions by (min, plus) Operators

We are now focusing on stability of Fypp_pa by (min, plus) operators. Let us first define the union of two
jump sequences.

Definition 22. (Union of two JS, JS_merge) For any n,m € N*,a € JS,,b € JS,,, the tuple of size
#({a; |0 <i<n}uU{db; |0<j<m}) containing the elements of {a; | 0 <i<n}U{b; |0<j < m} sorted
by increasing order, is called union of the jump sequences a and b. This union is denoted a U b.

If jump sequences are implemented by lists, the union can be implemented similarly to the merge part of
a merge sort.

The following Lemma states the stability of Fypp.pa by addition.

Lemma 5. (F_UPP_PA_add) Given two functions f, f' € Fupp.pa, their sum f + f' is also UPP-PA.

4For instance, f1 is equal to f on its initial segment [0, T] and to +oo beyond.

5.3. VERIFYING MIN-PLUS COMPUTATIONS 63

+ +— +
. o —o .
C; C; =+ o—p' Ci+1 t

Figure 5.6: Example of point added by the min operator in a JS. f and f’ are respectively (p, o)-affine and
p—p’

(p', o')-affine on |c;; ¢iv1[with different slopes p and p’. Since we have ¢; + €]¢i; ¢it1], this point must

be added to the jump sequence.

Al
o+ o' P cto 0

x+a Tty y+y ¢ Ttz Tty

Figure 5.7: Convolution of two segments. Let f and f’ be two functions that are respectively (p, o)-affine on
[z;y] and (p, o’)-affine on [2';y'[and 400 elsewhere. We plot the two cases of fx f' on [x + ',y + y'[: left
is for p < p’ and right is p’ < p.

The sum can be computed by merging the JS, then doing piecewise addition for each segment of the
resulting JS.
Fupp-pa is also stable by minimum under mild conditions.

Lemma 6. (F_UPP_PA_min) Given two functions f, f' € Fupp.pa, if the hypotheses of (5.5)) their minimum
min(f, f') is also UPP-PA.

The computation proceed similarly to the one for addition with the following caveat. Whereas the jump
sequence of a sum is the union of the jump sequences, the minimum can introduce new points as shown in
Figure The following definition gives such a jump sequence.

We are now interested in the convolution of two UPP-PA functions. Like in [BTO0S8], we rely on the
property that: Vf, g, h € F, min(f, g)*h = min(f x h, g+ h). Then, any UPP-PA function can be decomposed
as the minimum of elementary affine functions whose convolution is easy to compute. The convolution of two
such functions can be computed by case disjunction in the same way as in Figure Although handling
possible discontinuities on the border of the segments lead to more than two sub-cases in practice, those can
be handled similarly.

5.3.8 Finite Equality and Inequality Criteria on UPP-PA

To implement an equality test between f and f’, one can use JS_merge to obtain a JS that suits both f and
f', then perform an equality test for each segment of the resulting JS, c.f., F_UPP_PA_eqb.

Inequality tests can be obtained by combining the above minimum and equality test, indeed f < f’ is
equivalent to min(f, /') = f.

5.3.9 Implementation

The implementation consists of 6.8k lines of Coq code. It offers an automatic tactic nccoq that performs
reflexive proofs for goals of the following form

goal == expr=expr | exp <expr | expr © expr < expr
| hDev(expr,expr) < cst | vDev(expr,expr) < cst
expr == fupp | expr + expr | min(expr,expr) | expr *expr

| —expr | expr —expr | non_decr_closure expr

where cst € Q and fupp are constant functions in Fypp.pa given by their parameters and list of affine
segments.

64 CHAPTER 5. VERIFYING NETWORK CALCULUS

The implementation relies on the rational numbers defined in the MathComp library [MT18] and the
real numbers from MathComp Analysis [ACK™20]. This enables, among other things, the use of the big
operators from MathComp [BGOBPOS] as well as a nice formalization of algebra, that we extended with
semi-rings and complete dioids. Semi-rings are now part of MathComp proper since its version 2 released in
May 2023, see Section [6.1.2] for more details.

To obtain executable Coq programs, some adjustments were required, such as making the p and o of
Definition [I9] explicit in the jump sequences. The final executable version uses the refinement of MathComp’s
rational numbers by the one in the bignums library [GT06] provided by the CoqEAL library [CDM13] and
developed as part of Section [3.4.2

Here is an example proof on the sum of the two functions f and g from Figure 5.4 We first declare f and
g: (mk_sequpp is a mapping function)

Let f := F_of_sequpp (mk_sequpp 4 (* T *) 4 (x d %) 3 (x ¢ *) [:: (0, (0, (2, 0)));
(1, (2, (0, 2))); (2, (2, (0, 3))); (4, (3, (0, 5))); (6, (5, (0, 6))1).
Let g := F_of_sequpp (mk_sequpp 4 4 (4/11) [:: (0, (0, (1/3, 0)));
(3, 1, (1/11, HND.

Then a function h that we want to prove equal to f + ¢ (this function could be obtained from an external
oracle):

Let h := F_of_sequpp (mk_sequpp 4 4 (37/11) [:: (0, (0, (7/3, 0)));
(1, (7/3, (1/3, 7/3))); (2, (8/3, (1/3, 11/3))); (3, (4, (1/11, 4)));
(4, (45/11, (1/11, 67/11))); (6, (69/11, (1/11, 80/11)))1).

We can then use our new tactic nccoq to automatically prove the equality:
Goal f + g = h. Proof. nccoqg. Qed.

This tactic performs a proof by reflection: it reduces the goal-to-prove down to a computation, which is
then performed by Coq and whose success concludes the proof. The reduction is done with the help of the
machinery provided by the CoqEAL library [CDMT13].

5.3.10 Conclusion

Confidence in latency bounds computed by network calculus tools [BMF11], [SZ06] relies, among other parts,
on the correctness of the evaluation of algebraic expressions on (min, plus) operators [MPC| BCG™09).
Instead of developing another toolbox, we developed, formalized and proved equality criteria that can be
checked in finite time for each algebraic operation involved in actual computation of network calculus bounds.

The expected usage of this library is to delegate the evaluation of arbitrary algebraic expressions to
an external tool [MPC], that can do efficient computations, before checking the final result with our Coq
contribution. This external tool would then act as an untrusted oracle. We successfully experimented this
approach on case studies representative of actual aircraft embedded networks with the PEGASE tool [BMF11],
from the RTaW company, as untrusted oracle [BRD22]. Our Coq tactic confirmed the correctness of all
results provided by PEGASE.

Chapter 6

Technical Activities

Part of my work is more technical than scientific and doesn’t lead to any publication. This includes
contributions to the development and maintenance of the software tools used in my research activities, as
well as some internal contracts at ONERA. This chapter briefly gives some idea of this work with a short
sum-up of my contributions to the Coq ecosystem in Section and an example of contract in Section

6.1 Contributing to the Coq and MathComp Ecosystems

During my PhD and the following years, I mostly developed research prototypes alone: a prototype static
analyzer as described in Chapter [2f or the OCaml OSDP library (c.f., Section . I was almost the only
one to run those codes, let alone read / modify them. This changed when I started collaborating to Coq and
it proves that having others review and criticize my code was a wonderful way to learn a lot and improve
it, for the benefit of all developers and users it is now shared with. This kind of contributions is usually
not a matter for publications but I still consider that maintaining and improving our research tools is a
fundamental contribution to the future research that will be performed with them. Thus, I dedicate a few
pages below to describe my main contributions to the Coq and MathComp ecosystems in the last few years.

6.1.1 Contributing to Coq

I started contributing to Coq in 2019 with primitive floats, as seen in Chapter @ I then became a regular
maintainer in 2021 and was invited to join the core team in 2023. I served as release manager of Coq
8.20 during summer 2024 (with the kind help of Guillaume MELQUIOND). It may be worth noting that I
arrived soon after Théo ZIMMERMANN moved the development to GithubE] This may have facilitated my
contributions, whereas I'm not part of one of the historic research teams that made Coq up to that time.

My first contribution, primitive ﬂoatsE] actually led me to contribute parsing and printing of decimal
valuesE] like 3.14 (only integers were parsable before that and it was common to write things like 314/100).
This ended up requiring more work than I initially anticipated but thanks to the kind support of many Coq
developers, this ended up in a good enough shape to be merged. Still, this required a few more reﬁnementeﬂ
I also later added hexadecimal support.https://github.com/coq/coq/pull/11948

Similarly, primitive floats led me to contribute to the virtual machine (behind the vm_compute tactic).
For instanceﬂ to retrieve more recent (well 16 years) changes from the OCaml VM or some fixes of potential
inconsistencies{ﬂ This is also how I got my first proof of Falsem

Another contribution triggered by primitive floats was to ease the use of native_compute. Indeed, to
perform native computation, the tactic requires all dependencies of the computation to be compiled by the
OCaml compiler. This can be done on the fly by the tactic but the overhead rapidly becomes unbearable.
Another solution was to precompile every dependency with the OCaml compiler, at the same time their
Coq code is compiled. At that time, this was done by default for Coq standard library but there was
no documented solution to perform this for other libraries and the details varied from build system to
build system (coq_makefile, dune, handmade makefiles,...). This made the use of native_compute utterly
impractical for any development with a few dependencies. Thus, in collaboration with Erik Martin-Dorel,

Thttps://github.com/coq/coq
%https://github.com/coq/coq/pull/9867
Shttps://github.com/coq/coq/pull/8764

4for instance https://github.com/coq/coq/pull/11848
Shttps://github.com/coq/coq/pull/9905
Shttps://github.com/coq/coq/pull/9925
"https://github.com/coq/coq/issues/10031

65

https://github.com/coq/coq/pull/11948
https://github.com/coq/coq
https://github.com/coq/coq/pull/9867
https://github.com/coq/coq/pull/8764
https://github.com/coq/coq/pull/11848
https://github.com/coq/coq/pull/9905
https://github.com/coq/coq/pull/9925
https://github.com/coq/coq/issues/10031

66 CHAPTER 6. TECHNICAL ACTIVITIES

we opened a Coq Enhancement Proposaﬂ (CEP) and after some discussions to converge on a satisfying
solution, we implemented and documented itﬂ As a result, native_compute is easier to use since Coq 8.13,
as it is now enough to install the new cog-native OPAM package to get all required precompilations done.
The dune build system took a few more years to properly adapt but things are now properly working, even
with it.

More generally, the experience of primitive floats came handy to help develop / review / merge further
contributions from other developers such as signed primitive integerﬂ or primitive string

Since the decimal numbers contribution, I also got some general interest in the extensible parsing and
notation mechanisms of Coq. This materialized by contributions to extend the notation mechanism for
numbers to noninductive typeﬁ but it all started with some OCaml GADT fiddling in the parse codeIE
Other examples of contributions to the notation mechanism come with enabling multiple scopes in Arguments
commands{ﬂ or later work to somewhat “improve” notation modularityE

After contributing to MathComp, I also got interested in the coercion mechanism. I removed the uniform
inheritance conditiorﬂ (that was an old restriction enabling to instantiate coercions purely syntactically
whereas now the pretyping mechanism can do it based on typing) following advice from Enrico TAssI. I then
took part in finalising the implementation of reverse coercionﬂ and added a coercion hook that can be used
from the elpi metalanguag@ to implement elaborate coercions that are not possible as basic Coq coercions.

