
Numerical Computations and Proofs
from Proof-Assistants to Aerospace Applications

Pierre Roux
ONERA, Toulouse

December 1st 2025

Defense for the HDR title issued by Toulouse INP, jury:
▶ Andrew Appel, Emeritus prof. Princeton, visiting Cornell (reviewer)
▶ Assia Mahboubi, DR INRIA Nantes (reviewer)
▶ David Monniaux, DR CNRS Grenoble (reviewer)
▶ Yves Bertot, DR INRIA Nice (examiner)
▶ Sylvie Boldo, DR INRIA Saclay (examiner)
▶ Emmanuel Grolleau, Prof. ENSMA (examiner)
▶ Didier Henrion, DR CNRS Toulouse (examiner)
▶ Philippe Queinnec, Prof. Toulouse INP (examiner) 1 / 43

Overview

PhD

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

1. polynomial invariants

2. real-time networks PhD Lucien Rakotomalala

PhD Baptiste Pollien
▶ publications: conferences (24), journals (6)
▶ teaching: lecture and tutorials (cours, TD, TP)

on programming (functional, imperative, OO), Rocq, process
algebras and abstract interpretation (≃50 hours per year)

▶ projects: SEFA IKKY (DGAC, 2016-18), IREHDO2 (DGAC,
2016-18), TTE (CNES, 2016-17), Valencia (DGA, 2017-20,
coordinator), RT-proofs (ANR-DFG, 2018-22, coordinator),
Concorde (AID, 2020-23), Accord (DGAC, 2022-24)

2 / 43

Overview

PhD

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

1. polynomial invariants

2. real-time networks

PhD Lucien Rakotomalala

PhD Baptiste Pollien
▶ publications: conferences (24), journals (6)
▶ teaching: lecture and tutorials (cours, TD, TP)

on programming (functional, imperative, OO), Rocq, process
algebras and abstract interpretation (≃50 hours per year)

▶ projects: SEFA IKKY (DGAC, 2016-18), IREHDO2 (DGAC,
2016-18), TTE (CNES, 2016-17), Valencia (DGA, 2017-20,
coordinator), RT-proofs (ANR-DFG, 2018-22, coordinator),
Concorde (AID, 2020-23), Accord (DGAC, 2022-24)

2 / 43

Overview

PhD

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

1. polynomial invariants

2. real-time networks PhD Lucien Rakotomalala

PhD Baptiste Pollien
▶ publications: conferences (24), journals (6)
▶ teaching: lecture and tutorials (cours, TD, TP)

on programming (functional, imperative, OO), Rocq, process
algebras and abstract interpretation (≃50 hours per year)

▶ projects: SEFA IKKY (DGAC, 2016-18), IREHDO2 (DGAC,
2016-18), TTE (CNES, 2016-17), Valencia (DGA, 2017-20,
coordinator), RT-proofs (ANR-DFG, 2018-22, coordinator),
Concorde (AID, 2020-23), Accord (DGAC, 2022-24)

2 / 43

Digital Flight Commands 1/2

Im
ag

e:
Pi

ot
r

Ja
w

or
sk

i(
G

FD
L)

Cables

Im
ag

e:
pu

bl
ic

do
m

ai
n

Hydraulic Actuators

Im
ag

e:
W

oo
dw

ar
d

Computers

Im
ag

e:
A

irb
us

3 / 43

Digital Flight Commands 1/2

Im
ag

e:
Pi

ot
r

Ja
w

or
sk

i(
G

FD
L)

Cables

Im
ag

e:
pu

bl
ic

do
m

ai
n

Hydraulic Actuators

Im
ag

e:
W

oo
dw

ar
d

Computers

Im
ag

e:
A

irb
us

3 / 43

Digital Flight Commands 1/2

Im
ag

e:
Pi

ot
r

Ja
w

or
sk

i(
G

FD
L)

Cables

Im
ag

e:
pu

bl
ic

do
m

ai
n

Hydraulic Actuators

Im
ag

e:
W

oo
dw

ar
d

Computers

Im
ag

e:
A

irb
us

3 / 43

Digital Flight Commands 1/2

Im
ag

e:
Pi

ot
r

Ja
w

or
sk

i(
G

FD
L)

Cables

Im
ag

e:
pu

bl
ic

do
m

ai
n

Hydraulic Actuators

Im
ag

e:
W

oo
dw

ar
d

Computers

Im
ag

e:
A

irb
us

3 / 43

Digital Flight Commands 1/2

Im
ag

e:
Pi

ot
r

Ja
w

or
sk

i(
G

FD
L)

Cables

Im
ag

e:
pu

bl
ic

do
m

ai
n

Hydraulic Actuators

Im
ag

e:
W

oo
dw

ar
d

Computers

Im
ag

e:
A

irb
us

3 / 43

Digital Flight Commands 1/2

Im
ag

e:
Pi

ot
r

Ja
w

or
sk

i(
G

FD
L)

Cables

Im
ag

e:
pu

bl
ic

do
m

ai
n

Hydraulic Actuators

Im
ag

e:
W

oo
dw

ar
d

Computers

Im
ag

e:
A

irb
us

3 / 43

Digital Flight Commands 2/2
Digital Flight Commands
▶ Improve comfort
▶ Enable different aircrafts to feel similar

(optimizing pilots training)
▶ Improve safety, by preventing dangerous attitude / efforts

e.g., aircraft cannot stall
▶ Improve fuel efficiency by enabling smaller stability margins

lift

weight

(negative) lift

⇒ Those are critical systems
⇒ We want some guarantees on their correctness

4 / 43

Digital Flight Commands 2/2
Digital Flight Commands
▶ Improve comfort
▶ Enable different aircrafts to feel similar

(optimizing pilots training)
▶ Improve safety, by preventing dangerous attitude / efforts

e.g., aircraft cannot stall
▶ Improve fuel efficiency by enabling smaller stability margins

lift

weight

(negative) lift

⇒ Those are critical systems
⇒ We want some guarantees on their correctness

4 / 43

Control Command Systems
plant (physical system to control)

Image: public domain

controller

double x[3] = {0, 0, 0};
double nx[3];
double in;
while (1) {

in = acquire_input(); // uc
nx[0] = 0.9379*x[0]-0.0381*x[1]-0.0414*x[2]+0.0237*in;
nx[1] = -0.0404*x[0]+0.968*x[1]-0.0179*x[2]+0.0143*in;
nx[2] = 0.0142*x[0]-0.0197*x[1]+0.9823*x[2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc
wait_next_clock_tick(); // a tick every 10 ms

}

sensors

+

uc

command

Image: Thomasione (CC by-sa)

−yc

actuators

▶ we want to prove all reachable states are safe
e.g., no combination low velocity / high angle of attack (stall)

