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» publications: conferences (24), journals (6)

» teaching: lecture and tutorials (cours, TD, TP)
on programming (functional, imperative, OO), Rocq, process
algebras and abstract interpretation (~50 hours per year)
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Digital Flight Commands 2/2

Digital Flight Commands
» Improve comfort

» Enable different aircrafts to feel similar

(optimizing pilots training)

» Improve safety, by preventing dangerous attitude / efforts

e.g., aircraft cannot stall

» Improve fuel efficiency by enabling smaller stability margins

lift.

N

=

(negative) lift

weight
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Digital Flight Commands
» Improve comfort
» Enable different aircrafts to feel similar
(optimizing pilots training)
» Improve safety, by preventing dangerous attitude / efforts
e.g., aircraft cannot stall
» Improve fuel efficiency by enabling smaller stability margins

lifta

=

weight

(negative) lift

= Those are critical systems

= We want some guarantees on their correctness
4/43
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Control Command Systems

plant (physical system to control)

actuators Sensors

controller
double x[3] = {0, 0, 0};
double nx[3];
double inj; _|_

while (1) {
in = acquire_input(); // uc
nx[0] = 0.9379%x[0]-0.0381%x[1]-0.0414%x[2]+0.0237*in;
yc nx[1] = -0.0404*x[0]+0.968%x[1]-0.0179%x[2]+0.0143%in; Uec —

nx[2] 0.0142%x[0]1-0.0197*x[1]+0.9823%x[2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc

wait_next_clock_tick(); // a tick every 10 ms
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Control Command Systems

plant (physical system to control)

actuators sensors
controller
double x[3] = {0, 0, 0};
double nx[3];
double in;
while (1) { +

in = acquire_input(); // uc
nx[0] = 0.9379%x[0]-0.0381%x[1]-0.0414%x[2]+0.0237*in;
)/C nx[1] = -0.0404*x[0]+0.968%x[1]-0.0179%x[2]+0.0143%in; Uec —

nx[2] 0.0142%x[0]1-0.0197*x[1]+0.9823%x[2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc

wait_next_clock_tick(); // a tick every 10 ms

> we want to prove all reachable states are safe
e.g., no combination low velocity / high angle of attack (stall)

= main tool: loop invariant
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Verifying Polynomial Invariants

Verifying Real-Time Embedded Networks

Technical Expertise

Perspectives
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Static Analysis

Static analyzers can infer loop invariants.

Mostly linear invariants:

> intervals
polyhedra
octogons

>
>
» zonotopes
>
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Static Analysis

Static analyzers can infer loop invariants. ...

01

Mostly linear invariants: .o

» intervals

polyhedra u e ' ” e

zonotopes

>
> octogons 2 o
>
>

Quadratic / polynomial invariants °
are better suited for controllers: .

» ellipsoids
-0.5

» polynomial sublevel curves

-1
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Polynomial Invariants

In some paper, authors offer for

(x1, x2)€10.9,1.1] x [0,0.2]
while (1) {
pre_x1 = x1; pre_x2 = x2;
if (x172 + x272 <= 1) {
x1 = pre_x172 + pre_x273;
x2 = pre_x173 + pre_x272;
} else {
x1 = 0.5 *x pre_x1"3 + 0.4 * pre_x272;
x2 = -0.6 * pre_x172 + 0.3 * pre_x272; } }

the inductive invariant

2.510902467 + 0.0050x; + 0.0148x, — 3.0098x{ + 0.8037x; + 3.0297x; —
2.5924x3 — 1.5266x1x2 + 1.9133x7x2 + 1.8122x1x5 — 1.6042x; — 0.0512x7x2 +
4.4430x7x; 4 1.8926x1x; — 0.5464%; + 0.2084x; — 0.5866x; x» — 2.2410x7 x5 —
1.5714x7x3 + 0.0890x1x; + 0.9656x5 — 0.0098x¢ + 0.0320x7x2 + 0.0232x7 x5 —
0.2660x; x5 — 0.7746x7x5 — 0.9200x1x5 — 0.6411x% > 0.
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Should We Trust Such Results ?

» Some are correct (we'll prove it formally).
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» Some are correct (we'll prove it formally).