I sometimes contribute to the reference manual although I don’t have much time to devote to it@

Compared to other proof assistants, Coq still has some very strong points, but its standard library is
in a pretty poor state. In fact it has been in a kind of zombie state for probably more than a decade. It’s
somewhat alive as it is used by almost every Coq development around@ But at the same time it’s essentially
dead as contributions are not really encouraged, and when they happen nonetheless, we usually do a pretty
poor job at incorporating them, if only by lack of interested reviewers. I personally feel that contributing
to the standard library is currently complicated, even for Coq developers. For instance, it is widely known
that the Vector dependent type of the standard library is a nasty trap. Nonetheless, a simple proposition
to add a warning about this (relaying what everyone was repeating over and over on the Zulip forum for
userﬂ took endless discussions and months to get iﬂ (although I must admit it was an opportunity to ad
a deprecation mechanism for entire files). Recognizing that developers of Coq itself and the standard library
are mostly different teams, I opened a CEP@ to discuss the possibility to give the standard library its own
repository, considering it’s likely a necessary step (although not sufficient) to its revival. After the discussion,
there is an agreement on the poor situation of the library in terms of welcoming contributions, as well as the
fact that some of its components are subpart / no longer state of the art (there is however no agreement
on the extent of this latter issue, some of us think that it’s pretty wide, starting with the definition of <
on natural numbers for instance). We thus agreed to give the library its own repository, distinct from the
Coq repository that will only keep Coq itself, basic tools (like coqwc coqchk,...), the prelude (code loaded by
default when starting Coq), basic tactics and plugins and small parts of the standard library (typically what’s
needed to specify primitive types and operators implemented in the kernel). I'm currently implementing this.
This was a good opportunity to clarify the structure of the stdlib by identifying, documenting and checking
(in CI)E clear subcomponents and their dependencie@ (indeed, currently virtually every file in the library
can depend on any other file, as long as no cyclic dependency appears, thus over time there remains only a
rather loose link between the directory structure and the compilation dependencies, and accidentally creating
impossible-to-untangle cyclic dependencies becomes a more and more serious threat). As no agreement was
reached on the packaging, the coqg OPAM metapackage will keep depending on the cog-stdlib package@

8https://github.com/coq/ceps/pull/48
9https://github.com/coq/coq/pull/13352 and https://github.com/coq/coq/pull/13684

Ohttps://github.com/coq/coq/pull/13559

https://github.com/coq/coq/pull/18973

12Znttps://github.com/coq/coq/pull/12218 and https://github.com/coq/coq/pull/14525

L3https://github.com/coq/coq/pull/9815

https://github.com/coq/coq/pull/16472

https://github.com/coq/coq/pull/19049 and https://github.com/coq/coq/pull/19149

16https://github.com/coq/coq/pull/15789

https://github.com/coq/coq/pull/15693

18https://github.com/coq/coq/pull/17794 and https://github.com/LPCIC/coq-elpi/pull/484

19For instance https://github.com/coq/coq/pull/15836|or https://github.com/coq/coq/pull/17532

20T can only think of HoTT and Unimath that don’t use it, and MathComp that almost doesn’t use it.

2Ihttps://coq.zulipchat . com

2?https://github.com/coq/coq/pull/18032

23https://github.com/coq/ceps/pull/83

24The combination of the Nix package manager and the Cachix cache is very convenient to check nontrivial dependencies
without recompiling things over and over.

251 would personally have gone as far as publishing those subcomponentss as OPAM packages, enabling users to clarify which
part of the — huge — stdlib, their development actually depends on. However, we didn’t met an agreement on this, so the
subcomponents will remain an internal thing.

261 personally think it should be the reverse, after all when you install g++ for instance, you just want a C++ compiler, not

https://github.com/coq/ceps/pull/48
https://github.com/coq/coq/pull/13352
https://github.com/coq/coq/pull/13684
https://github.com/coq/coq/pull/13559
https://github.com/coq/coq/pull/18973
https://github.com/coq/coq/pull/12218
https://github.com/coq/coq/pull/14525
https://github.com/coq/coq/pull/9815
https://github.com/coq/coq/pull/16472
https://github.com/coq/coq/pull/19049
https://github.com/coq/coq/pull/19149
https://github.com/coq/coq/pull/15789
https://github.com/coq/coq/pull/15693
https://github.com/coq/coq/pull/17794
https://github.com/LPCIC/coq-elpi/pull/484
https://github.com/coq/coq/pull/15836
https://github.com/coq/coq/pull/17532
https://coq.zulipchat.com
https://github.com/coq/coq/pull/18032
https://github.com/coq/ceps/pull/83

6.1. CONTRIBUTING TO THE COQ AND MATHCOMP ECOSYSTEMS 67

I contributed many other small pull requests to Coq, mostly small fixes and maintenanceﬂ For instance,
I launched a long term effort to clarify the meaning of :> that was initially used to declare coercion on record
fields but was accidentally reused for type-classes in the records that were type-class declarations. That effort
started in 202@ but to avoid breaking users code and enabling everyone enough time to adapt with nice
deprecation messages, this will only be completed with Coq 8.21 in 2025. Only then will :> uncoditionally
mean coercion and :: type class subinstances. Finally, as a maintainer I merged close to 200 pull requests
from other contributors 2]

6.1.2 Contributing to MathComp

I was introduced to the MathComp library by Erik MARTIN-DOREL during a postdoc we spent in the
same office were I was delighted to use its nice matrices and big ¥ notations [Roul6|]. Later, after both
getting positions in the same city, we developed together the ValidSDP library (c.f., Section , again using
MathComp. The library proved once more very useful during Lucien’s thesis as explained in Section
More specifically, we used in it in our NC-Coq library, for which we had to develop new algebraic structures for
complete dioids (semirings, dioids (idempotent semi rings), complete lattices and complete dioids). To do this,
we first took inspiration from MathComp’s ssralg.v file that was implementing all basic algebraic structures.
This was effective but proved quite painful and error prone. At the same time, the Hierarchy-Builder (HB)
tool [CST20] was under development to ease the implementation of hierarchies of algebraic structures, and
enable seamless modifications of existing hierarchies. We thus used it to reimplement our structures, which
proved much easier. I then took an important part in the port of MathComp to HBE starting in spring
2021 with the porting sprint [AABT21] and leading to the release of MathComp 2.0 in May 2023, as a
co-release-manager with Reynald AFFELDT. The port of MathComp to HB was an opportunity to add a
structure of semi-rings, as well as semigroups (monoids not requiring a neutral element, useful for the bigop
mechanism with operators such as min or max)

Besides the HB port, my first contribution to mathcomp consisted in backporting various lemmas about
list ordering from our NC-Coq librarﬂ The lemmas statements and proofs did evolve quite a bit between
my initial proposal and the version that eventually got merged. I indeed learned a lot from reviews from
MathComp experts. More generally, I’d encourage anyone developing any serious Coq code to take time to
identify parts in the code that could be of more general interest and contribute them to the library our code
depends on. This may sounds like just an altruistic move and a loss of time, but in the longer term, it can
save quite a lot of effort in future developments and maintenance. Indeed, this is often a great opportunity to
benefit reviews from more expert users that not only improves our initial lemmas and proofs but can teach
us a lot, thus leading to a win-win situation: the upstream library got enriched with useful lemmas and we
reduce the technical debt of the initial library. A good practice is then to maintain in each development a
upstream_extra.v file for each upstream library, containing lemma candidates for move to the upstream
library, and regularly backport those lemmas, and eventually cleanup the file once we can require the release
of upstrean offering the new lemmas.

I'm now a regular maintainer of the MathComp library with almost 150 pull requests at the time of writing
this@ Among other contributions, one can find lemmas about (monovariate) degree-two polynomialﬁ of
nicer notations for numeric constants for arbitrary ringﬁ (using the notation mechanism discussed in above
Section but the core of those pull requests are maintenance stuff and cleanups, such as for instance,
cleanup of phantom types after reverse coercions were introduced in Coﬂ Finally, as a maintainer I reviewed
more than 100 pull requests from other contributorsli] One of the striking qualities of the MathComp library
is its ease of maintenance, while offering a large set of results.

The contribution to MathComp and its port to HB led me to contribute a bit to HB itself, for instance
by adding the HB.howto command to help users discover ways to instantiate a given structure on a given
type{ﬁ or through performance improvements@

the compiler and the entire boost library.
27 At time of writing, 150 PRs on https://github.com/coq/coq/pulls?q=is}%3Apr+author’%3Aproux01
2%https://github.com/coq/coq/pull/16230
2%9nttps://github.com/coq/coq/pulls?q=assignee’,3Aproux01
30https://github.com/math-comp/math-comp/pull/733
3Thttps://github.com/math-comp/math-comp/pull/910
32https://github.com/math- comp/math-comp/pull/738
33https://github.com/math- comp/math-comp/pulls?q=is%3Apr+author%3Aproux01
34https://github. com/math-comp/math-comp/pull/1002
35https://github.com/math-comp/math-comp/pull/841
30nhttps://github.com/math-comp/math-comp/pull/1046
3"Thttps://github.com/math- comp/math-comp/pulls?q=reviewed-by%3Aproux01
38https://github.com/math-comp/hierarchy-builder/pull/305
39For instance https://github.com/math-comp/hierarchy-builder/pull/380 and https://github.com/math-comp/
hierarchy-builder/pull/391

https://github.com/coq/coq/pulls?q=is%3Apr+author%3Aproux01
https://github.com/coq/coq/pull/16230
https://github.com/coq/coq/pulls?q=assignee%3Aproux01
https://github.com/math-comp/math-comp/pull/733
https://github.com/math-comp/math-comp/pull/910
https://github.com/math-comp/math-comp/pull/738
https://github.com/math-comp/math-comp/pulls?q=is%3Apr+author%3Aproux01
https://github.com/math-comp/math-comp/pull/1002
https://github.com/math-comp/math-comp/pull/841
https://github.com/math-comp/math-comp/pull/1046
https://github.com/math-comp/math-comp/pulls?q=reviewed-by%3Aproux01
https://github.com/math-comp/hierarchy-builder/pull/305
https://github.com/math-comp/hierarchy-builder/pull/380
https://github.com/math-comp/hierarchy-builder/pull/391
https://github.com/math-comp/hierarchy-builder/pull/391

68 CHAPTER 6. TECHNICAL ACTIVITIES

6.1.3 Contributing to MathComp Analysis

Developing NC-Coq (c.f., Section |5)) required a formalization of extended reals R. At that time, MathComp
Analysis was in an initial development stage and I was advised by one of its authors to not try to really use
it. Thus, we settled to the Coquelicot library [BLMI5] which was already pretty stable. In Coquelicot, the
addition on R was defined with +00 + —oo = 0. This offers symmetry around 0, hence some nice properties
for the opposite —. However, this comes with a major drawback: this addition is not even associative,
removing all hopes to do even the smallest bit of algebra on R. Coquelicot also came with a coercion from R
to R (sending infinities to 0), that was obviously not injective. It can be convenient but I strongly disliked
this since it made reasonable-looking statements appear wrong once the elaborator silently introduced the
coercion to make it type-check (this was even worse in the hands of newcomers to Coq like Lucien at the
beginning of his PhD). Discussions with one of the library authors did not make me feel like they would
welcome modifications on those points (to be fair, it was before the use of github/gitlab became widespread,
greatly facilitating discussions around this kind of modifications) and this was a strong incentive to switch to
MathComp Analysis when it became a strong contender a few years later.