⇒ main tool: loop invariant

5 / 43

Control Command Systems
plant (physical system to control)

Image: public domain

controller

double x[3] = {0, 0, 0};
double nx[3];
double in;
while (1) {

in = acquire_input(); // uc
nx[0] = 0.9379*x[0]-0.0381*x[1]-0.0414*x[2]+0.0237*in;
nx[1] = -0.0404*x[0]+0.968*x[1]-0.0179*x[2]+0.0143*in;
nx[2] = 0.0142*x[0]-0.0197*x[1]+0.9823*x[2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc
wait_next_clock_tick(); // a tick every 10 ms

}

sensors

+

uc

command

Image: Thomasione (CC by-sa)

−yc

actuators

▶ we want to prove all reachable states are safe
e.g., no combination low velocity / high angle of attack (stall)

⇒ main tool: loop invariant

5 / 43

Control Command Systems
plant (physical system to control)

Image: public domain

controller
double x[3] = {0, 0, 0};
double nx[3];
double in;
while (1) {

in = acquire_input(); // uc
nx[0] = 0.9379*x[0]-0.0381*x[1]-0.0414*x[2]+0.0237*in;
nx[1] = -0.0404*x[0]+0.968*x[1]-0.0179*x[2]+0.0143*in;
nx[2] = 0.0142*x[0]-0.0197*x[1]+0.9823*x[2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc
wait_next_clock_tick(); // a tick every 10 ms

}

sensors

+

uc

command

Image: Thomasione (CC by-sa)

−yc

actuators

▶ we want to prove all reachable states are safe
e.g., no combination low velocity / high angle of attack (stall)

⇒ main tool: loop invariant

5 / 43

Control Command Systems
plant (physical system to control)

Image: public domain

controller
double x[3] = {0, 0, 0};
double nx[3];
double in;
while (1) {

in = acquire_input(); // uc
nx[0] = 0.9379*x[0]-0.0381*x[1]-0.0414*x[2]+0.0237*in;
nx[1] = -0.0404*x[0]+0.968*x[1]-0.0179*x[2]+0.0143*in;
nx[2] = 0.0142*x[0]-0.0197*x[1]+0.9823*x[2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc
wait_next_clock_tick(); // a tick every 10 ms

}

sensors

+

uc

command

Image: Thomasione (CC by-sa)

−yc

actuators

▶ we want to prove all reachable states are safe
e.g., no combination low velocity / high angle of attack (stall)

⇒ main tool: loop invariant

5 / 43

Control Command Systems
plant (physical system to control)

Image: public domain

controller
double x[3] = {0, 0, 0};
double nx[3];
double in;
while (1) {

in = acquire_input(); // uc
nx[0] = 0.9379*x[0]-0.0381*x[1]-0.0414*x[2]+0.0237*in;
nx[1] = -0.0404*x[0]+0.968*x[1]-0.0179*x[2]+0.0143*in;
nx[2] = 0.0142*x[0]-0.0197*x[1]+0.9823*x[2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc
wait_next_clock_tick(); // a tick every 10 ms

}

sensors

+

uc

command

Image: Thomasione (CC by-sa)

−yc

actuators

▶ we want to prove all reachable states are safe
e.g., no combination low velocity / high angle of attack (stall)

⇒ main tool: loop invariant

5 / 43

Control Command Systems
plant (physical system to control)

Image: public domain

controller
double x[3] = {0, 0, 0};
double nx[3];
double in;
while (1) {

in = acquire_input(); // uc
nx[0] = 0.9379*x[0]-0.0381*x[1]-0.0414*x[2]+0.0237*in;
nx[1] = -0.0404*x[0]+0.968*x[1]-0.0179*x[2]+0.0143*in;
nx[2] = 0.0142*x[0]-0.0197*x[1]+0.9823*x[2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc
wait_next_clock_tick(); // a tick every 10 ms

}

sensors

+

uc

command

Image: Thomasione (CC by-sa)

−yc

actuators

▶ we want to prove all reachable states are safe
e.g., no combination low velocity / high angle of attack (stall)

⇒ main tool: loop invariant

5 / 43

Control Command Systems
plant (physical system to control)

Image: public domain

controller
double x[3] = {0, 0, 0};
double nx[3];
double in;
while (1) {

in = acquire_input(); // uc
nx[0] = 0.9379*x[0]-0.0381*x[1]-0.0414*x[2]+0.0237*in;
nx[1] = -0.0404*x[0]+0.968*x[1]-0.0179*x[2]+0.0143*in;
nx[2] = 0.0142*x[0]-0.0197*x[1]+0.9823*x[2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc
wait_next_clock_tick(); // a tick every 10 ms

}

sensors

+

uc

command

Image: Thomasione (CC by-sa)

−yc

actuators

▶ we want to prove all reachable states are safe
e.g., no combination low velocity / high angle of attack (stall)

⇒ main tool: loop invariant

5 / 43

Control Command Systems
plant (physical system to control)

Image: public domain

controller
double x[3] = {0, 0, 0};
double nx[3];
double in;
while (1) {

in = acquire_input(); // uc
nx[0] = 0.9379*x[0]-0.0381*x[1]-0.0414*x[2]+0.0237*in;
nx[1] = -0.0404*x[0]+0.968*x[1]-0.0179*x[2]+0.0143*in;
nx[2] = 0.0142*x[0]-0.0197*x[1]+0.9823*x[2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc
wait_next_clock_tick(); // a tick every 10 ms

}

sensors

+

uc

command

Image: Thomasione (CC by-sa)

−yc

actuators

▶ we want to prove all reachable states are safe
e.g., no combination low velocity / high angle of attack (stall)

⇒ main tool: loop invariant
5 / 43

Verifying Polynomial Invariants

Verifying Real-Time Embedded Networks

Technical Expertise

Perspectives

6 / 43

Verifying Polynomial Invariants

Verifying Real-Time Embedded Networks

Technical Expertise

Perspectives

7 / 43

Static Analysis

Static analyzers can infer loop invariants.

Mostly linear invariants:
▶ intervals
▶ polyhedra
▶ octogons
▶ zonotopes
▶ . . .

Quadratic / polynomial invariants
are better suited for controllers:
▶ ellipsoids
▶ polynomial sublevel curves

−0.5 0 0.5 1
−1

−0.5

0

0.5

1

8 / 43

Static Analysis

Static analyzers can infer loop invariants.

Mostly linear invariants:
▶ intervals
▶ polyhedra
▶ octogons
▶ zonotopes
▶ . . .