» Others (previous degree 6 polynomial)
\ \ \
1 - |
0l p<0 |
1l b
| | | |
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Should We Trust Such Results ?

» Some are correct (we'll prove it formally).
» Others aren't (previous degree 6 polynomial)
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Sum of Squares (SOS) Polynomials

Invariant checking can be reduced to
proving some polynomial p non negative.

Definition (SOS Polynomial)
A polynomial p is SOS if there are polynomials g1, ..., qm s.t.

p=> dq
i

» If p SOS then p >0
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Sum of Squares (SOS) Polynomials

Invariant checking can be reduced to
proving some polynomial p non negative.

Definition (SOS Polynomial)

A polynomial p is SOS if there are polynomials g1, ..., qm s.t.

p=> dq
i

» If p SOS then p >0
» p SOS iff there exist z := [l,xo,xl,xoxl, e ,x,‘,j]
and symmetric Q = 0 (i.e., for all x, xTQx > 0) s.t.
p=z"Qz.

= we have solvers, called SDP (Semi-Definite Programming)
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SOS: Example

Example

Is p(x,y) = 2x* + 2x3y — x%y? + 5y* SOS ?
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Example
Is p(x,y) = 2x* + 2x3y — x%y? + 5y* SOS ?
T
x? gi1 q12 qi3 x?
p(,y) = V| |a2 g2 s |y
Xy g3 23 q33| [Xy
that is

p(x,y) = quix* 4+ 2q13x3y + 2q23xy> + (2g12 + q33)xy? + Gaoy*
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T
x? di1 qi2 dqi3 x?
P(Xd/) = }/2 qi2 422 Q23 y2

Xy Q13 g23 Qq33| |xy
that is
p(x,y) = qux* + 2q13x°y + 2qo3xy> + (2q12 + g33)x°y° + qooy?
hence q11 =2, 213 =2, 2q23 =0, 2g12 + g33 = —1, g2 = 5.

SDP gives 2 _3

Q=|-3

1
1 [2 -3 1

5 0|l =L"L L=—
1 0 5 \@l013]

hence p(x,y) = % (2x2 — 3y + xy)2 + % (y2 4 3xy)2_
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SDP Solvers Yield Approximate Solutions

» Linear programming

simplex: exact solution interior-point: approximate solution
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SDP Solvers Yield Approximate Solutions

» Linear programming

simplex: exact solution interior-point: approximate solution

> Semidefinite programming

simplex equivale interior-point: approximate solution
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Intuitively

{M| M =0}

equality constraints
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Intuitively

{M| M =0}

p SOS equality constraints
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SOS: Using Approximate SDP Solvers

Result @ from SDP solver will only satisfy equality constraints
up to some error §

p=2"Qz+2"Ez, Vij, |Ei | < 0.
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p=2"Qz+2"Ez, Vij, |Ei | < 0.

If Q+E = 0then p=2z"(Q+ E)zis SOS.
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SOS: Using Approximate SDP Solvers

Result @ from SDP solver will only satisfy equality constraints
up to some error §

p=2"Qz+2"Ez, Vij, |Ei | < 0.

If Q+E = 0then p=2z"(Q+ E)zis SOS.

» Hence the validation method: given p ~ zTQz

1. Bound difference § between coefficients of p and z'Qz.
2. If Q=561 > 0 (with s := size of Q), then p is proved SOS.

» 1 can be done with interval arithmetic
and 2 with a Cholesky decomposition (9(s*) flops).

= Efficient validation method using just floats.
[SAS 2016, FMSD 2018]

Often won't work, needs some padding.
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Intuitively

{M|M =0}

equality constraints
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Intuitively

{M| M >0}

cannot conclude equality constraints
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Padding

(M| M — s5l = 0}

equality constraints
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Making it Work

» Instead of asking for p = zTQ z,@>0
ask for p = zTQz, Q—5s0l>0

» But isn't § computed from the result Q? (distance p to z' Q 2)

18/43
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Making it Work

» Instead of asking for p = zTQ z,@>0
ask for p = zTQz, Q—5s0l>0

» But isn't § computed from the result Q? (distance p to z' Q 2)
» This distance is a stopping criterion of the interior-point algo.