Contrary to Coquelicot, Analysis defines 400+ —oo as —o0o, making the addition on R associative. In fact,
this makes (@, max, +)) a semi-ring. However, as seen in Section E we rather needed the dual (@, min, +)
semi-ring where +00 + —oo = 4+00. Thus, adding this dual addition was my first contribution to MathComp
Analysis@ Later, as a relatively heavy user of extended reals, I contributed multiple other improvements to
their theory@

Analysis is all about classical analysis, which requires some tools to work with classical logic (whereas
MathComp proper is made on top of Coq constructive logic without adding any axiom). Recognizing that
those tools could be of wider interest than “just” analysis, I split the mathcomp-analysis package into two:
mathcomp-classical and mathcomp-analysis, enabling use of the classical logic features without requiring
the whole analysis library@

Another tool we came to appreciate a lot when working on UPP functions (c.f., Section was the
automatic proofs of positivity / nonnegativity provided by Analysis. I contributed a number of improvements
/ consolidation of this too]@ (file signed.v of Analysisif[). Later I similarly added a tool to infer interval
bounds rather than just signﬁ The two abstractions should be merged, but I haven’t found time to do it
yet 1]

A more recent part of my contributions was related to probability, adding a notion of covariancﬂ and a
proof of the Cantelli inequality@ This was part of a work by Filip MARKovic [MRB™23] I collaborated to
during a five months visit to the team of Bjorn BRANDENBURG at MPI-SWS in Kaiserslautern in 2023.

As for MathComp, many of my more than 80 pull requestﬂ are various small improvements or maintenance
tasks. Finally, I reviewed more than 90 pull requests from other contributors@

6.1.4 Contributing to MathComp Algebra Tactics

When it comes to formalize mathematical results in the Coq proof assistant, I found MathComp and the
ssreflect tactic language vastly superior to the legacy Coq tactics and standard library, both in terms of
efficiency and ease to develop new proofs, robustness of those proofs and ease of maintenance of the existing
proofs@ However, there was a point where, until a few years ago, MathComp was still lagging behind:
large scale reflection tactics such as ring, field, lia or lra using decision procedures to solve goals by
associativity and commutativity or linear algebra respectively (1ia stands for Linear Integer Arithmetic and
1ra for Linear Real Arithmetic).

Kazuhiko SAKAGUCHI developed mczify to provide access to the lia tactic within MathComp devel-
opments. He also later developed MathComp Algebra Tactics with a reimplementation of the ring and
field tactics for MathComp algebraic structures [Sak22]. This even added a new feature with support of

40nttps://github. com/math-comp/analysis/pull/374

41For instance https://github.com/math-comp/analysis/pull/466, https://github.com/math-comp/analysis/pull/535,
https://github.com/math-comp/analysis/pull/546| or https://github.com/math-comp/analysis/pull/887

4Zhttps://github.com/math-comp/analysis/pull/600

43For instance https://github.com/math-comp/analysis/pull/511 and https://github.com/math-comp/analysis/pull/,
601

44https://github.com/math-comp/analysis/blob/master/theories/signed.v

45https://github. com/math-comp/analysis/pull/869

46Edit: at the time of writing in summer 2024, now done in 2025.

4Thttps://github.com/math-comp/analysis/pull/918 and https://github.com/math-comp/analysis/pull/919

48https://github.com/math-comp/analysis/pull/920

49https://github.com/math-comp/analysis/pulls?page=3&q=is}%3Apr+author’3Aproux01

50nttps://github.com/math-comp/analysis/issues?q=reviewed-by%3Aproux01

51Note that there is a very good rationale to this: MathComp was developed at least a decade later and could benefit all the
lessons learned the hard way in the standard library and tactics.

https://github.com/math-comp/analysis/pull/374
https://github.com/math-comp/analysis/pull/466
https://github.com/math-comp/analysis/pull/535
https://github.com/math-comp/analysis/pull/546
https://github.com/math-comp/analysis/pull/887
https://github.com/math-comp/analysis/pull/600
https://github.com/math-comp/analysis/pull/511
https://github.com/math-comp/analysis/pull/601
https://github.com/math-comp/analysis/pull/601
https://github.com/math-comp/analysis/blob/master/theories/signed.v
https://github.com/math-comp/analysis/pull/869
https://github.com/math-comp/analysis/pull/918
https://github.com/math-comp/analysis/pull/919
https://github.com/math-comp/analysis/pull/920
https://github.com/math-comp/analysis/pulls?page=3&q=is%3Apr+author%3Aproux01
https://github.com/math-comp/analysis/issues?q=reviewed-by%3Aproux01

6.2. EXAMPLE OF APPLICATION: TTETHERNET ON ARIANE 6 LAUNCHER 69

morphisms, enabling for instance the ring tactic to prove goals like f(x + 2y) = 2f(y) + f(z) when f is an
additive morphism.

I contributed@ an interface to the micromega tactic of Coq [Bes06], giving access not only to the lra
tactic for MathComp algebraic structures, but also the nra and psatz tactics, able to handle some nonlinear
goals. Similarly to the already existing ring and field, the new tactics handle morphisms.

6.1.5 Maintenance

Finally, I maintain a few other libraries, namely CoqEAL, paramcoq (a plugin used by CogEAL) and bignums,
so as to provide releases that keep compiling with recent versions of Coq. This is mostly a low effort work.

6.2 Example of Application: TTEthernet on Ariane 6 Launcher

At ONERA we perform various kind of studies for industrial actors or public agencies of the aerospace domain.
The outcome of these studies can usually not be published (either to avoid betraying industrial secrets or
simply because it is of no scientific interest). Here is an example of such a study, omitting most information
that would not be already publicly available.

A few years ago, we were mandated to do a bibliographical study of the Time Triggered Ethernet
(TTEthernet) technology used in the Ariane 6 launcher. Contrary to most of the work of Chapter
TTEthernet is a time triggered real-time network technology. As discussed in Section [5.1} an important part
of these protocols is the clock synchronization protocol that is used to keep a bounded drift between clocks of
each element in the network. A few papers [DEHS12] [DS04} [SDS08|, [SD10}, [SD11al [SD11bl, [SD13, [SRSP04]
analyze this synchronization protocol, particularly with model-checking techniques. We reproduced the
model-checking analyses provided in [SDI1Ia] for the SAL model checker [dMOS03].

The synchronization protocol has two main kind of actors: Synchronization Masters (SM) are clients of
the synchronization algorithm, they provide their local clocks and periodically update them according to
the instructions of the Compression Masters (CM) that gather all local clocks, select a kind of median value
(compression function) and broadcast adjustments. CM are usually switches of the network while SM are
usually end systems. It is assumed that each local clock can drift by at most maxz_ drift during each period.

For the analyses, two fault modes are considered for the SM:

inconsistent omission : a SM in that fault mode can, at each time instant, send or not its clock to each
CM (independently, i.e., the clock can be sent to only some of the CM);

byzantine : a SM in that fault mode can, at each time instant, send or not to each CM a clock that is
correct or not.

For CM, a single fault mode is considered:

inconsistent omission : a CM in that fault mode can, at each instant, send or not the result of its
compression function to each SM.

The results are shown in Table It is worth noting that these bounds are obtained on a simplified model
of the synchronization protocol, ignoring variable transmission delays or some mechanisms. Actual maximum
reachable drifts are thus expected to be a bit larger.

The main result of the study was the discovery that the studied publications only dealt with SM-SM clock
drifts, whereas Table shows that drifts with CM can be larger under faults.

52https://github.com/math-comp/algebra-tactics/pull/54

https://github.com/math-comp/algebra-tactics/pull/54

70 CHAPTER 6. TECHNICAL ACTIVITIES

[[CM [SM io [SM by [[SM-SM [SM-CM | CM-CM |

0 0 0 2 2 2
0 1 0 2 5/2 3
0 0 1 2 5/2 3
0 2 0 2 3 4
0 1 1 2 3 4
0 3 0 2 3 4
1 0 0 2 2 2
1 1 0 8/3 10/3 10/3
1 0 1 8/3 10/3 10/3
1 2 0 4 6 6
1 1 1 4 6 6
1 3 0 4 6 6
0 0 2 2 00 00
1 0 2 00 00 00
0 2 1 2 00 00
0 1 2 2 00 00
0 0 3 2 00 00
1 2 1 00 00 00

Table 6.1: For each row, the three first columns indicate the considered fault configuration. The first column
indicates the number of CM in “inconsistent omission” mode. The next two columns indicate the number
of SM in “inconsistent omission” and “byzantine” mode respectively. For each configuration, the SM-SM
column indicates a bound b such that for all pair of SM, it is proved that, at each time instant, their clock
don’t differ by more than b x max_ drift. The SM-CM column indicates such a bound for all pair (SM, CM)
and the CM-CM column for all CM pair.

Chapter 7

Perspectives

Sections [2.7] [3:3.6] [3:4:4] 345 [4-6] [5.3-3 and [5.3.10] have already explained, for each part of the presented

work, how it compares to related works, what are its shortcomings, and how it could be improved further. I
will not rehash all these details here. Instead, this short chapter will give an overview of the directions in
which my research work may progress in the next few years.

7.1 Static Analysis of Control-Command Software

In the introduction in Chapter[I] we motivated the work of Chapter [2]on control-command program verification
by the example of digital flight-command software now ubiquitous on large commercial aircraft. However,
while Chapter [2] presented some state of the art improvements, this still lefts us very far from being able to
prove functional properties of actual flight-command software.

A few years ago, we had the opportunity, during a DGAqH funded project, to collaborate with a local
aircraft manufacturer. They provided us with a Matlab Simulink model of the longitudinal control of an
actual commercial aircraft. Here longitudinal control means only pitch, in a vertical plane like on Figure
page [2, without any roll nor yaw. They introduced bugs in the model, representative of the kind of bugs
actually encountered while developing the planeE| The best results actually achieved during this project
were obtained by a colleague. Rémi DELMAS was able, by using Monte-Carlo simulations, to automatically
find one of the bugs [DLBCI9]. This even revealed bug instances leading to more critical situations than
initially known. But when it comes to proving that no such bad scenario can happenﬁ neither the control
theorists involved in the project, nor us, got anywhere close to a proof. Indeed, beyond the linear controller
at their core, those are pretty complex software. There is in fact not a single linear controller but one for each
flight-point (mostly speed and altitude, but also mass and mass distribution), with some interpolation between
them. To make things even more complicated, they usually feature a number of nonlinear mechanisms such
as saturations or antiwindupsﬂ Finally, those are hybrid systems since the behavior of the plane is continuous
(time) while the control law is implemented as a discrete (time) program. Interestingly, this is not the worst
difficulty, since in practice the discrete program is nothing else than the discretization of the continuous law
designed by control theorists.

Thus, the problem remains a challenging and interesting research topic. I'm now intimately convinced
that proving actual functional properties on actual flight command software would require tight collaboration
not only with control theorists but also with expert engineers developing such systems. My lab ONERAE| is
quite an ideal place to foster collaborations between control theorists and computer scientists. This indeed
lead to some progress and mutual understanding. However the path to an actual effective collaboration
probably remains quite long.

An interesting point, when comparing usual computer science programs with this kind of control-command
programs, are the mechanisms used to master the complexity. In software engineering, it is a common good
practice to split large programs into smaller units with clear and well defined interfaces. This way, each
smaller unit can be developed and verified somewhat independently. The development of control-command
programs seems much more monolithic. One of the rare modularity practices I'm aware of is to develop units

IDirection Générale de 1’Aviation Civile, the French civil aviation administration.

2Typical programming bugs, like inversion of branches of if-then-else constructs, memory not correctly reset during some
mode switching,...