Quadratic / polynomial invariants
are better suited for controllers:
▶ ellipsoids
▶ polynomial sublevel curves

−0.5 0 0.5 1
−1

−0.5

0

0.5

1

8 / 43

Polynomial Invariants
In some paper, authors offer for

(x1, x2) ∈ [0.9, 1.1] × [0, 0.2]
while (1) {

pre_x1 = x1; pre_x2 = x2;
if (x1^2 + x2^2 <= 1) {

x1 = pre_x1^2 + pre_x2^3;
x2 = pre_x1^3 + pre_x2^2;

} else {
x1 = 0.5 * pre_x1^3 + 0.4 * pre_x2^2;
x2 = -0.6 * pre_x1^2 + 0.3 * pre_x2^2; } }

the inductive invariant
2.510902467 + 0.0050x1 + 0.0148x2 − 3.0998x2

1 + 0.8037x3
2 + 3.0297x3

1 −
2.5924x2

2 − 1.5266x1x2 + 1.9133x2
1 x2 + 1.8122x1x2

2 − 1.6042x4
1 − 0.0512x3

1 x2 +
4.4430x2

1 x2
2 + 1.8926x1x3

2 − 0.5464x4
2 + 0.2084x5

1 − 0.5866x4
1 x2 − 2.2410x3

1 x2
2 −

1.5714x2
1 x3

2 + 0.0890x1x4
2 + 0.9656x5

2 − 0.0098x6
1 + 0.0320x5

1 x2 + 0.0232x4
1 x2

2 −
0.2660x3

1 x3
2 − 0.7746x2

1 x4
2 − 0.9200x1x5

2 − 0.6411x6
2 ⩾ 0.

9 / 43

Should We Trust Such Results ?
▶ Some are correct (we’ll prove it formally).

▶ Others

aren’t

(previous degree 6 polynomial)

−1 0 1 2 3 4

−1

0

1

−1 0 1 2 3 4

−1

0

1

−1 0 1 2 3 4

−1

0

1

p ⩾ 0 p < 0

10 / 43

Should We Trust Such Results ?
▶ Some are correct (we’ll prove it formally).
▶ Others

aren’t

(previous degree 6 polynomial)

−1 0 1 2 3 4

−1

0

1

−1 0 1 2 3 4

−1

0

1

−1 0 1 2 3 4

−1

0

1

p ⩾ 0 p < 0

10 / 43

Should We Trust Such Results ?
▶ Some are correct (we’ll prove it formally).
▶ Others

aren’t

(previous degree 6 polynomial)

−1 0 1 2 3 4

−1

0

1

−1 0 1 2 3 4

−1

0

1

−1 0 1 2 3 4

−1

0

1

p ⩾ 0 p < 0

10 / 43

Should We Trust Such Results ?
▶ Some are correct (we’ll prove it formally).
▶ Others aren’t (previous degree 6 polynomial)

−1 0 1 2 3 4

−1

0

1

−1 0 1 2 3 4

−1

0

1

−1 0 1 2 3 4

−1

0

1

p ⩾ 0 p < 0

10 / 43

Sum of Squares (SOS) Polynomials
Invariant checking can be reduced to
proving some polynomial p non negative.

Definition (SOS Polynomial)
A polynomial p is SOS if there are polynomials q1, . . . , qm s.t.

p =
∑

i
q2

i .

▶ If p SOS then p ⩾ 0

▶ p SOS iff there exist z :=
[
1, x0, x1, x0x1, . . . , xd

n

]
and symmetric Q ⪰ 0 (i.e., for all x , xT Qx ⩾ 0) s.t.

p = zT Q z .

⇒ we have solvers, called SDP (Semi-Definite Programming)

11 / 43

Sum of Squares (SOS) Polynomials
Invariant checking can be reduced to
proving some polynomial p non negative.

Definition (SOS Polynomial)
A polynomial p is SOS if there are polynomials q1, . . . , qm s.t.

p =
∑

i
q2

i .

▶ If p SOS then p ⩾ 0
▶ p SOS iff there exist z :=

[
1, x0, x1, x0x1, . . . , xd

n

]
and symmetric Q ⪰ 0 (i.e., for all x , xT Qx ⩾ 0) s.t.

p = zT Q z .

⇒ we have solvers, called SDP (Semi-Definite Programming)
11 / 43

SOS: Example
Example
Is p(x , y) := 2x4 + 2x3y − x2y2 + 5y4 SOS ?

p(x , y) =

x2

y2

xy


T q11 q12 q13

q12 q22 q23
q13 q23 q33


x2

y2

xy


that is
p(x , y) = q11x4 + 2q13x3y + 2q23xy3 + (2q12 + q33)x2y2 + q22y4

hence q11 = 2, 2q13 = 2, 2q23 = 0, 2q12 + q33 = −1, q22 = 5.

SDP gives
Q =

 2 −3 1
−3 5 0
1 0 5

 = LT L L = 1√
2

[
2 −3 1
0 1 3

]

hence p(x , y) = 1
2
(
2x2 − 3y2 + xy

)2
+ 1

2
(
y2 + 3xy

)2
.

12 / 43

SOS: Example
Example
Is p(x , y) := 2x4 + 2x3y − x2y2 + 5y4 SOS ?

p(x , y) =

x2

y2

xy


T q11 q12 q13

q12 q22 q23
q13 q23 q33


x2

y2

xy


that is
p(x , y) = q11x4 + 2q13x3y + 2q23xy3 + (2q12 + q33)x2y2 + q22y4

hence q11 = 2, 2q13 = 2, 2q23 = 0, 2q12 + q33 = −1, q22 = 5.

SDP gives
Q =

 2 −3 1
−3 5 0
1 0 5

 = LT L L = 1√
2

[
2 −3 1
0 1 3

]

hence p(x , y) = 1
2
(
2x2 − 3y2 + xy

)2
+ 1

2
(
y2 + 3xy

)2
.

12 / 43

SOS: Example
Example
Is p(x , y) := 2x4 + 2x3y − x2y2 + 5y4 SOS ?

p(x , y) =

x2

y2

xy


T q11 q12 q13

q12 q22 q23
q13 q23 q33


x2

y2

xy


that is
p(x , y) = q11x4 + 2q13x3y + 2q23xy3 + (2q12 + q33)x2y2 + q22y4

hence q11 = 2, 2q13 = 2, 2q23 = 0, 2q12 + q33 = −1, q22 = 5.

SDP gives
Q =

 2 −3 1
−3 5 0
1 0 5

 = LT L L = 1√
2

[
2 −3 1
0 1 3

]

hence p(x , y) = 1
2
(
2x2 − 3y2 + xy

)2
+ 1

2
(
y2 + 3xy

)2
.