= overapproximation of §

Implemented in our OCaml library OSDP:
> simple interface to SOS programming,
» interfaces multiple SDP solvers (Csdp, Mosek, SDPA)
» under LGPL license

> available at https://github.com/Embedded-SW-VnV/osdp
or opam install osdp

18/43
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Using a Proof-Assistant

» We would like to prove our OCaml implementation

= Use a proof-assistant
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» We would like to prove our OCaml implementation
= Use a proof-assistant

» Rocq (formerly Coq) features computation capabilities
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Using a Proof-Assistant

We would like to prove our OCaml implementation
Use a proof-assistant

Rocq (formerly Coq) features computation capabilities

Rocq library ValidSDP (with Erik Martin-Dorel, UPS):
automatic tactic for polynomial inequalities
under LGPL license

available at https://github.com/validsdp/validsdp
or opam install coqg-validsdp

maintained since 2016, compatible with latest Rocq 9.1

built on top of: OSDP, bignums, Flocq, Coqlnterval,
MathComp, multinomials, Analysis, CogEAL

[CPP 2017]
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ValidSDP, Example

From Ltac2 Require Import Ltac2.

From Stdlib Require Import Reals.
From ValidSDP Require Import validsdp.
Local Open Scope R_scope.

Let p x0 x1 x2 : R := (* A largish polynomial. *)
2238448784199197/4503599627370496
-7081956584605647/72057594037927936 * x0
-5081574377800643/576460752303423488 * x2
6018099001714223/18014398509481984 * x072
-30139342649847/1125899906842624 * x0 * x1
-541778131690975/9007199254740992 * x0~3
(k ... +78 lines x*)

+ + + + + +

Lemma p_pos : forall x0 x1 x2 : R, p x0 x1 x2 >= 0.
Proof. intros x0 x1 x2; validsdp. (x* 0.46 s *) Qed.
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Proof by Reflection
Example
Inductive even : nat > Prop =

| EvenO : even O
| EvenS : forall n, even n > even (S (S n)).

Lemma even42 : even 42. Proof.

apply EvenS. apply EvenS. apply EvenS. (* ... x 21 %)
apply EvenO. Qed.
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Proof by Reflection

Example

Inductive even : nat > Prop =
| EvenO : even O
| EvenS : forall n, even n > even (S (S n)).

Lemma even42 : even 42. Proof.
apply EvenS. apply EvenS. apply EvenS. (* ... x 21 %)
apply EvenO. Qed.

Fixpoint is_even n := match n with
| O = true | 1 = false | S (S n’) = is_even n’ end.

Lemma is_even_correct n : is_even n = true -> even n.

Lemma even42_refl : even 42. Proof.
apply is_even_correct. (* is_even 42 = true *)

compute. (* true = true *) exact eq_refl. Qed.
21/43



Proof by Reflection, with Witness

Example

Definition is_even_wit n w := Nat.egb n (2 * w).

Lemma is_even_wit_correct w n :
is_even_wit n w = true > even n.

Lemma even42_refl wit : even 42.

Proof. apply (is_even_wit_correct 21).

(x is_even_wit 42 21 = true *)

compute. (* true = true *) exact eq refl. Qed.
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Proof by Reflection, with Witness

Example

Definition is_even_wit n w := Nat.egb n (2 * w).

Lemma is_even_wit_correct w n :
is_even_wit n w = true > even n.

Lemma even42 refl wit : even 42.

Proof. apply (is_even_wit_correct 21).

(x is_even_wit 42 21 = true *)

compute. (* true = true *) exact eq refl. Qed.