30n the fixed code, of course.

4A kind of saturation that, when triggered, instead of keeping the saturated value, activates an alternative law aggressively
trying to resolve the saturation.

5A kind of french equivalent of NASA.

71

72 CHAPTER 7. PERSPECTIVES

working on separate frequency ranges, for instance a controller handling some high frequency phenomenon,
coupled with another handling lower frequency behaviors.

7.2 Improving Proof Assistant Usability

When using proof-assistants to formalize already established mathematical results, a large part of the difficulty
comes from the distance between the initial mathematical statements, as they are written on paper, and
the fully formal statements, understandable by the tool, with the many details intuitively added by the
readerﬁ For instance, in a statement like “for all « € RY such that u o = up + ug,1 for all k,..”, the reader
intuitively understands that £k € N and that k 4+ 1 and k + 2 are addition on N whereas uy + ugy1 is an
addition on R. In proof assistants, this kind of gaps are filled by a pre-processing phase called elaboration.
The elaborator takes a term with holes, or even some typing errors, fills the holes and fixes the typing errors
to come up with a fully detail term that should typecheck. This is done through various mechanisms like
unification, implicit coercions, type-class inference or canonical-structure inferenceﬂ in Coq.

To illustrate the various pre-processing steps performed by Coq on user input, to produce a fully formal
term that can be typechecked by Coq’s kernel, let’s consider an exampleﬂ Considering the statement

“if f is linear then f(2-x+y) =2 f(z) + f(y)”,

the reader understands that this assumes some ambient vector spaces over a ﬁeldﬂ and that the unbound
z and y variables are in fact universally quantified. So the reader actually understands the statement as
something like

“if R is a ring, U and V are modules over R and f : U — V is linear then, for all x, y, we have

f2zty)=2-flz)+ fy)"

Note that this is still not fully precise. We didn’t specify in which set x and y live, so we should write z € U
but actually U is an algebraic structure, not a set, so we should rather write z € |U| to denote that z is
taken in the carrier set of U. Similarly, what does 2 denote? 2 is a notation for 1 4+ 1 in ring R, so we could
write 2. We should also write -7, +y, v and +y to specify that - and + denote the operators of U and V'
respectively. We finally need to precise the “order” of operators by adding parentheses. We end up with

“if R is a ring, U and V are modules over R and f : |U| — |V is linear then, for all =,y € |U|, we have

f(2r2)+vy)=(2r f(x) +v f(y)"

This is much more precise, but also starts to look pretty unreadable, with all the details cluttering the main
message. Fortunately, using the Mathematical Components library [MT18], Coq accepts an input close to
the intermediate version above:

From mathcomp Require Import all_ssreflect all_algebra. (* loading MathComp *)
Local Open Scope ring_scope.

Example elaboration (R : ringType) (U V : lmodType R) (f : {linear U — V})
Vxy, £f(2=*:x+y) =2=x*fx+fy.
Proof. exact: GRing.linearP. Qed.

The elaborator of Coq will then fill all the details to feed the kernel with something close to the third version
of the statement above.
More precisely, Coq treats each input statement via the following successive phases:

1. The lexing phase splits the input into a linear stream of words called token. For instance, we would
here get Example, "elaboration", (, "R", :, "ringType",),...

2. The parsing phase takes the flat result of lexing and structures it as a tree, called Abstract Syntax Tree
(AST). The fact that *: has higher priority than + is decided by this phase that produces the subtree

60f course, this is assuming we start from a reasonable mathematical statement and not just a vague English sentence.
Otherwise, a first pen-and-paper formalization phase might be needed and can also come with serious hardships.

7Canonical structures are an ancestor of type-classes in Coq, they tend to offer better performances at the price of much
restricted capabilities.

8Borrowed from Andrej BAUER in his talk “The Dawn of Formalized Mathematics” available at https://math.andrej.com/
2021/06/24/the-dawn-of-formalized-mathematics/| and simply translated from Lan’s Mathlib to Coq’s MathComp.

9Actually, modules over a ring are enough.

https://math.andrej.com/2021/06/24/the-dawn-of-formalized-mathematics/
https://math.andrej.com/2021/06/24/the-dawn-of-formalized-mathematics/

7.2. IMPROVING PROOF ASSISTANT USABILITY 73

rather than

for instance. The parser of Coq is mostly an LL1 parser, with the particularity that it can be extended,
typically through the Reserved Notation command, or by plugins.

3. The notation interpretation phase gives a meaning to each syntax. Different meanings can be attached
to a same syntax depending on the context, via a mechanism of scopes. For instance, by default _ + _
denotes the addition Nat . add of natural numbers but thanks to the line Local Open Scope ring_scope
it is now mappedlﬂ to the generic ring addition GRing.add of MathComp. Similarly, 2 gets interpreted
as GRing.natmul _ (GRing.one _) (S (S 0)) where S (S 0) is the natural number 2. So, after

notation interpretation, the above terms become GRing.add _ (GRing.scale _ _ (GRing.natmul
_ (GRing.one _) (S (8 0))) x) y where the placeholders _ are for the, still unknown, algebraic
structures.

4. The elaboration phasclﬂ fills the holes (_). For instance, knowing that x is given as argument to f,
unification infers that the type of x is U. Then, the holes in GRing.scale _ _ are filled as GRing.scale
R U in the left-hand side of the equality and GRing.scale R V in the right-hand side.

5. Finally, the typechecking phase, performed by the kernel, takes the elaborated term and check that it
correctly types.

In recent versions of Coq, phases 1., 2. and 3. are grouped as a syntax interpretation phase and phases 4.
and 5. as an interpretation phase. This way, syntax interpretation is all one needs to parse a Coq source file,
whereas interpretation performs the actual checking work, which can be much more costly.

The elaborator of Coq is already a fantastic tool, but there is still room for progress. For instance, the
implicit coercion mechanism is able to automatically insert coercions as casts from two given types. As an
example, given an integer p : int and a natural number n : nat, the term p + n will be elaborated
as p + int_of_nat n. However, coercions don’t work for parameterized type, for instance they can’t cast
matrices of natural numbers to matrices of integers, the user will have to insert an explicit cast, cluttering its
statement with uninteresting details.

Another example of coercions’ shortcomings comes with the cast in MathComp from natural numbers to
values in a ring, that is the GRing.natmul _ (GRing.one _) n seen above, denoted n’%:R. With x in some
ring, one would like to be able to write n * x rather than having to write n%:R * x as we currently do.
Getting this right is a nontrivial task. Mathlib solves the problem by having heterogeneous operators, that is
instead of having a single ring multiplication R => R -> R, there will be a ring multiplication R -> R ->
R, a multiplication between nat and ring nat -> R -> R, between ring and nat R -> nat -> R and so on.
This does work but requires a high number of instances on the two operands, just for applying a coercion on
a single operand.

I've started prototyping other ideas with the help of the Elpi [DGCT15] extension language. Elpi is a
wonderful tool for fast prototyping this kind of thing, that would otherwise require tinkering with the low
level OCaml code of Coq itself. For instance, here I just added a hooks in CocE| and was able to easily
experiment by programming arbitrary coercions in the elpi language. Once a satisfactory solution is found, if
performance is not good enough, it will still be time to reimplement it in OCaml inside Coq. A direct use
of the hook enables to get things like x * n elaborated as x * n%:R. Unfortunately n * x doesn’t work as
the type of the multiplication is decided by the first argument: in the first case it is thus the ring of x and
the natural number n can be casted to it, whereas in the second case the multiplication is of type nat and
x cannot be cast to a nat. A simple idea is then to try both directions for inference: left-to-right as usual
and if it fails, then try right-to-left. This works but the complexity can become exponential in the number

10 Alternatively to the Open Scope command, scopes can be open locally for a given term with the term%scope_key syntax, for
instance (f (2 *: x +y) =2 *: f x + f y)IR.

I Called pretyping in the source code of Coq.

12See https://github.com/coq/coq/pull/17794

https://github.com/coq/coq/pull/17794

74 CHAPTER 7. PERSPECTIVES

of nested operators in an expression. Our current idea with Cyril Cohen is to use its Trocq [CCM24] proof
translation tool to directly elaborate the terms with the coercions.

7.3 Interval Arithmetic for Formal Proofs of Numerical Results

Proof assistants are good at manipulating arbitrary logic formulas. Among them, Coq also offers some rather
unique computation capabilities. For instance, its vm_compute and native_compute evaluation mechanisms
make it amenable for relatively efficient computations inside the tool. Coq is then an appropriate tool
to perform proofs by reflection, that is proofs with an intensive computation part, as seen for instance in
Section [3:4] Two other families of tools are available to users in need of symbolic or numerical computations,
like applied mathematicians, computer scientist or control theorists:

o Computer algebra systems (CAS), like Maple or Mathematica perform symbolic manipulations, like
proof assistants, but are specialized to algebraic expressions rather than arbitrary logical formulas.
They implement complex algorithms, for instance quantifier elimination algorithms like the cylindrical
algebraic decomposition (CAD), with many heuristics for efficiency.

e Numerical frameworks, such as Octave, Matlab or Scilab, compute pretty much everything with
floating-point arithmetic and offer a convenient access to many numerical procedures.

In both cases, these tools are very good in what they do but:

e They are not designed to easily enable combination with other forms of reasoning. Consider for instance
a mathematical proof that would imply both some combinatorics and algebraic reasoning or both some
graph theory and numerical arguments.

e Soundness of their results relies on soundness of their implementations. Since the algorithms they
implement are often far from trivial, it is relatively easy for small mistakes to sneak into them and
remain undetected for some time. In the case of numerical frameworks, the situation is even more dire
since they are unsound by their very nature, performing approximate computations with rounding

errors E

Proof-assistants may not replace CAS or numerical frameworks anytime soon, due to the performance
overhead they introduce and, maybe more importantly, the — sometimes large — extra cost of developing
verified implementations, but they can bring an answer to both points above.

Indeed, we have seen interest in implementing, and verifying, even complex algorithms such as CAD in
Coq |[Mah07] on one side and rigorous interval methods, such as in the CoqInterval library [MDM16] on the
other. While Coqlnterval is able to prove very nice results on univariate expressions, we got some results for
multivariate polynomials with our ValidSDP library, as seen in Section [3.4] It would be interesting to see how
this could be expanded to the state of the art in interval arithmetic, for instance for linear algebra [Rumi0)].

7.4 Formal Verification of Real-Time Network and Systems

In Section [5.2] we formally verified theorems of network calculus, later in Section [5.3] we developed an
automatic tactic to produce proofs of correctness for the computations performed in network calculus, on the
min-plus dioid of functions. However, these two works remain fairly independent and we didn’t establish any
link between them. In particular, we verified the main bricks involved in a network calculus analysis but
didn’t provide any mechanized guarantee on the result of an analysiSE

Ideally, we would implement in Coq:

¢ A language to formalize networks as an assembly of the, already formalized, network calculus servers.

e A semantics for the above language enabling to express delay and backlog bounds on the described
networks, that is the kind of goals we want to ultimately prove. Again this can use the, already existing,
definitions of network calculus. In particular, cumulative flows, defined in Section [5.2] would be the
main object here.

13However, it must be noted that great care is often taken about the numerical stability of the implementations, so that the
accuracy of the results if often very good, making the tools usable in practice.

14Other than manually on a given small case study. Although the manual proof process did confirm that we possess all
involved bricks, it also proved absolutely not scalable.