12 / 43

SOS: Example
Example
Is p(x , y) := 2x4 + 2x3y − x2y2 + 5y4 SOS ?

p(x , y) =

x2

y2

xy


T q11 q12 q13

q12 q22 q23
q13 q23 q33


x2

y2

xy


that is
p(x , y) = q11x4 + 2q13x3y + 2q23xy3 + (2q12 + q33)x2y2 + q22y4

hence q11 = 2, 2q13 = 2, 2q23 = 0, 2q12 + q33 = −1, q22 = 5.

SDP gives
Q =

 2 −3 1
−3 5 0
1 0 5



= LT L L = 1√
2

[
2 −3 1
0 1 3

]

hence p(x , y) = 1
2
(
2x2 − 3y2 + xy

)2
+ 1

2
(
y2 + 3xy

)2
.

12 / 43

SOS: Example
Example
Is p(x , y) := 2x4 + 2x3y − x2y2 + 5y4 SOS ?

p(x , y) =

x2

y2

xy


T q11 q12 q13

q12 q22 q23
q13 q23 q33


x2

y2

xy


that is
p(x , y) = q11x4 + 2q13x3y + 2q23xy3 + (2q12 + q33)x2y2 + q22y4

hence q11 = 2, 2q13 = 2, 2q23 = 0, 2q12 + q33 = −1, q22 = 5.

SDP gives
Q =

 2 −3 1
−3 5 0
1 0 5

 = LT L L = 1√
2

[
2 −3 1
0 1 3

]

hence p(x , y) = 1
2
(
2x2 − 3y2 + xy

)2
+ 1

2
(
y2 + 3xy

)2
.

12 / 43

SDP Solvers Yield Approximate Solutions
▶ Linear programming

simplex: exact solution interior-point: approximate solution

▶ Semidefinite programming

no simplex equivalent interior-point: approximate solution

13 / 43

SDP Solvers Yield Approximate Solutions
▶ Linear programming

simplex: exact solution interior-point: approximate solution

▶ Semidefinite programming

no simplex equivalent interior-point: approximate solution

13 / 43

Intuitively

{M | M ⪰ 0}

{ Q + E }Q

p SOS

equality constraints

14 / 43

Intuitively

{M | M ⪰ 0}

{ Q + E }

Q

p SOS

equality constraints

14 / 43

Intuitively

{M | M ⪰ 0}

{ Q + E }Q

p SOS equality constraints

14 / 43

SOS: Using Approximate SDP Solvers
Result Q from SDP solver will only satisfy equality constraints
up to some error δ

p = zT Q z + zT E z , ∀i j , |Ei ,j | ⩽ δ.

If Q + E ⪰ 0 then p = zT (Q + E) z is SOS.

▶ Hence the validation method: given p ≃ zT Q z
1. Bound difference δ between coefficients of p and zT Q z .
2. If Q − s δ I ⪰ 0 (with s := size of Q), then p is proved SOS.

▶ 1 can be done with interval arithmetic
and 2 with a Cholesky decomposition (Θ(s3) flops).

⇒ Efficient validation method using just floats.
[SAS 2016, FMSD 2018]

Often won’t work, needs some padding.

15 / 43

SOS: Using Approximate SDP Solvers
Result Q from SDP solver will only satisfy equality constraints
up to some error δ

p = zT Q z + zT E z , ∀i j , |Ei ,j | ⩽ δ.

If Q + E ⪰ 0 then p = zT (Q + E) z is SOS.

▶ Hence the validation method: given p ≃ zT Q z
1. Bound difference δ between coefficients of p and zT Q z .
2. If Q − s δ I ⪰ 0 (with s := size of Q), then p is proved SOS.

▶ 1 can be done with interval arithmetic
and 2 with a Cholesky decomposition (Θ(s3) flops).

⇒ Efficient validation method using just floats.
[SAS 2016, FMSD 2018]

Often won’t work, needs some padding.

15 / 43

SOS: Using Approximate SDP Solvers
Result Q from SDP solver will only satisfy equality constraints
up to some error δ

p = zT Q z + zT E z , ∀i j , |Ei ,j | ⩽ δ.

If Q + E ⪰ 0 then p = zT (Q + E) z is SOS.

▶ Hence the validation method: given p ≃ zT Q z
1. Bound difference δ between coefficients of p and zT Q z .
2. If Q − s δ I ⪰ 0 (with s := size of Q), then p is proved SOS.

▶ 1 can be done with interval arithmetic
and 2 with a Cholesky decomposition (Θ(s3) flops).

⇒ Efficient validation method using just floats.
[SAS 2016, FMSD 2018]

Often won’t work, needs some padding.
15 / 43

Intuitively

{M | M ⪰ 0}

{ Q + E }Q

cannot conclude

equality constraints

equality constraints

16 / 43

Intuitively

{M | M ⪰ 0}

{ Q + E }Q

cannot conclude equality constraints

equality constraints

16 / 43

Intuitively

{M | M ⪰ 0}

{ Q + E }Q

cannot conclude

equality constraints

equality constraints

16 / 43

Padding

{ Q + E }Q

{M | M ⪰ 0} {M | M − sδI ⪰ 0}

equality constraints

17 / 43

Making it Work

▶ Instead of asking for p = zT Q z , Q ⪰ 0
ask for p = zT Q z , Q − sδI ⪰ 0

▶ But isn’t δ computed from the result Q? (distance p to zT Q z)

▶ This distance is a stopping criterion of the interior-point algo.
⇒ overapproximation of δ

Implemented in our OCaml library OSDP:
▶ simple interface to SOS programming,
▶ interfaces multiple SDP solvers (Csdp, Mosek, SDPA)
▶ under LGPL license
▶ available at https://github.com/Embedded-SW-VnV/osdp

or opam install osdp

18 / 43

https://github.com/Embedded-SW-VnV/osdp

Making it Work

▶ Instead of asking for p = zT Q z , Q ⪰ 0
ask for p = zT Q z , Q − sδI ⪰ 0

▶ But isn’t δ computed from the result Q? (distance p to zT Q z)
▶ This distance is a stopping criterion of the interior-point algo.
⇒ overapproximation of δ

Implemented in our OCaml library OSDP:
▶ simple interface to SOS programming,
▶ interfaces multiple SDP solvers (Csdp, Mosek, SDPA)
▶ under LGPL license
▶ available at https://github.com/Embedded-SW-VnV/osdp

or opam install osdp

18 / 43

https://github.com/Embedded-SW-VnV/osdp

Making it Work

▶ Instead of asking for p = zT Q z , Q ⪰ 0
ask for p = zT Q z , Q − sδI ⪰ 0

▶ But isn’t δ computed from the result Q? (distance p to zT Q z)
▶ This distance is a stopping criterion of the interior-point algo.
⇒ overapproximation of δ