» for us, the witness is the SDP-computed matrix Q

» we use SDP solvers as untrusted oracles
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Proof vs Computation

= We need heavy computations (polynomials, matrices, floats)

» That we need to prove correct
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Proof vs Computation

= We need heavy computations (polynomials, matrices, floats)
» That we need to prove correct

» Multiple formalization of a same concept with trade-offs
between, e.g., ease of proof and efficient computation

> Example
natural numbers ‘ proof ‘ computation
peano (nat in Rocq) + —
binary (N in Rocq) — +
hardware (bigN in Rocq) | —— ++

= Need a way to “switch” between formalizations
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Parametricity

» Workflow

parametric program p(T, +, )
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nice proof

correct (p(Tp, +p, *p))
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Parametricity

> Workflow
parametric program p(T, +, %)
P(Tp. +p. *p) p(Tc, +c. *c)
nice proof no very painful proof
correct (p(Tp, +p. #¢)) correct (p(Tc, +c, *c))

refinement proof

» CoqEAL largely automates refinement proofs
based on paramcoq (now ported to Elpi derive.param2)

Instrumental in the making of ValidSDP [CPP 2017]
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Hardware Floats in Rocq

» Our verification requires floating-point computations
(Cholesky decomposition)

» Can be emulated with integers, but slow
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Hardware Floats in Rocq

» Our verification requires floating-point computations
(Cholesky decomposition)

» Can be emulated with integers, but slow

» add direct access to processor floats in Rocq

» Cogqlnterval benchmarks (with Guillaume Melquiond, INRIA):

hardware (s) %1020

101
10°
10!
1072

107} 310=210-1 100 10! 102 103
107°107<107" 10° 10~ 10° 10

XX X

emulated (s)
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Hardware Floats in Rocq

VVvyYVYyy

A\

two order of magnitudes speedup on individual operators
benched on Cholesky decomposition and Coqlnterval
floats spec. retrieved from Flocq library (bit precise)

implem in each reduction engine
(compute, vm_compute, native_compute)

requires care to not break soundness (signed Os,
NaN payloads, OCaml unboxed float arrays,. .. )

Started by Guillaume Bertholon during L3 internship,
summer 2018 (coadvised with Erik Martin-Dorel, UPS)

integrated in Coq 8.11 (released in Jan. 2020)
[ITP 2019, JAR 2023]
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Contributing to Rocq

» Started in 2019 with hardware floats i

» Core team member since 2023
» RM for 8.20 (June 2024, with Guillaume Melquiond, INRIA)
» 245 pull requests (PRs) authored / 200 PRs reviewed

Libraries
MathComp
Stdlib / Corelib

|

Parser
number constants
notation system

Elaborator
coercions

Kernel
HW floats

i

Computation
vm_compute, native_compute
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Wrap up

>
>

| 2

v

Polynomial invariants for controllers
Nice inference techniques, but unsound

Rigorous and cheap verification method
OSDP (OCaml) [SAS 2016, FMSD 2018]

Verified in Rocq (with Erik Martin-Dorel, UPS)
ValidSDP [CPP 2017]

Extensive use of parametricity techniques
Hardware floats in Rocq [ITP 2019, JAR 2023]
Core dev of Rocq
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Polynomial invariants for controllers
Nice inference techniques, but unsound

Rigorous and cheap verification method
OSDP (OCaml) [SAS 2016, FMSD 2018]

Verified in Rocq (with Erik Martin-Dorel, UPS)
ValidSDP [CPP 2017]

Extensive use of parametricity techniques
Hardware floats in Rocq [ITP 2019, JAR 2023]
Core dev of Rocq

Not seen today

| 2
| 2
>

Double rounding, proofs in Rocq/Flocq [JFR 2014]
Bounding floating-point rounding errors [JAR 2016]
Integration into Alt-Ergo SMT solver (with Mohamed

Iguernlala and Sylvain Conchon, INRIA) [TACAS 2018]
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Verifying Real-Time Embedded Networks
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Embedded Networks

Many systems to connect in an aircraft = network
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Embedded Networks

Many systems to connect in an aircraft = network

(s 1 [Aal, [o ][ a]
[0 ] [e ] |

- - === Delayof C- — — — — — ->

» Real-time constraints in avionics
= Need bounds on network traversal times
» Also need to ensure absence of buffer overflows

30/43



Main Solutions for Real-Time Networks

» Time triggered
» Statically schedule all messages
» Requires a global clock
» Hard to establish and maintain
> Applications in space industry (spacecrafts, launchers)
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Main Solutions for Real-Time Networks

» Time triggered
» Statically schedule all messages
» Requires a global clock
» Hard to establish and maintain
> Applications in space industry (spacecrafts, launchers)

» Rate constrained

» Limit emission rates of each node

» And use a mathematical method to statically prove
that everything arrives on time, without buffer overflow

» No requirement for global clock

» Used in all modern commercial aircraft
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Delay computation challenge

ES1-SW1

ES2-5SW1

SW1-sw2

SW2-ES3

SW2-ES4

A-1

A-2

rime+

Al Jc1] B A2 B2 [cC2 time_s.