7.4. FORMAL VERIFICATION OF REAL-TIME NETWORK AND SYSTEMS (0]

e A language of network-calculus proofs, whose basic elements would be applications of the network
calculus theorems already proved in Section The data manipulated by this language would be
network calculus arrival curves (the main abstraction manipulated by network-calculus analyses, to
abstract the previous — concrete — cumulative flows, see Section for more details) as well as delay
and backlog bounds (horizontal and vertical deviations, simply represented by rationals in Q).

o A small interpreter or checker for programs in the above language, that would use the code developed
in Section [5.3] for verifying actual computations in the min-plus dioid of functions, which are the main
operations performed during network-calculus analyses on the arrival curves.

o Finally, a proof of correctness of the above interpreter would, given a network and a network-calculus
proof in the above languages, provide a formal proof about the network, under the assumption that the
above checker succeeds on the provided network-calculus proof. This would enable proofs by reflection
to automatically check results established by network-calculus analyses. This main correctness theorem
should be relatively easy to prove, by reusing the already proved main network-calculus theorems.

The above process would automatically provide fully mechanized proofs of results on the network-calculus
model of a network. However, during an actual analysis, this model is usually derived by some more or less
heavy processing of some modeling of the network to be analyzed. Another direction of work would then be
to formalize those higher level models and the transformations needed to come up with the network-calculus
level model.

More generally, all this offers a nice framework to formalize and verify new analyses techniques of new
network protocols or algorithms. Proofs in this field are not necessarily very hard but can easily get tricky, as
seen in Section and mechanized proofs are really valuable here to improve the confidence in the new (and
existing) results and alleviate the reviewing work for new results. Finally, having a mechanized formalization
makes it easier to study generalization of results, for instance by simply commenting out some hypotheses
and observing the impact on the proofs compilation.

76

CHAPTER 7. PERSPECTIVES

Bibliography

[AAB*21]

[Abr05]

[ACK+20]

[AFPOY]

[AGG10]

[AGM15]

[AGST10]

[ApS15]

[BBLC18]

[BBRS16]

[BCCT12]

[BCCt14]

[BCGT09]

Reynald Affeldt, Xavier Allamigeon, Yves Bertot, Quentin Canu, Cyril Cohen, Pierre Roux,
Kazuhiko Sakaguchi, Enrico Tassi, Laurent Théry, and Anton Trunov. Porting the mathematical
components library to hierarchy builder. In the COQ Workshop 2021, 2021.

Jean-Raymond Abrial. The B-book - assigning programs to meanings. Cambridge University
Press, 2005.

Reynald Affeldt, Cyril Cohen, Marie Kerjean, Assia Mahboubi, Damien Rouhling, and Kazuhiko
Sakaguchi. Competing inheritance paths in dependent type theory: A case study in functional
analysis. In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors, Automated Reasoning -
10th International Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings,
Part II, volume 12167 of Lecture Notes in Computer Science, pages 3—20. Springer, 2020.

Fernando Alegre, Eric Féron, and Santosh Pande. Using ellipsoidal domains to analyze control
systems software. CoRR, abs/0909.1977, 2009.

Assalé Adjé, Stéphane Gaubert, and Eric Goubault. Coupling policy iteration with semi-definite
relaxation to compute accurate numerical invariants in static analysis. In ESOP, pages 23-42,
2010.

Assalé Adjé, Pierre-Loic Garoche, and Victor Magron. Property-based Polynomial Invariant
Generation Using Sums-of-Squares Optimization. In SAS, pages 235-251, 2015.

Michaél Armand, Benjamin Grégoire, Arnaud Spiwack, and Laurent Théry. Extending Coq
with imperative features and its application to SAT verification. In Matt Kaufmann and
Lawrence C. Paulson, editors, Interactive Theorem Proving, First International Conference, ITP
2010, Edinburgh, UK, July 11-14, 2010. Proceedings, volume 6172 of Lecture Notes in Computer
Science, pages 83-98. Springer, 2010.

MOSEK ApS. The MOSEK C optimizer API manual Version 7.1 (Rev. 40), 2015.

Anne Bouillard, Marc Boyer, and Euriell Le Corronc. Deterministic Network Calculus: From
Theory to Practical Implementation. Wiley, 10 2018.

Sophie Bernard, Yves Bertot, Laurence Rideau, and Pierre-Yves Strub. Formal proofs of
transcendence for e and pi as an application of multivariate and symmetric polynomials. In
Jeremy Avigad and Adam Chlipala, editors, Proceedings of the 5th ACM SIGPLAN Conference
on Certified Programs and Proofs, Saint Petersburg, FL, USA, January 20-22, 2016, pages
76-87. ACM, 2016.

Francgois Bobot, Sylvain Conchon, Evelyne Contejean, Mohamed Iguernelala, Assia Mahboubi,
Alain Mebsout, and Guillaume Melquiond. A Simplex-Based Extension of Fourier-Motzkin for
Solving Linear Integer Arithmetic. In IJCAR, 2012.

Frangois Bobot, Sylvain Conchon, Evelyne Contejean, Mohamed Iguernlala, Stephane Lescuyer,
and Alain Mebsout. Alt-Ergo, version 0.99.1. CNRS, Inria, Université Paris-Sud 11, and
OCamlPro, December 2014. http://alt-ergo.lri.fr/.

Anne Bouillard, Bertrand Cottenceau, Bruno Gaujal, Laurent Hardouin, Sebastien Lagrange,
Mehdi Lhommeau, and Eric Thierry. COINC library: a toolbox for the network calculus. In
Proceedings of the 4th international conference on performance evaluation methodologies and
tools, ValueTools, volume 9, 2009.

7

http://alt-ergo.lri.fr/

78

[BDG11]

[BDG*13]

[BEEFB94]

[Bes06]
[BGOBPOS]

[BJLM13]

[BJLM15]

[BLM15]

[BMO6]

[BM11]

[BMDR19]

[BMF11]

[BNF12]

[BNOT10]

[Bor99]

[BR16]

[BRD22]

BIBLIOGRAPHY

Mathieu Boespflug, Maxime Dénes, and Benjamin Grégoire. Full reduction at full throttle.
In Jean-Pierre Jouannaud and Zhong Shao, editors, Certified Programs and Proofs - First
International Conference, CPP 2011, Kenting, Taiwan, December 7-9, 2011. Proceedings, volume
7086 of Lecture Notes in Computer Science, pages 362—-377. Springer, 2011.

Gilles Barthe, Francgois Dupressoir, Benjamin Grégoire, César Kunz, Benedikt Schmidt, and
Pierre-Yves Strub. Easycrypt: A tutorial. In Foundations of Security Analysis and Design VII -
FOSAD 2012/2018 Tutorial Lectures, 2013.

Stephen Boyd, Laurent El Ghaoui, Eric Féron, and Venkataramanan Balakrishnan. Linear
Matrixz Inequalities in System and Control Theory, volume 15 of SIAM. STAM, Philadelphia,
PA, June 1994.

Frédéric Besson. Fast reflexive arithmetic tactics the linear case and beyond. In TYPES, 2006.

Yves Bertot, Georges Gonthier, Sidi Ould Biha, and Ioana Pasca. Canonical big operators. In
Otmane Ait Mohamed, César Mufioz, and Sofiene Tahar, editors, Theorem Proving in Higher
Order Logics, pages 86—101, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

Sylvie Boldo, Jacques-Henri Jourdan, Xavier Leroy, and Guillaume Melquiond. A formally-
verified C compiler supporting floating-point arithmetic. In Alberto Nannarelli, Peter-Michael
Seidel, and Ping Tak Peter Tang, editors, 21st IEEE Symposium on Computer Arithmetic, pages
107-115, Austin, TX, USA, June 2013.

Sylvie Boldo, Jacques-Henri Jourdan, Xavier Leroy, and Guillaume Melquiond. Verified compi-
lation of floating-point computations. Journal of Automated Reasoning, 54(2):135-163, 2015.

Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Coquelicot: A user-friendly library of
real analysis for coq. Math. Comput. Sci., 9(1):41-62, 2015.

Sylvie Boldo and Cesar Munoz. A high-level formalization of floating-point number in PVS.
Technical Report 20070003560, NASA, National Institute of Aerospace, Hampton, VA, USA,
2006.

Sylvie Boldo and Guillaume Melquiond. Flocq: A Unified Library for Proving Floating-point
Algorithms in Coq. In Proceedings of the 20th IEEE Symposium on Computer Arithmetic, pages
243-252, Tiibingen, Germany, July 2011.

Guillaume Bertholon, Erik Martin-Dorel, and Pierre Roux. Primitive floats in Coq. In John
Harrison, John O’Leary, and Andrew Tolmach, editors, 10th International Conference on
Interactive Theorem Proving, volume 141 of Leibniz International Proceedings in Informatics,
pages 7:1-7:20, Portland, OR, USA, September 2019.

Marc Boyer, Jorn Migge, and Marc Fumey. PEGASE, A Robust and Efficient Tool for Worst
Case Network Traversal Time. In Proc. of the SAE 2011 AeroTech Congress & Exhibition,
Toulouse, France, 2011. SAE International.

Marc Boyer, Nicolas Navet, and Marc Fumey. Experimental assessment of timing verification
techniques for AFDX. In 6th European Congress on Embedded Real Time Software and Systems,
Toulouse, France, February 2012.

Marc Boyer, Nicolas Navet, Xavier Olive, and Eric Thierry. The PEGASE Project: Precise and
Scalable Temporal Analysis for Aerospace Communication Systems with Network Calculus. In
Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal Methods,
Verification, and Validation, pages 122-136, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

Brian Borchers. Csdp, a c library for semidefinite programming. Optimization Methods and
Software, 11(1-4):613-623, 1999.

Marc Boyer and Pierre Roux. Embedding network calculus and event stream theory in a
common model. In 21st IEEE International Conference on Emerging Technologies and Factory
Automation, ETFA 2016, Berlin, Germany, September 6-9, 2016, pages 1-8. IEEE, 2016.

Marc Boyer, Pierre Roux, and Hugo Daigmorte. Checking validity of the min-plus operations
involved in the analysis of a real-time embedded network. In ERTS 2022- 11th European
Congress Embedded Real Time System, Toulouse, France, June 2022.

BIBLIOGRAPHY 79

[BRDP21]

[BS14]

[BSC12]

[BTOS)]

[BV04]

[BY0S]

[CC77]

[CCT9]

[CC92]

[CCI12]

[CCM24]

[CDD*13)

[CDGR11]

[CDM13]

[CGGT05)

[CGKT12]

[CHTS]

Marc Boyer, Pierre Roux, Hugo Daigmorte, and David Puechmaille. A residual service curve of
rate-latency server used by sporadic flows computable in quadratic time for network calculus. In
Bjorn B. Brandenburg, editor, 33rd Furomicro Conference on Real-Time Systems, ECRTS 2021,
July 5-9, 2021, Virtual Conference, volume 196 of LIPIcs, pages 14:1-14:21. Schloss Dagstuhl -
Leibniz-Zentrum fir Informatik, 2021.

Steffen Bondorf and Jens B. Schmitt. The DiscoDNC v2 — A Comprehensive Tool for Determin-
istic Network Calculus. In Proc. of the International Conference on Performance Evaluation
Methodologies and Tools, ValueTools '14, pages 44-49, December 2014.

Olivier Bouissou, Yassamine Seladji, and Alexandre Chapoutot. Acceleration of the abstract
fixpoint computation in numerical program analysis. J. Symb. Comput., 47(12):1479-1511, 2012.