Implemented in our OCaml library OSDP:
▶ simple interface to SOS programming,
▶ interfaces multiple SDP solvers (Csdp, Mosek, SDPA)
▶ under LGPL license
▶ available at https://github.com/Embedded-SW-VnV/osdp

or opam install osdp

18 / 43

https://github.com/Embedded-SW-VnV/osdp

Using a Proof-Assistant
▶ We would like to prove our OCaml implementation
⇒ Use a proof-assistant

▶ Rocq (formerly Coq) features computation capabilities

Our Rocq library ValidSDP (with Érik Martin-Dorel, UPS):
▶ automatic tactic for polynomial inequalities
▶ under LGPL license
▶ available at https://github.com/validsdp/validsdp

or opam install coq-validsdp
▶ maintained since 2016, compatible with latest Rocq 9.1
▶ built on top of: OSDP, bignums, Flocq, CoqInterval,

MathComp, multinomials, Analysis, CoqEAL
[CPP 2017]

19 / 43

https://github.com/validsdp/validsdp

Using a Proof-Assistant
▶ We would like to prove our OCaml implementation
⇒ Use a proof-assistant
▶ Rocq (formerly Coq) features computation capabilities

Our Rocq library ValidSDP (with Érik Martin-Dorel, UPS):
▶ automatic tactic for polynomial inequalities
▶ under LGPL license
▶ available at https://github.com/validsdp/validsdp

or opam install coq-validsdp
▶ maintained since 2016, compatible with latest Rocq 9.1
▶ built on top of: OSDP, bignums, Flocq, CoqInterval,

MathComp, multinomials, Analysis, CoqEAL
[CPP 2017]

19 / 43

https://github.com/validsdp/validsdp

Using a Proof-Assistant
▶ We would like to prove our OCaml implementation
⇒ Use a proof-assistant
▶ Rocq (formerly Coq) features computation capabilities

Our Rocq library ValidSDP (with Érik Martin-Dorel, UPS):
▶ automatic tactic for polynomial inequalities
▶ under LGPL license
▶ available at https://github.com/validsdp/validsdp

or opam install coq-validsdp
▶ maintained since 2016, compatible with latest Rocq 9.1
▶ built on top of: OSDP, bignums, Flocq, CoqInterval,

MathComp, multinomials, Analysis, CoqEAL
[CPP 2017]

19 / 43

https://github.com/validsdp/validsdp

ValidSDP, Example
From Ltac2 Require Import Ltac2.
From Stdlib Require Import Reals.
From ValidSDP Require Import validsdp.
Local Open Scope R_scope.

Let p x0 x1 x2 : R := (* A largish polynomial. *)
2238448784199197/4503599627370496
+ -7081956584605647/72057594037927936 * x0
+ -5081574377800643/576460752303423488 * x2
+ 6018099001714223/18014398509481984 * x0^2
+ -30139342649847/1125899906842624 * x0 * x1
+ -541778131690975/9007199254740992 * x0^3
+ (* ... +78 lines *)

Lemma p_pos : forall x0 x1 x2 : R, p x0 x1 x2 >= 0.
Proof. intros x0 x1 x2; validsdp. (* 0.46 s *) Qed.

20 / 43

Proof by Reflection
Example
Inductive even : nat -> Prop :=
| Even0 : even 0
| EvenS : forall n, even n -> even (S (S n)).

Lemma even42 : even 42. Proof.
apply EvenS. apply EvenS. apply EvenS. (* ... x 21 *)
apply Even0. Qed.

Fixpoint is_even n := match n with
| 0 => true | 1 => false | S (S n’) => is_even n’ end.

Lemma is_even_correct n : is_even n = true -> even n.

Lemma even42_refl : even 42. Proof.
apply is_even_correct. (* is_even 42 = true *)
compute. (* true = true *) exact eq_refl. Qed.

21 / 43

Proof by Reflection
Example
Inductive even : nat -> Prop :=
| Even0 : even 0
| EvenS : forall n, even n -> even (S (S n)).

Lemma even42 : even 42. Proof.
apply EvenS. apply EvenS. apply EvenS. (* ... x 21 *)
apply Even0. Qed.

Fixpoint is_even n := match n with
| 0 => true | 1 => false | S (S n’) => is_even n’ end.

Lemma is_even_correct n : is_even n = true -> even n.

Lemma even42_refl : even 42. Proof.
apply is_even_correct. (* is_even 42 = true *)
compute. (* true = true *) exact eq_refl. Qed.

21 / 43

Proof by Reflection, with Witness

Example
Definition is_even_wit n w := Nat.eqb n (2 * w).

Lemma is_even_wit_correct w n :
is_even_wit n w = true -> even n.

Lemma even42_refl_wit : even 42.
Proof. apply (is_even_wit_correct 21).
(* is_even_wit 42 21 = true *)
compute. (* true = true *) exact eq_refl. Qed.

▶ for us, the witness is the SDP-computed matrix Q
▶ we use SDP solvers as untrusted oracles

22 / 43

Proof by Reflection, with Witness

Example
Definition is_even_wit n w := Nat.eqb n (2 * w).

Lemma is_even_wit_correct w n :
is_even_wit n w = true -> even n.

Lemma even42_refl_wit : even 42.
Proof. apply (is_even_wit_correct 21).
(* is_even_wit 42 21 = true *)
compute. (* true = true *) exact eq_refl. Qed.

▶ for us, the witness is the SDP-computed matrix Q
▶ we use SDP solvers as untrusted oracles

22 / 43

Proof vs Computation

⇒ We need heavy computations (polynomials, matrices, floats)
▶ That we need to prove correct

▶ Multiple formalization of a same concept with trade-offs
between, e.g., ease of proof and efficient computation

▶ Example

natural numbers proof computation
peano (nat in Rocq) + −−
binary (N in Rocq) − +
hardware (bigN in Rocq) −− ++

⇒ Need a way to “switch” between formalizations

23 / 43

Proof vs Computation

⇒ We need heavy computations (polynomials, matrices, floats)
▶ That we need to prove correct
▶ Multiple formalization of a same concept with trade-offs

between, e.g., ease of proof and efficient computation
▶ Example

natural numbers proof computation
peano (nat in Rocq) + −−
binary (N in Rocq) − +
hardware (bigN in Rocq) −− ++

⇒ Need a way to “switch” between formalizations

23 / 43

Parametricity

▶ Workflow

parametric program p(T , +, ∗)

▶ CoqEAL largely automates refinement proofs
based on paramcoq (now ported to Elpi derive.param2)

Instrumental in the making of ValidSDP [CPP 2017]

24 / 43

Parametricity
▶ Workflow

parametric program p(T , +, ∗)

p(TP , +P , ∗P)

correct (p(TP , +P , ∗P))

nice proof

▶ CoqEAL largely automates refinement proofs
based on paramcoq (now ported to Elpi derive.param2)