=] [ ey
<--C1--> RCEERRE C-2----->
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Delay computation challenge

ES1-SW1 A-1 B-1 A-2 B-2

rime+

ES2-SW1 [c1] [c=] time_s,

SW1-SW2 Al | C1 B-1 A-2 B-2 Cc2 time_y.

SW2-ES4 [c1] [2] time_s.
<--C1--> RCEERRE C-2----->

Computing the exact worst case
P an interleaving problem, with
P time, partially known arrival dates, complex scheduling, etc.
» NP-hard

= computation of upper bound
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Network Calculus

A— S —— D

data
>

d(A.D) D
S

time
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Network Calculus

A— S ———D

data
>

d(A,D) D

time

» Mathematical framework, based on

» basic real analysis
> tropical algebra (min-plus dioid of functions)

» Computations on piecewise-linear pseudo-periodic functions
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Network Calculus, Computations

// input curves
alphal := stair(0, 12, 1)
alpha2 := stair(0, 5, 2)

data

—alphal—alpha2

N
N
N
N
—
N
N
N )
5 12 24 time

On https://www.realtimeatwork.com/minplus-playground
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Network Calculus, Computations

v
-
T
o
—alphal—alpha2
. —beta
// input curves )
alphal := stair(0, 12, 1)
alpha2 := stair(0, 5, 2)
beta := ratency(2, 20)
>7
>7
>7
>7
20 time

On https://www.realtimeatwork.com/minplus-playground
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Network Calculus, Computations

// input curves

stair (0, 12, 1)
stair(0, 5, 2)
beta := ratency(2, 20)

alphal :=
alpha2 :=

// computation
alpha := alphal + alpha2

data

—alphal—alpha2
—beta —alpha

time

On https://www.realtimeatwork.com/minplus-playground
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Network Calculus, Computations

// input curves

alphal := stair(0, 12, 1)
alpha2 := stair(0, 5, 2)
beta := ratency(2, 20)

// computation

alpha := alphal + alpha2
d := hdev(alpha, beta)

» d = 43/2

data

—alphal—alpha2
—beta —alpha
>7
),
>7
>7
—r—
)i
>7
>7
>7
ﬁL)
time

On https://www.realtimeatwork.com/minplus-playground
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Encoding Functions
Network Calculus tools use functions that are:
P piecewise affine: list of segments

P ultimately pseudo-periodic: a prefix and a repetitive pattern

) S—
) S—
A —
D S—
c
>  S—
7<‘ d ’ time
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Encoding Functions
Network Calculus tools use functions that are:
P piecewise affine: list of segments
P ultimately pseudo-periodic: a prefix and a repetitive pattern

3\
7

Repetitive pattern

g )
77750000, 2000000
1000000000 4000077
100000000002500077
10000005000000777
100000000052000077
22y 25722275
Y o
2 00050000075007) .
) refix
S 000000000070007)
Y
Y
Y Ay
Y
1 00000005022000522777
100000000000700007777

‘f‘ d ’ time
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Formal Proofs

Question: Are the theorems corrects?

» Maths are quite basic but can be tricky (discontinuities, ...)

= Rocq formalization of the theory and representative theorems
https://gitlab.mpi-sws.org/proux/nc-coq
using: MathComp, MathComp Analysis, Hierarchy Builder
[Junior Workshop 2019]
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= Rocq formalization of the theory and representative theorems
https://gitlab.mpi-sws.org/proux/nc-coq
using: MathComp, MathComp Analysis, Hierarchy Builder
[Junior Workshop 2019]

Question: Are the computations correct?

» Computation algorithms with many subcases

= Rocq verified implementation https://gitlab.mpi-sws.
org/proux/nc-coq/-/tree/master/minerve also

using: bignums, CoqEAL (again) [NFM 2021]
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Formal Proofs

Question: Are the theorems corrects?