Anne Bouillard and Eric Thierry. An Algorithmic Toolbox for Network Calculus. Discrete Event
Dynamic Systems: Theory and Applications, 18, 03 2008.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

Steven J. Benson and Yinyu Ye. Algorithm 875: DSDP5 - software for semidefinite programming.
ACM Trans. Math. Softw., 34(3), 2008.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, pages 238-252,
1977.

Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks. In
POPL, pages 269-282, 1979.

Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. J. Log. Comput.,
2(4):511-547, 1992.

Sylvain Conchon, Evelyne Contejean, and Mohamed Iguernelala. Canonized rewriting and
ground AC completion modulo Shostak theories : Design and implementation. Logical Methods
in Computer Science, 2012. Selected Papers of TACAS.

Cyril Cohen, Enzo Crance, and Assia Mahboubi. Trocq: Proof transfer for free, with or without
univalence. In Stephanie Weirich, editor, Programming Languages and Systems - 33rd European
Symposium on Programming, ESOP 2024, Held as Part of the Furopean Joint Conferences
on Theory and Practice of Software, ETAPS 2024, Luzembourg City, Luzembourg, April 6-11,
2024, Proceedings, Part I, volume 14576 of Lecture Notes in Computer Science, pages 239—-268.
Springer, 2024.

Adrien Champion, Rémi Delmas, Michael Dierkes, Pierre-Loic Garoche, Romain Jobredeaux,
and Pierre Roux. Formal methods for the analysis of critical control systems models: Combining
non-linear and linear analyses. In Charles Pecheur and Michael Dierkes, editors, Formal Methods
for Industrial Critical Systems - 18th International Workshop, FMICS 2013, Madrid, Spain,
September 23-24, 2013. Proceedings, volume 8187 of Lecture Notes in Computer Science, pages
1-16. Springer, 2013.

Adrien Champion, Rémi Delmas, Pierre-Loic Garoche, and Pierre Roux. Towards cooperation
of formal methods for the analysis of critical control systems. SAE International Journal of
Aerospace, 4(2):850-858, November 2011.

Cyril Cohen, Maxime Dénes, and Anders Mortberg. Refinements for free! In Georges Gonthier
and Michael Norrish, editors, Certified Programs and Proofs, volume 8307 of LNCS, pages
147-162. Springer, 2013.

Alexandru Costan, Stephane Gaubert, Eric Goubault, Matthieu Martel, and Sylvie Putot. A
policy iteration algorithm for computing fixed points in static analysis of programs. In CAV,
pages 462-475, 2005.

Sylvain Conchon, Amit Goel, Sava Krstic, Alain Mebsout, and Fatiha Zaidi. Cubicle: A Parallel
SMT-Based Model Checker for Parameterized Systems. In CAV, 2012.

Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among variables
of a program. In POPL, pages 84-96, 1978.

80

[CKK*12]

[Coq24]

[CSB16]

[CSC12]

[CST20]

[DEHS12]

[Dén13]

[DGCT15]

[DGG18]

[DLBC19]

[dMBO0S]

[AMOS03]

[dOM12]

[DS04]

[Fer04]

[Fer05]

BIBLIOGRAPHY

Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. Frama-C - a software analysis perspective. In SEFM, pages 233247, 2012.

The Coq development team. The Coq proof assistant reference manual, 2024. Version 8.19.

Felipe Cerqueira, Felix Stutz, and Bjorn B Brandenburg. PROSA: A case for readable mechanized
schedulability analysis. In 2016 28th Euromicro Conference on Real-Time Systems (ECRTS),
pages 273-284. IEEE, 2016.

Arlen Cox, Sriram Sankaranarayanan, and Bor-Yuh Evan Chang. A Bit Too Precise? Bounded
Verification of Quantized Digital Filters. In TACAS, 2012.

Cyril Cohen, Kazuhiko Sakaguchi, and Enrico Tassi. Hierarchy builder: Algebraic hierarchies
made easy in coq with elpi (system description). In Zena M. Ariola, editor, 5th International
Conference on Formal Structures for Computation and Deduction, FSCD 2020, June 29-July
6, 2020, Paris, France (Virtual Conference), volume 167 of LIPIcs, pages 34:1-34:21. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020.

Bruno Dutertre, Arvind Easwaran, Brendan Hall, and Wilfried Steiner. Model-based analysis
of timed-triggered ethernet. In 2012 IEEE/ATAA 31st Digital Avionics Systems Conference
(DASC), pages 9D2-1-9D2-11, Oct 2012.

Maxime Dénes. Towards primitive data types for Coq 63-bits integers and persistent arrays. In 5th
Coq Workshop, Rennes, France, July 2013. https://coq.inria.fr/files/coq5_submission_
2. pdfl

Cvetan Dunchev, Ferruccio Guidi, Claudio Sacerdoti Coen, and Enrico Tassi. ELPI: fast,
embeddable, Aprolog interpreter. In Martin Davis, Ansgar Fehnker, Annabelle Mclver, and
Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning - 20th
International Conference, LPAR-20 2015, Suva, Fiji, November 24-28, 2015, Proceedings, volume
9450 of Lecture Notes in Computer Science, pages 460—468. Springer, 2015.

Guillaume Davy, Christophe Garion, Pierre-Loic Garoche, Pierre Roux, and Xavier Thirioux.
Preserving functional correctness of cyber-physical system controllers: From model to code.
In Hiren D. Patel, Tom J. Kazmierski, and Sebastian Steinhorst, editors, 2018 Forum on
Specification € Design Languages, FDL 2018, Garching, Germany, September 10-12, 2018,
pages 5-16. IEEE, 2018.

Rémi Delmas, Thomas Loquen, Josep Boada-Bauxell, and Mathieu Carton. An evaluation of
monte-carlo tree search for property falsification on hybrid flight control laws. In Majid Zamani
and Damien Zufferey, editors, Numerical Software Verification - 12th International Workshop,
NSV@QCAV 2019, New York City, NY, USA, July 13-14, 2019, Proceedings, volume 11652 of
Lecture Notes in Computer Science, pages 45—59. Springer, 2019.

Leonardo Mendonga de Moura and Nikolaj Bjgrner. Z3: an efficient SMT solver. In TACAS,
2008.

Leonardo de Moura, Sam Owre, and N. Shankar. The SAL Language Manual. SRI International,
2003.

Diego Caminha B de Oliveira and David Monniaux. Experiments on the feasibility of using a
floating-point simplex in an SMT solver. In PAAR@ [JCAR, 2012.

Bruno Dutertre and Maria Sorea. Modeling and verification of a fault-tolerant real-time startup
protocol using calendar automata. In Yassine Lakhnech and Sergio Yovine, editors, Formal
Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, Joint International
Conferences on Formal Modelling and Analysis of Timed Systems, FORMATS 2004 and For-
mal Techniques in Real-Time and Fault-Tolerant Systems, FTRTFT 2004, Grenoble, France,
September 22-24, 2004, Proceedings, volume 3253 of Lecture Notes in Computer Science, pages
199-214. Springer, 2004.

Jérome Feret. Static analysis of digital filters. In ESOP, number 2986 in LNCS. Springer, 2004.

Jérome Feret. Numerical abstract domains for digital filters. In International workshop on
Numerical and Symbolic Abstract Domains (NSAD), 2005.

https://coq.inria.fr/files/coq5_submission_2.pdf
https://coq.inria.fr/files/coq5_submission_2.pdf

BIBLIOGRAPHY 81

[FG10]
[FNORO0S]
[FP13]
[GAC12]
[GGPOY]
[GGTZ07]
[GKC13]

[GLO02]

[GMTOS]
[GP11]
[GROG]
[GR11]
[GS07]
[GS10]
[GSAT12]

[GTO06]

[Har99)

[Har07]
[HCOg]

[HH12]
[Hig96]

[HJIL]

Paul Feautrier and Laure Gonnord. Accelerated invariant generation for ¢ programs with aspic
and c2fsm. Electr. Notes Theor. Comput. Sci., 267(2):3-13, 2010.

Germain Faure, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodriguez-Carbonell. SAT
modulo the theory of linear arithmetic: Exact, inexact and commercial solvers. In SAT, 2008.

Jean-Christophe Fillidtre and Andrei Paskevich. Why3 - Where Programs Meet Provers. In
ESOP, 2013.

Sicun Gao, Jeremy Avigad, and Edmund M. Clarke. §-complete decision procedures for satisfia-
bility over the reals. In IJCAR, 2012.

Khalil Ghorbal, Eric Goubault, and Sylvie Putot. The zonotope abstract domain taylorl+. In
CAV, pages 627-633, 2009.

Stephane Gaubert, Eric Goubault, Ankur Taly, and Sarah Zennou. Static analysis by policy
iteration on relational domains. In ESOP, pages 237-252, 2007.

Sicun Gao, Soonho Kong, and Edmund M. Clarke. dreal: An SMT solver for nonlinear theories
over the reals. In CADE, 2013.

Benjamin Grégoire and Xavier Leroy. A compiled implementation of strong reduction. In
7th ACM SIGPLAN International Conference on Functional programming, pages 235246,
Pittsburgh, PA, USA, October 2002.

Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A Small Scale Reflection Extension for
the Coq system. Research Report RR-6455, INRIA, 2008.

Eric Goubault and Sylvie Putot. Static analysis of finite precision computations. In VMCAI,
pages 232-247, 2011.

Denis Gopan and Thomas W. Reps. Lookahead widening. In CAV, pages 452-466, 2006.

Pierre-Loic Garoche and Pierre Roux. Dessine moi un domaine abstrait fini — une recette a base
de Camlp4 et de solveurs SMT. In 22e journées francophones des langages applicatifs (JFLA’11),
Studia Informatica Universalis. Hermann, 2011.

Thomas Gawlitza and Helmut Seidl. Precise fixpoint computation through strategy iteration.
In ESOP, pages 300-315, 2007.

Thomas Martin Gawlitza and Helmut Seidl. Computing relaxed abstract semantics w.r.t.
quadratic zones precisely. In SAS, pages 271-286, 2010.

Thomas Martin Gawlitza, Helmut Seidl, Assalé Adjé, Stéphane Gaubert, and Eric Goubault.
Abstract interpretation meets convex optimization. J. Symb. Comput., 47(12):1416-1446, 2012.

Benjamin Grégoire and Laurent Théry. A purely functional library for modular arithmetic and
its application to certifying large prime numbers. In Ulrich Furbach and Natarajan Shankar,
editors, 3rd International Joint Conference on Automated Reasoning, volume 4130 of Lecture
Notes in Computer Science, pages 423-437, Seattle, WA, USA, August 2006.

John Harrison. A machine-checked theory of floating point arithmetic. In Yves Bertot, Gilles
Dowek, André Hirschowitz, Christine Paulin-Mohring, and Laurent Théry, editors, 12th Interna-
tional Conference in Theorem Proving in Higher Order Logics, volume 1690 of Lecture Notes in
Computer Science, pages 113-130, Nice, France, 1999.

John Harrison. Verifying nonlinear real formulas via sums of squares. In TPHOLs, 2007.

Wassim M. Haddad and Vijay S. Chellaboina. Nonlinear Dynamical Systems and Control: A
Lyapunov-Based Approach. Princeton University Press, 2008.

Nicolas Halbwachs and Julien Henry. When the decreasing sequence fails. In SAS, pages 198-213,
2012.

Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1996.