Instrumental in the making of ValidSDP [CPP 2017]

24 / 43

Parametricity
▶ Workflow

parametric program p(T , +, ∗)

p(TP , +P , ∗P) p(TC , +C , ∗C)

correct (p(TP , +P , ∗P))

nice proof

▶ CoqEAL largely automates refinement proofs
based on paramcoq (now ported to Elpi derive.param2)

Instrumental in the making of ValidSDP [CPP 2017]

24 / 43

Parametricity
▶ Workflow

parametric program p(T , +, ∗)

p(TP , +P , ∗P) p(TC , +C , ∗C)

correct (p(TP , +P , ∗P)) correct (p(TC , +C , ∗C))

nice proof very painful proof

▶ CoqEAL largely automates refinement proofs
based on paramcoq (now ported to Elpi derive.param2)

Instrumental in the making of ValidSDP [CPP 2017]

24 / 43

Parametricity
▶ Workflow

parametric program p(T , +, ∗)

p(TP , +P , ∗P) p(TC , +C , ∗C)

correct (p(TP , +P , ∗P)) correct (p(TC , +C , ∗C))

nice proof very painful proofno

refinement proof

▶ CoqEAL largely automates refinement proofs
based on paramcoq (now ported to Elpi derive.param2)

Instrumental in the making of ValidSDP [CPP 2017]

24 / 43

Parametricity
▶ Workflow

parametric program p(T , +, ∗)

p(TP , +P , ∗P) p(TC , +C , ∗C)

correct (p(TP , +P , ∗P)) correct (p(TC , +C , ∗C))

nice proof very painful proofno

refinement proof

▶ CoqEAL largely automates refinement proofs
based on paramcoq (now ported to Elpi derive.param2)

Instrumental in the making of ValidSDP [CPP 2017]
24 / 43

Hardware Floats in Rocq
▶ Our verification requires floating-point computations

(Cholesky decomposition)
▶ Can be emulated with integers, but slow

▶ add direct access to processor floats in Rocq
▶ CoqInterval benchmarks (with Guillaume Melquiond, INRIA):

10−310−210−1 100 101 102 10310−3

10−2

10−1

100

101

emulated (s)

hardware (s) ×10×20

25 / 43

Hardware Floats in Rocq
▶ Our verification requires floating-point computations

(Cholesky decomposition)
▶ Can be emulated with integers, but slow

▶ add direct access to processor floats in Rocq
▶ CoqInterval benchmarks (with Guillaume Melquiond, INRIA):

10−310−210−1 100 101 102 10310−3

10−2

10−1

100

101

emulated (s)

hardware (s) ×10×20

25 / 43

Hardware Floats in Rocq

▶ two order of magnitudes speedup on individual operators
▶ benched on Cholesky decomposition and CoqInterval
▶ floats spec. retrieved from Flocq library (bit precise)
▶ implem in each reduction engine

(compute, vm_compute, native_compute)
▶ requires care to not break soundness (signed 0s,

NaN payloads, OCaml unboxed float arrays,. . .)
▶ Started by Guillaume Bertholon during L3 internship,

summer 2018 (coadvised with Érik Martin-Dorel, UPS)
▶ integrated in Coq 8.11 (released in Jan. 2020)

[ITP 2019, JAR 2023]

26 / 43

Contributing to Rocq
▶ Started in 2019 with hardware floats
▶ Core team member since 2023
▶ RM for 8.20 (June 2024, with Guillaume Melquiond, INRIA)
▶ 245 pull requests (PRs) authored / 200 PRs reviewed

Libraries
MathComp

Stdlib / Corelib

Parser
number constants
notation system

Elaborator
coercions

Kernel
HW floats

Computation
vm_compute, native_compute

27 / 43

Wrap up
▶ Polynomial invariants for controllers
▶ Nice inference techniques, but unsound

▶ Rigorous and cheap verification method
OSDP (OCaml) [SAS 2016, FMSD 2018]

▶ Verified in Rocq (with Érik Martin-Dorel, UPS)
ValidSDP [CPP 2017]

▶ Extensive use of parametricity techniques
▶ Hardware floats in Rocq [ITP 2019, JAR 2023]
▶ Core dev of Rocq

Not seen today
▶ Double rounding, proofs in Rocq/Flocq [JFR 2014]
▶ Bounding floating-point rounding errors [JAR 2016]
▶ Integration into Alt-Ergo SMT solver (with Mohamed

Iguernlala and Sylvain Conchon, INRIA) [TACAS 2018]

28 / 43

Wrap up
▶ Polynomial invariants for controllers
▶ Nice inference techniques, but unsound

▶ Rigorous and cheap verification method
OSDP (OCaml) [SAS 2016, FMSD 2018]

▶ Verified in Rocq (with Érik Martin-Dorel, UPS)
ValidSDP [CPP 2017]

▶ Extensive use of parametricity techniques
▶ Hardware floats in Rocq [ITP 2019, JAR 2023]
▶ Core dev of Rocq

Not seen today
▶ Double rounding, proofs in Rocq/Flocq [JFR 2014]
▶ Bounding floating-point rounding errors [JAR 2016]
▶ Integration into Alt-Ergo SMT solver (with Mohamed

Iguernlala and Sylvain Conchon, INRIA) [TACAS 2018]
28 / 43

Verifying Polynomial Invariants

Verifying Real-Time Embedded Networks

Technical Expertise

Perspectives

29 / 43

Embedded Networks
Many systems to connect in an aircraft =⇒ network

D C

B A D

CB

A

Delay of C

▶ Real-time constraints in avionics
⇒ Need bounds on network traversal times
▶ Also need to ensure absence of buffer overflows

30 / 43

Embedded Networks
Many systems to connect in an aircraft =⇒ network

D C

B A D

CB

A

Delay of C

▶ Real-time constraints in avionics
⇒ Need bounds on network traversal times
▶ Also need to ensure absence of buffer overflows

30 / 43

Main Solutions for Real-Time Networks

▶ Time triggered
▶ Statically schedule all messages
▶ Requires a global clock
▶ Hard to establish and maintain
▶ Applications in space industry (spacecrafts, launchers)

▶ Rate constrained
▶ Limit emission rates of each node
▶ And use a mathematical method to statically prove

that everything arrives on time, without buffer overflow
▶ No requirement for global clock
▶ Used in all modern commercial aircraft

31 / 43

Main Solutions for Real-Time Networks

▶ Time triggered
▶ Statically schedule all messages
▶ Requires a global clock
▶ Hard to establish and maintain
▶ Applications in space industry (spacecrafts, launchers)