» Maths are quite basic but can be tricky (discontinuities, ...)

= Rocq formalization of the theory and representative theorems
https://gitlab.mpi-sws.org/proux/nc-coq
using: MathComp, MathComp Analysis, Hierarchy Builder
[Junior Workshop 2019]

Question: Are the computations correct?

» Computation algorithms with many subcases

= Rocq verified implementation https://gitlab.mpi-sws.
org/proux/nc-coq/-/tree/master/minerve also
using: bignums, CoqEAL (again) [NFM 2021]
> Tested on representative use cases. [ERTS 2022]

Lucien Rakotomalala's PhD (co-advised with Marc Boyer, ONERA)
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Contributing to MathComp

» main library for mathematical developments in Rocq
(inspired Mathlib in Lean)

> offers extensible algebraic structures
(used for tropical algebra in our network calculus work)

» contributed to Hierarchy-Builder port
» RM for 2.0 (2023, with Reynald Affeldt, AIST, Japan)
» 200 PRs authored / 100 PRs reviewed
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Contributing to MathComp

>

>

vvyyy

main library for mathematical developments in Rocq
(inspired Mathlib in Lean)

offers extensible algebraic structures
(used for tropical algebra in our network calculus work)

contributed to Hierarchy-Builder port
RM for 2.0 (2023, with Reynald Affeldt, AIST, Japan)

200 PRs authored / 100 PRs reviewed
also contribute to Analysis

> extended reals R = R U { 00 }, used for network calculus

> non negative numbers — basic interval arithmetic [ITP 2025]
> a bit of probability [RTSS 2023]
» 100 PRs authored / 100 PRs reviewed

other contributions/maintenance: mathcomp-algebra-tactics,
CoqEAL, paramcoq, bignums, cog-nix-toolbox
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Wrap up
» Network Calculus: a framework to verify real-time networks
» Rocq proofs of main mathematical theorems
» Rocq automatic verification of computations [NFM 2021]

> Tested on representative use cases [ERTS 2022]
» Developer of MathComp
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Wrap up

» Network Calculus: a framework to verify real-time networks

» Rocq proofs of main mathematical theorems

» Rocq automatic verification of computations [NFM 2021]
> Tested on representative use cases [ERTS 2022]
>

Developer of MathComp

Not seen today
» Rocq proof of a novel Network Calculus result [ECRTS 2021]

» Link between Response Time Analysis (RTA)
and Network Calculus (NC) [ECRTS 2022]

» 6 months visit at MPI-SWS (group of Bjorn Brandenburg)
working on the Prosa library and Rocq proofs on probability
[RTSS 2023]

» Study of the P4 language to specify switches [ERTS 2024]
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Technical Expertise, Example

» Ariane 6 launcher
uses TTEthernet technology
for its embedded network

» Synchronized global clock

By
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Technical Expertise, Example

» Ariane 6 launcher
uses TTEthernet technology
for its embedded network

» Synchronized global clock

> In 2017, bibliography review
of model checking literature
for CNES launcher division

» Discovered some missing cases
with larger drift bounds
in some failure scenarios

'\
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Technical Expertise, Example

@ AIRBUS

» Help Airbus to design and configure
a real-time embedded network

> Verify real-time constraints are met

» Work started by Marc Boyer
a few years ago

» Joined in 2024
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Perspectives

» Towards proving functional properties of actual flight software
requires close collaboration with control theorists / engineers
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Perspectives

>

>

Towards proving functional properties of actual flight software
requires close collaboration with control theorists / engineers

Improving Rocq elaborator

e.g., to write n * x rather than n%:R * x

Verified interval arithmetic

verify literature results on linear algebra

bridging gap between computer algebra systems (CAS)
and numerical frameworks (Octave, Matlab, Scilab)
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Perspectives

» Towards proving functional properties of actual flight software
requires close collaboration with control theorists / engineers

» Improving Rocq elaborator
e.g., to write n * x rather than n%:R * x

» Verified interval arithmetic
verify literature results on linear algebra
bridging gap between computer algebra systems (CAS)
and numerical frameworks (Octave, Matlab, Scilab)