Viktor Hérter, Christian Jansson, and Marko Lange. VSDP: verified semidefinite programming.
http://www.ti3.tuhh.de/jansson/vsdp/.

http://www.ti3.tuhh.de/jansson/vsdp/

82

[HMWC15]

[HPRO7]

[IEE0S]

[JCKO7]

[JdM12]

[JPTYO08]

[JR18]
[KBT14]

[KLYZ12]

[Las01]

[Las09]

[LBTO1]

[LLL82]

[L&£09)

[Lyad7]

[Mag14]

[MAGW15]

[Mah07]

[MBdD™*18]

[MBFM13]

[MC11]

BIBLIOGRAPHY

Duc Hoang, Yannick Moy, Angela Wallenburg, and Roderick Chapman. SPARK 2014 and
gnatprove - A competition report from builders of an industrial-strength verifying compiler.
STTT, 2015.

Nicolas Halbwachs, Yann-Erick Proy, and Patrick Roumanoff. Verification of real-time systems
using linear relation analysis. Formal Methods in System Design, 11(2):157-185, 1997.

IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic. IEEFE Standard
754-2008, 2008.

Christian Jansson, Denis Chaykin, and Christian Keil. Rigorous error bounds for the optimal
value in semidefinite programming. SIAM J. Numerical Analysis, 46(1):180-200, 2007.

Dejan Jovanovic and Leonardo Mendonga de Moura. Solving non-linear arithmetic. In IJCAR,
2012.

Bengt Jonsson, Simon Perathoner, Lothar Thiele, and Wang Yi. Cyclic dependencies in modular
performance analysis. In Luca de Alfaro and Jens Palsberg, editors, Proceedings of the 8th ACM
& IEEE International conference on Embedded software, EMSOFT 2008, Atlanta, GA, USA,
October 19-24, 2008, pages 179-188. ACM, 2008.

Claude-Pierre Jeannerod and Siegfried M. Rump. On relative errors of floating-point operations:
Optimal bounds and applications. Mathematics of Computations, 87(310):803-819, 2018.

Tim King, Clark W. Barrett, and Cesare Tinelli. Leveraging linear and mixed integer program-
ming for SMT. In FMCAD, 2014.

Erich Kaltofen, Bin Li, Zhengfeng Yang, and Lihong Zhi. Exact certification in global polynomial
optimization via sums-of-squares of rational functions with rational coefficients. J. Symb. Comput.,
2012.

Jean B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM
Journal on Optimization, 11(3):796-817, 2001.

Jean-Bernard Lasserre. Moments, Positive Polynomials, and Their Applications. 2009. Imperial
College Press, 2009.

Jean-Yves Le Boudec and Patrick Thiran. Network Calculus: A Theory of Deterministic Queuing
Systems for the Internet, volume 2050 of Lecture Notes in Computer Science. Springer, 2001.

A. K. Lenstra, H. W. Lenstra, and L. Lovasz. Factoring polynomials with rational coefficients.
Mathematische Annalen, 261(4):515-534, 1982.

J. Lofberg. Pre- and post-processing sum-of-squares programs in practice. IEEE Transactions
on Automatic Control, 54(5):1007-1011, 2009.

Aleksandr Mikhailovich Lyapunov. Probleme général de la stabilité du mouvement. Annals of
Mathematics Studies, 17, 1947.

Victor Magron. NLCertify: A Tool for Formal Nonlinear Optimization. In Mathematical Software
— ICMS 2014, volume 8592 of LNCS, pages 315-320. Springer, 2014.

Victor Magron, Xavier Allamigeon, Stéphane Gaubert, and Benjamin Werner. Formal proofs
for nonlinear optimization. Journal of Formalized Reasoning, 2015.

Assia Mahboubi. Implementing the cylindrical algebraic decomposition within the coq system.
Math. Struct. Comput. Sci., 17(1):99-127, 2007.

Jean-Michel Muller, Nicolas Brunie, Florent de Dinechin, Claude-Pierre Jeannerod, Mioara
Joldes, Vincent Lefevre, Guillaume Melquiond, Nathalie Revol, and Serge Torres. Handbook of
Floating-Point Arithmetic. Birkhduser, Basel, 2 edition, 2018.

Etienne Mabille, Marc Boyer, Loic Fejoz, and Stephan Merz. Towards certifying network calculus.
In Proc. of the 4th Conference on Interactive Theorem Proving (ITP 2013), Rennes, France,
July 2013.

David Monniaux and Pierre Corbineau. On the generation of positivstellensatz witnesses in
degenerate cases. In Interactive Theorem Proving - Second International Conference, ITP 2011,
Berg en Dal, The Netherlands, August 22-25, 2011. Proceedings, 2011.

BIBLIOGRAPHY 83

[MDM16]

[Min95)]

[Min01]

[Min04]

[MMR23)

[MN13]

[Mon05]

[Mon08]

[Mon09]

[Mo063]

[MPC]

[MR17]

[MRB+23]

[MT18]
[NM13]

[NPSS10]

[Par03]

[PGH*21]

[PGH23]

Erik Martin-Dorel and Guillaume Melquiond. Proving tight bounds on univariate expressions
with elementary functions in Coq. Journal of Automated Reasoning, 57(3):187-217, October
2016.

Paul Miner. Defining the IEEE-854 floating-point standard in PVS. Technical Report
19950023402, NASA, Langley Research Center, Hampton, VA, USA, 1995.

Antoine Miné. The octagon abstract domain. In AST 2001 in WCRE 2001, IEEE, pages
310-319. IEEE CS Press, October 2001.

Antoine Miné. Relational abstract domains for the detection of floating-point run-time errors.
In ESOP, volume 2986 of LNCS, pages 3-17. Springer, 2004. http://www.di.ens.fr/~mine/
publi/article-mine-esop04.pdf.

Erik Martin-Dorel, Guillaume Melquiond, and Pierre Roux. Enabling floating-point arithmetic
in the coq proof assistant. J. Autom. Reason., 67(4):33, 2023.

César Munoz and Anthony Narkawicz. Formalization of Bernstein polynomials and applications
to global optimization. J. Autom. Reasoning, 51(2):151-196, 2013.

David Monniaux. Compositional analysis of floating-point linear numerical filters. In CAV,
pages 199-212, 2005.

David Monniaux. The pitfalls of verifying floating-point computations. ACM Trans. Program.
Lang. Syst., 30(3), 2008.

David Monniaux. On using floating-point computations to help an exact linear arithmetic
decision procedure. In CAV, 2009.

Ramon E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ, USA, 1963.

RealTime-at-Work online Min-Plus interpreter for Network Calculus. https://www!
realtimeatwork.com/minplus-playground. Accessed: 2020-11-18.

Erik Martin-Dorel and Pierre Roux. A reflexive tactic for polynomial positivity using numerical
solvers and floating-point computations. In Yves Bertot and Viktor Vafeiadis, editors, Proceedings
of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2017, Paris,
France, January 16-17, 2017, pages 90-99. ACM, 2017.

Filip Markovic, Pierre Roux, Sergey Bozhko, Alessandro V. Papadopoulos, and Bjérn B. Bran-
denburg. CTA: A correlation-tolerant analysis of the deadline-failure probability of dependent
tasks. In IFEFE Real-Time Systems Symposium, RTSS 2023, Taipei, Taiwan, December 5-8,
2023, pages 317-330. IEEE, 2023.

Assia Mahboubi and Enrico Tassi. Mathematical Components. online, 2018.

Anthony Narkawicz and César Munioz. A formally verified generic branching algorithm for global
optimization. In International Conference on Verified Software: Theories, Tools, Experiments,
volume 8164 of LNCS, pages 326-343, 2013.

Pierluigi Nuzzo, Alberto Puggelli, Sanjit A. Seshia, and Alberto L. Sangiovanni-Vincentelli.
Calcs: SMT solving for non-linear convex constraints. In FMCAD, 2010.

Pablo A. Parrilo. Semidefinite programming relaxations for semialgebraic problems. Math.
Program., 96(2):293-320, 2003.

Baptiste Pollien, Christophe Garion, Gautier Hattenberger, Pierre Roux, and Xavier Thirioux.
Verifying the mathematical library of an UAV autopilot with frama-c. In Alberto Lluch-
Lafuente and Anastasia Mavridou, editors, Formal Methods for Industrial Critical Systems -
26th International Conference, FMICS 2021, Paris, France, August 24-26, 2021, Proceedings,
volume 12863 of Lecture Notes in Computer Science, pages 167-173. Springer, 2021.

Baptiste Pollien, Christophe Garion, Gautier Hattenberger, Pierre Roux, and Xavier Thirioux.
A verified UAV flight plan generator. In 11th IEEE/ACM International Conference on Formal
Methods in Software Engineering, FormaliSE 2023, Melbourne, Australia, May 14-15, 2023,
pages 130-140. IEEE, 2023.

http://www.di.ens.fr/~mine/publi/article-mine-esop04.pdf
http://www.di.ens.fr/~mine/publi/article-mine-esop04.pdf
https://www.realtimeatwork.com/minplus-playground
https://www.realtimeatwork.com/minplus-playground

84

[PQROY]

[RBR19)

[RDG10]

[RFMOS5]

[RG13a]

[RG13b]

[RG14]

[RG15]

[RIC18]

[RIG15]

[RIGF12]

[Roul3]

[Roul4]

[Roul6]

[RQB22]

[RRB21]

BIBLIOGRAPHY

André Platzer, Jan-David Quesel, and Philipp Riimmer. Real world verification. In CADE,
2009.

Lucien Rakotomalala, Marc Boyer, and Pierre Roux. Formal Verification of Real-time Networks.
In JRWRTC 2019, Junior Workshop RTNS 2019, Toulouse, France, November 2019.

Pierre Roux, Remi Delmas, and Pierre-Loic Garoche. SMT-AI: an abstract interpreter as
oracle for k-induction. In David Delmas and Xavier Rival, editors, Proceedings of the Tools
for Automatic Program AnalysiS, TAPASQSAS 2010, Perpignan, France, September 17, 2010,
volume 267 of Electronic Notes in Theoretical Computer Science, pages 55—68. Elsevier, 2010.

Mardavij Roozbehani, Eric Féron, and Alexandre Megretski. Modeling, optimization and
computation for software verification. In HSCC, pages 606—622, 2005.

Pierre Roux and Pierre-Loic Garoche. A polynomial template abstract domain based on bernstein
polynomials. In Sixth International Workshop on Numerical Software Verification (NSV’13),
2013.

Pierre Roux and Pierre-Loic Garoche. Integrating policy iterations in abstract interpreters. In
ATVA, 2013.

Pierre Roux and Pierre-Loic Garoche. Computing quadratic invariants with min- and max-
policy iterations: A practical comparison. In Cliff B. Jones, Pekka Pihlajasaari, and Jun Sun,
editors, FM 2014: Formal Methods - 19th International Symposium, Singapore, May 12-16,
2014. Proceedings, volume 8442 of Lecture Notes in Computer Science, pages 563—-578. Springer,
2014.

Pierre Roux and Pierre-Loic Garoche. Practical policy iterations - A practical use of policy
iterations for static analysis: the quadratic case. Formal Methods Syst. Des., 46(2):163-196,
2015.

Pierre Roux, Mohamed Iguernlala, and Sylvain Conchon. A non-linear arithmetic procedure
for control-command software verification. In Dirk Beyer and Marieke Huisman, editors, Tools
and Algorithms for the Construction and Analysis of Systems - 24th International Conference,
TACAS 2018, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part II, volume
10806 of Lecture Notes in Computer Science, pages 132—151. Springer, 2018.