▶ Rate constrained
▶ Limit emission rates of each node
▶ And use a mathematical method to statically prove

that everything arrives on time, without buffer overflow
▶ No requirement for global clock
▶ Used in all modern commercial aircraft

31 / 43

Delay computation challenge

Computing the exact worst case
▶ an interleaving problem, with
▶ time, partially known arrival dates, complex scheduling, etc.
▶ NP-hard
⇒ computation of upper bound

32 / 43

Delay computation challenge

Computing the exact worst case
▶ an interleaving problem, with
▶ time, partially known arrival dates, complex scheduling, etc.
▶ NP-hard
⇒ computation of upper bound

32 / 43

Network Calculus

SA D
da

ta

time

A
Dd(A, D)

▶ Mathematical framework, based on
▶ basic real analysis
▶ tropical algebra (min-plus dioid of functions)

▶ Computations on piecewise-linear pseudo-periodic functions

33 / 43

Network Calculus

SA D
da

ta

time

A
Dd(A, D)

▶ Mathematical framework, based on
▶ basic real analysis
▶ tropical algebra (min-plus dioid of functions)

▶ Computations on piecewise-linear pseudo-periodic functions
33 / 43

Network Calculus, Computations

// input curves

alpha1 := stair(0, 12, 1)

alpha2 := stair(0, 5, 2)

beta := ratency(2, 20)

// computation

alpha := alpha1 + alpha2

d := hdev(alpha, beta)

» d = 43/2

time

da
ta

−alpha1−alpha2

12 245

On https://www.realtimeatwork.com/minplus-playground

34 / 43

https://www.realtimeatwork.com/minplus-playground

Network Calculus, Computations

// input curves

alpha1 := stair(0, 12, 1)

alpha2 := stair(0, 5, 2)

beta := ratency(2, 20)

// computation

alpha := alpha1 + alpha2

d := hdev(alpha, beta)

» d = 43/2

time

da
ta

−alpha1−alpha2
−beta

20

On https://www.realtimeatwork.com/minplus-playground

34 / 43

https://www.realtimeatwork.com/minplus-playground

Network Calculus, Computations

// input curves

alpha1 := stair(0, 12, 1)

alpha2 := stair(0, 5, 2)

beta := ratency(2, 20)

// computation

alpha := alpha1 + alpha2

d := hdev(alpha, beta)

» d = 43/2

time

da
ta

−alpha1−alpha2
−beta −alpha

On https://www.realtimeatwork.com/minplus-playground

34 / 43

https://www.realtimeatwork.com/minplus-playground

Network Calculus, Computations

// input curves

alpha1 := stair(0, 12, 1)

alpha2 := stair(0, 5, 2)

beta := ratency(2, 20)

// computation

alpha := alpha1 + alpha2

d := hdev(alpha, beta)

» d = 43/2

time

da
ta

−alpha1−alpha2
−beta −alpha

On https://www.realtimeatwork.com/minplus-playground

34 / 43

https://www.realtimeatwork.com/minplus-playground

Encoding Functions
Network Calculus tools use functions that are:
▶ piecewise affine: list of segments
▶ ultimately pseudo-periodic: a prefix and a repetitive pattern

timeT d

c

Repetitive pattern

Prefix

35 / 43

Encoding Functions
Network Calculus tools use functions that are:
▶ piecewise affine: list of segments
▶ ultimately pseudo-periodic: a prefix and a repetitive pattern

timeT d

c Repetitive pattern

Prefix

35 / 43

Formal Proofs
Question: Are the theorems corrects?

▶ Maths are quite basic but can be tricky (discontinuities, ...)

⇒ Rocq formalization of the theory and representative theorems
https://gitlab.mpi-sws.org/proux/nc-coq
using: MathComp, MathComp Analysis, Hierarchy Builder

[Junior Workshop 2019]

Question: Are the computations correct?
▶ Computation algorithms with many subcases

⇒ Rocq verified implementation https://gitlab.mpi-sws.
org/proux/nc-coq/-/tree/master/minerve also
using: bignums, CoqEAL (again) [NFM 2021]

▶ Tested on representative use cases. [ERTS 2022]

Lucien Rakotomalala’s PhD (co-advised with Marc Boyer, ONERA)

36 / 43

https://gitlab.mpi-sws.org/proux/nc-coq
https://gitlab.mpi-sws.org/proux/nc-coq/-/tree/master/minerve
https://gitlab.mpi-sws.org/proux/nc-coq/-/tree/master/minerve

Formal Proofs
Question: Are the theorems corrects?

▶ Maths are quite basic but can be tricky (discontinuities, ...)

⇒ Rocq formalization of the theory and representative theorems
https://gitlab.mpi-sws.org/proux/nc-coq
using: MathComp, MathComp Analysis, Hierarchy Builder

[Junior Workshop 2019]

Question: Are the computations correct?
▶ Computation algorithms with many subcases

⇒ Rocq verified implementation https://gitlab.mpi-sws.
org/proux/nc-coq/-/tree/master/minerve also
using: bignums, CoqEAL (again) [NFM 2021]

▶ Tested on representative use cases. [ERTS 2022]

Lucien Rakotomalala’s PhD (co-advised with Marc Boyer, ONERA)

36 / 43

https://gitlab.mpi-sws.org/proux/nc-coq
https://gitlab.mpi-sws.org/proux/nc-coq/-/tree/master/minerve
https://gitlab.mpi-sws.org/proux/nc-coq/-/tree/master/minerve

Formal Proofs
Question: Are the theorems corrects?

▶ Maths are quite basic but can be tricky (discontinuities, ...)

⇒ Rocq formalization of the theory and representative theorems
https://gitlab.mpi-sws.org/proux/nc-coq
using: MathComp, MathComp Analysis, Hierarchy Builder

[Junior Workshop 2019]

Question: Are the computations correct?
▶ Computation algorithms with many subcases

⇒ Rocq verified implementation https://gitlab.mpi-sws.
org/proux/nc-coq/-/tree/master/minerve also
using: bignums, CoqEAL (again) [NFM 2021]

▶ Tested on representative use cases. [ERTS 2022]

Lucien Rakotomalala’s PhD (co-advised with Marc Boyer, ONERA)
36 / 43

https://gitlab.mpi-sws.org/proux/nc-coq
https://gitlab.mpi-sws.org/proux/nc-coq/-/tree/master/minerve
https://gitlab.mpi-sws.org/proux/nc-coq/-/tree/master/minerve

Contributing to MathComp

▶ main library for mathematical developments in Rocq
(inspired Mathlib in Lean)

▶ offers extensible algebraic structures
(used for tropical algebra in our network calculus work)