» Verifying real-time network and systems
bridging gaps between models,
mathematical theorems and computations

43 /43
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Design Process
g lphysics, applied maths

model

Image:\ONERA

control theory

controller
x = Ax + Bu
y = Cx

computer science

program
double x[3] = {0, 0, 0}; double nx[3]; double in;
while (1) {
in = acquire_input();
nx[0] = 0.9379*x[0]-0.0381%x[1]-0.0414*x[2]+0.0237*in;
coo I
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Cholesky Decomposition

» To prove that a € R is non negative,
we can exhibit r such that a = r? (typically r = v/a).
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» To prove that a € R is non negative,
we can exhibit r such that a = r? (typically r = /a).
» To prove that a matrix A € R"*" is positive semi-definite
we can similarly expose R such that A= R™R
(since x (RTR) x = (Rx)T (Rx) = | Rx|[3 > 0).
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Cholesky Decomposition
» To prove that a € R is non negative,
we can exhibit r such that a = r? (typically r = /a).
» To prove that a matrix A € R"*" is positive semi-definite
we can similarly expose R such that A= R™R
(since x (RTR) x = (Rx)T (Rx) = | Rx|[3 > 0).
» The Cholesky decomposition computes such a matrix R:
R:=0;
for j from 1 to n do
for i from1to,j—1do

i—1
R,"j = (A,"j — Z Rk,iRk,j> /R,",';
k=1

od

od

> If it succeeds (no ,/ of negative or div. by 0) then A = 0.
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Cholesky Decomposition (end)

With rounding errors A # RT R, Cholesky can succeed while A % 0.
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Cholesky Decomposition (end)
With rounding errors A # RT R, Cholesky can succeed while A % 0.

But error is bounded and for some (tiny) ¢ € R:
if Cholesky succeeds on A then A+ c/ > 0.

Hence:

Theorem

If floating-point Cholesky succeeds on A — ¢/ then A > 0

(s+1)e B
mtr(A) +4s (2(5 +1)+ ml_ax(A,’,)> n

(e and 7 relative and absolute precision of floating-point format).

holds for any ¢ >

Proved in Rocq (paper proof: 6 pages, Rocq: 5.1 kloc)
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Incompleteness: Empty Interior SDP Problems
If the interior of the feasibility set of the problem is empty
(i.e., no feasible @ s.t. every Q@' in a small neighborhood is feasible)
pure numerical methods won't work.

{X[|Xx =0}

equality constraints
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Intuitively, Rounding to an Exact Solution

{X[X =0}

equality constraints
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Intuitively, Rounding to an Exact Solution

(X | X =0}

L Q
S
/

equality constraints
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Intuitively, Rounding to an Exact Solution

(X | X =0}

Q
S
/

equality constraints
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Network Calculus, Arrival Model

> Arrival A:

» the cumulative amount of data received up to time t,
P at some observation point in the network.

data

0 t1 to t3 time
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Network Calculus, Arrival Model

» Arrival A: some real behavior

» the cumulative amount of data received up to time t,
P at some observation point in the network.

» Arrival curve a:: upper bound on all behaviors

Vt,d € RT A(t +d) — A(t) < a(d)

data

N

a(d)

t t+d time

7/10



Network Calculus Arrival Curve

In the case of periodic messages with fixed size.

g —
—
yY—na
B
: —
period
) — —

time
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Network Calculus Service Model

» Service curve (: a lower bound on the output
» Example: Rate-latency service

» Server treats at least R bits per second,
> after at most a latency T.

data
=

T time
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Convolution

Defined as: Vt, (f xg)(t) = inf f(t—s)+ g(s).

0<s<t
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Convolution

Defined as: Vt, (f * g)(t)

inf f(t—s)+g(s).

0<s<t

7y
Ay
7 /v //////
A A
A VA
’ 17 00,070
’ V2 ///////
st g2
7 17 400,777
’ 7 00,007
’ AV At
s
7 2 fprt” 7
A e
’ Z 0,
’ 77 v 7 s
Y e
7Y 4
7
A
A
7
s
s
s
s
’
’
’
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Convolution

Defined as: Vt, (f * g)(t)

inf f(t—s)+g(s).

0<s<t
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