Pierre Roux, Romain Jobredeaux, and Pierre-Loic Garoche. Closed loop analysis of control
command software. In Antoine Girard and Sriram Sankaranarayanan, editors, Proceedings of
the 18th International Conference on Hybrid Systems: Computation and Control, HSCC’15,
Seattle, WA, USA, April 14-16, 2015, pages 108-117. ACM, 2015.

Pierre Roux, Romain Jobredeaux, Pierre-Loic Garoche, and Eric Féron. A generic ellipsoid
abstract domain for linear time invariant systems. In HSCC, pages 105-114, 2012.

Pierre Roux. Static Analysis of Control Command Systems: Synthetizing Non Linear Invariants.
PhD thesis, Institut Supérieur de I’Aéronautique et de I’Espace, 2013.

Pierre Roux. Innocuous double rounding of basic arithmetic operations. J. Formaliz. Reason.,
7(1):131-142, 2014.

Pierre Roux. Formal proofs of rounding error bounds - with application to an automatic positive
definiteness check. J. Autom. Reason., 57(2):135-156, 2016.

Pierre Roux, Sophie Quinton, and Marc Boyer. A formal link between response time analysis
and network calculus. In Martina Maggio, editor, 34th Euromicro Conference on Real-Time
Systems, ECRTS 2022, July 5-8, 2022, Modena, Italy, volume 231 of LIPIcs, pages 5:1-5:22.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2022.

Lucien Rakotomalala, Pierre Roux, and Marc Boyer. Verifying min-plus computations with coq.
In Aaron Dutle, Mariano M. Moscato, Laura Titolo, César A. Muifioz, and Ivan Perez, editors,
NASA Formal Methods - 13th International Symposium, NFM 2021, Virtual Event, May 24-28,
2021, Proceedings, volume 12673 of Lecture Notes in Computer Science, pages 287-303. Springer,
2021.

BIBLIOGRAPHY 85

[RS10]

[Rum06]

[Rum10]

[RVS16]

[RVS18]

[Sak22]

[SB13]

[SCPYY]

[SD10]

[SD11a]

[SD11b]

[SD13]

[SDSO8]

[SH13]

[SJ11]

[SNS+17]

Pierre Roux and Radu Siminiceanu. Model checking with edge-valued decision diagrams. In
César A. Mufioz, editor, Second NASA Formal Methods Symposium - NFM 2010, Washington
D.C., USA, April 13-15, 2010. Proceedings, volume NASA /CP-2010-216215 of NASA Conference
Proceedings, pages 222-226, 2010.

Siegfried M. Rump. Verification of positive definiteness. BIT Numerical Mathematics, 46:433-452,
2006.

Siegfried M. Rump. Verification methods: Rigorous results using floating-point arithmetic. Acta
Numerica, 19:287-449, May 2010.

Pierre Roux, Yuen-Lam Voronin, and Sriram Sankaranarayanan. Validating numerical semidefi-
nite programming solvers for polynomial invariants. In Xavier Rival, editor, Static Analysis -
23rd International Symposium, SAS 2016, Edinburgh, UK, September 8-10, 2016, Proceedings,
volume 9837 of LNCS, pages 424-446. Springer, 2016.

Pierre Roux, Yuen-Lam Voronin, and Sriram Sankaranarayanan. Validating numerical semidefi-
nite programming solvers for polynomial invariants. Formal Methods Syst. Des., 53(2):286-312,
2018.

Kazuhiko Sakaguchi. Reflexive tactics for algebra, revisited. In June Andronick and Leonardo
de Moura, editors, 15th International Conference on Interactive Theorem Proving, ITP 2022,
August 7-10, 2022, Haifa, Israel, volume 237 of LIPIcs, pages 29:1-29:22. Schloss Dagstuhl -
Leibniz-Zentrum fir Informatik, 2022.

Yassamine Seladji and Olivier Bouissou. Numerical abstract domain using support functions. In
NFM, 2013.

Hanrijanto Sariowan, Rene L. Cruz, and George C. Polyzos. SCED: A generalized scheduling
policy for guaranteeing quality-of-service. IEEE/ACM transactions on networking, 7(5):669-684,
October 1999.

Wilfried Steiner and Bruno Dutertre. Smt-based formal verification of a TTFEthernet synchroniza-
tion function. In Stefan Kowalewski and Marco Roveri, editors, Formal Methods for Industrial
Critical Systems - 15th International Workshop, FMICS 2010, Antwerp, Belgium, September
20-21, 2010. Proceedings, volume 6371 of Lecture Notes in Computer Science, pages 148-163.
Springer, 2010.

Wilfried Steiner and Bruno Dutertre. Automated formal verification of the TTEthernet syn-
chronization quality. In Mihaela Gheorghiu Bobaru, Klaus Havelund, Gerard J. Holzmann, and
Rajeev Joshi, editors, NASA Formal Methods - Third International Symposium, NFM 2011,
Pasadena, CA, USA, April 18-20, 2011. Proceedings, volume 6617 of Lecture Notes in Computer
Science, pages 375-390. Springer, 2011.

Wilfried Steiner and Bruno Dutertre. Layered diagnosis and clock-rate correction for the
ttethernet clock synchronization protocol. In Leon Alkalai, Timothy Tsai, and Tomohiro Yoneda,
editors, 17th IEEE Pacific Rim International Symposium on Dependable Computing, PRDC
2011, Pasadena, CA, USA, December 12-14, 2011, pages 244-253. IEEE Computer Society,
2011.

Wilfried Steiner and Bruno Dutertre. The TTEthernet synchronisation protocols and their
formal verification. IJCCBS, 4(3):280-300, 2013.

Maria Sorea, Bruno Dutertre, and Wilfried Steiner. Modeling and verification of time-triggered
communication protocols. In 11th IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 2008), 5-7 May 2008, Orlando, Florida, USA, pages 422-428.
IEEE Computer Society, 2008.

Alexey Solovyev and Thomas C. Hales. Formal verification of nonlinear inequalities with Taylor
interval approximations. In NASA Formal Methods, volume 7871 of LNCS, pages 383-397, 2013.

Peter Schrammel and Bertrand Jeannet. Logico-numerical abstract acceleration and application
to the verification of data-flow programs. In SAS, pages 233-248, 2011.

Yasser Shoukry, Pierluigi Nuzzo, Alberto L. Sangiovanni-Vincentelli, Sanjit A. Seshia, George J.
Pappas, and Paulo Tabuada. SMC: satisfiability modulo convex optimization. In HSCC, 2017.

86

[SP]

[SRSP04]

[SZ06]

[TTTO3]

[Tuc02]

[VBOG]

[Wan06]

[WGR*16]

[WTO06]
[YFN*10]

BIBLIOGRAPHY

Stefan H. Schmieta and Gabor Pataki. Reporting solution quality for the DIMACS library
of mixed semidefinite-quadratic-linear programs. http://dimacs.rutgers.edu/Challenges/
Seventh/Instances/error_report.html. [Online; accessed March 23, 2016].

Wilfried Steiner, John M. Rushby, Maria Sorea, and Holger Pfeifer. Model checking a fault-
tolerant startup algorithm: From design exploration to exhaustive fault simulation. In 2004
International Conference on Dependable Systems and Networks (DSN 2004), 28 June - 1 July
2004, Florence, Italy, Proceedings, pages 189-198. IEEE Computer Society, 2004.

Jens Schmitt and Frank Zdarsky. The DISCO network calculator: a toolbox for worst case
analysis., 01 2006.

Reha H Titinci, Kim C Toh, and Michael J Todd. Solving semidefinite-quadratic-linear
programs using SDPT3. Mathematical programming, 2003.

Warwick Tucker. A rigorous ODE solver and Smale’s 14th problem. Foundations of Computa-
tional Mathematics, 2:53—-117, 2002.

Lieven Vandenberghe and Stephen Boyd. Semidefinite programming. SIAM Review, 38(1):49-95,
1996.

Ernesto Wandeler. Modular performance analysis and interface based design for embedded real
time systems. PhD thesis, ETH Zurich, 2006.

Timothy E. Wang, Pierre-Loic Garoche, Pierre Roux, Romain Jobredeaux, and Eric Feron.
Formal analysis of robustness at model and code level. In Alessandro Abate and Georgios Fainekos,
editors, Proceedings of the 19th International Conference on Hybrid Systems: Computation and
Control, HSCC 2016, Vienna, Austria, April 12-14, 2016, pages 125-134. ACM, 2016.

Ernesto Wandeler and Lothar Thiele. Real-Time Calculus (RTC) Toolbox, 2006.

Makoto Yamashita, Katsuki Fujisawa, Kazuhide Nakata, Maho Nakata, Mituhiro Fukuda,
Kazuhiro Kobayashi, and Kazushige Goto. A high-performance software package for semidefinite
programs: Sdpa 7. Technical Report B-460, Tokyo Institute of Technology, Tokyo, 2010.

http://dimacs.rutgers.edu/Challenges/Seventh/Instances/error_report.html
http://dimacs.rutgers.edu/Challenges/Seventh/Instances/error_report.html

	Introduction
	Convex Optimization and Policy Iterations
	Introduction
	Need for Quadratic Invariants
	Linear Domains
	Unrolling
	Quadratic Invariants

	Policy Iterations: State of the Art
	Template Domains
	System of Equations
	Policy Iterations

	Template Generation
	Introduction to Lyapunov Stability Theory
	Generating Templates

	Floating-Point Issues
	Experimental Results
	Conclusion

	Verified Sum Of Squares Optimizations
	Motivating Examples
	On paper
	Sum of Squares (SOS) Programming
	Semidefinite Programming (SDP)
	Parameterized Problems
	Approximate Solutions from SDP Solvers
	A Validation Method
	Making it Work in Practice

	Inside the Alt-Ergo SMT Solver
	Example: Control-Command Program Verification
	Emptiness of Semi-algebraic Sets
	Rounding to an Exact Rational Solution
	Implementation
	Experimental Results
	Related Work and Conclusion

	Inside the Coq Proof Assistant
	Related Work
	Verification of Effective Computation using Data Refinement
	An Automated Tactic for Verifying Positivity Witnesses
	Benchmarks
	Conclusion and Future Work

	Hardware Floats in Coq
	Introduction
	Specification: Coq and Flocq
	On Coq's side
	On Flocq's side

	Implementation
	Reduction engines
	Rounding directions
	Parsing and printing
	Soundness

	Applications
	Benchmarks
	Benchmark with ValidSDP 1.0.1 and Coq 8.15
	Benchmark with CoqInterval 4.5.2 and Coq 8.15

	Conclusion

	Verifying Network Calculus
	Real-Time Networks
	Formalizing Network Calculus in Coq
	Concrete Model
	Contracts

	Verifying min-plus Computations
	Notations
	(min, plus) Operators on Functions
	State of the Art
	Ultimately Pseudo Periodic Functions
	UPP and Piecewise Affine Functions
	Stability of UPP Functions by (min, plus) Operators
	Stability of UPP-PA Functions by (min, plus) Operators
	Finite Equality and Inequality Criteria on UPP-PA
	Implementation
	Conclusion

	Technical Activities
	Contributing to the Coq and MathComp Ecosystems
	Contributing to Coq
	Contributing to MathComp
	Contributing to MathComp Analysis
	Contributing to MathComp Algebra Tactics
	Maintenance

	Example of Application: TTEthernet on Ariane 6 Launcher

	Perspectives
	Static Analysis of Control-Command Software
	Improving Proof Assistant Usability
	Interval Arithmetic for Formal Proofs of Numerical Results
	Formal Verification of Real-Time Network and Systems