▶ contributed to Hierarchy-Builder port
▶ RM for 2.0 (2023, with Reynald Affeldt, AIST, Japan)
▶ 200 PRs authored / 100 PRs reviewed

▶ also contribute to Analysis
▶ extended reals R = R ∪ { ±∞ }, used for network calculus
▶ non negative numbers → basic interval arithmetic [ITP 2025]
▶ a bit of probability [RTSS 2023]
▶ 100 PRs authored / 100 PRs reviewed

▶ other contributions/maintenance: mathcomp-algebra-tactics,
CoqEAL, paramcoq, bignums, coq-nix-toolbox

37 / 43

Contributing to MathComp

▶ main library for mathematical developments in Rocq
(inspired Mathlib in Lean)

▶ offers extensible algebraic structures
(used for tropical algebra in our network calculus work)

▶ contributed to Hierarchy-Builder port
▶ RM for 2.0 (2023, with Reynald Affeldt, AIST, Japan)
▶ 200 PRs authored / 100 PRs reviewed
▶ also contribute to Analysis

▶ extended reals R = R ∪ { ±∞ }, used for network calculus
▶ non negative numbers → basic interval arithmetic [ITP 2025]
▶ a bit of probability [RTSS 2023]
▶ 100 PRs authored / 100 PRs reviewed

▶ other contributions/maintenance: mathcomp-algebra-tactics,
CoqEAL, paramcoq, bignums, coq-nix-toolbox

37 / 43

Wrap up
▶ Network Calculus: a framework to verify real-time networks

▶ Rocq proofs of main mathematical theorems
▶ Rocq automatic verification of computations [NFM 2021]
▶ Tested on representative use cases [ERTS 2022]
▶ Developer of MathComp

Not seen today
▶ Rocq proof of a novel Network Calculus result [ECRTS 2021]
▶ Link between Response Time Analysis (RTA)

and Network Calculus (NC) [ECRTS 2022]
▶ 6 months visit at MPI-SWS (group of Björn Brandenburg)

working on the Prosa library and Rocq proofs on probability
[RTSS 2023]

▶ Study of the P4 language to specify switches [ERTS 2024]

38 / 43

Wrap up
▶ Network Calculus: a framework to verify real-time networks

▶ Rocq proofs of main mathematical theorems
▶ Rocq automatic verification of computations [NFM 2021]
▶ Tested on representative use cases [ERTS 2022]
▶ Developer of MathComp

Not seen today
▶ Rocq proof of a novel Network Calculus result [ECRTS 2021]
▶ Link between Response Time Analysis (RTA)

and Network Calculus (NC) [ECRTS 2022]
▶ 6 months visit at MPI-SWS (group of Björn Brandenburg)

working on the Prosa library and Rocq proofs on probability
[RTSS 2023]

▶ Study of the P4 language to specify switches [ERTS 2024]
38 / 43

Verifying Polynomial Invariants

Verifying Real-Time Embedded Networks

Technical Expertise

Perspectives

39 / 43

Technical Expertise, Example

▶ Ariane 6 launcher
uses TTEthernet technology
for its embedded network

▶ Synchronized global clock

▶ In 2017, bibliography review
of model checking literature
for CNES launcher division

▶ Discovered some missing cases
with larger drift bounds
in some failure scenarios

Im
ag

e:
ES

A
(C

C-
B

Y
-S

A
)

40 / 43

Technical Expertise, Example

▶ Ariane 6 launcher
uses TTEthernet technology
for its embedded network

▶ Synchronized global clock
▶ In 2017, bibliography review

of model checking literature
for CNES launcher division

▶ Discovered some missing cases
with larger drift bounds
in some failure scenarios

Im
ag

e:
ES

A
(C

C-
B

Y
-S

A
)

40 / 43

Technical Expertise, Example

▶ Help Airbus to design and configure
a real-time embedded network

▶ Verify real-time constraints are met
▶ Work started by Marc Boyer

a few years ago
▶ Joined in 2024

41 / 43

Verifying Polynomial Invariants

Verifying Real-Time Embedded Networks

Technical Expertise

Perspectives

42 / 43

Perspectives

▶ Towards proving functional properties of actual flight software
requires close collaboration with control theorists / engineers

▶ Improving Rocq elaborator
e.g., to write n * x rather than n%:R * x

▶ Verified interval arithmetic
verify literature results on linear algebra
bridging gap between computer algebra systems (CAS)
and numerical frameworks (Octave, Matlab, Scilab)

▶ Verifying real-time network and systems
bridging gaps between models,
mathematical theorems and computations

43 / 43

Perspectives

▶ Towards proving functional properties of actual flight software
requires close collaboration with control theorists / engineers

▶ Improving Rocq elaborator
e.g., to write n * x rather than n%:R * x

▶ Verified interval arithmetic
verify literature results on linear algebra
bridging gap between computer algebra systems (CAS)
and numerical frameworks (Octave, Matlab, Scilab)

▶ Verifying real-time network and systems
bridging gaps between models,
mathematical theorems and computations

43 / 43

Perspectives

▶ Towards proving functional properties of actual flight software
requires close collaboration with control theorists / engineers

▶ Improving Rocq elaborator
e.g., to write n * x rather than n%:R * x

▶ Verified interval arithmetic
verify literature results on linear algebra
bridging gap between computer algebra systems (CAS)
and numerical frameworks (Octave, Matlab, Scilab)

▶ Verifying real-time network and systems
bridging gaps between models,
mathematical theorems and computations

43 / 43

Perspectives

▶ Towards proving functional properties of actual flight software
requires close collaboration with control theorists / engineers

▶ Improving Rocq elaborator
e.g., to write n * x rather than n%:R * x

▶ Verified interval arithmetic
verify literature results on linear algebra
bridging gap between computer algebra systems (CAS)
and numerical frameworks (Octave, Matlab, Scilab)

▶ Verifying real-time network and systems
bridging gaps between models,
mathematical theorems and computations

43 / 43

1 / 10

Design Process

model

Image: ONERA

controller
ẋ = Ax + Bu
y = Cx

program
double x[3] = {0, 0, 0}; double nx[3]; double in;
while (1) {

in = acquire_input();
nx[0] = 0.9379*x[0]-0.0381*x[1]-0.0414*x[2]+0.0237*in;
... }

physics, applied maths

control theory

computer science

2 / 10

Cholesky Decomposition
▶ To prove that a ∈ R is non negative,

we can exhibit r such that a = r2 (typically r =
√

a).

▶ To prove that a matrix A ∈ Rn×n is positive semi-definite
we can similarly expose R such that A = RT R
(since xT

(
RT R

)
x = (Rx)T (Rx) = ∥Rx∥2

2 ⩾ 0).
▶ The Cholesky decomposition computes such a matrix R:

R := 0;
for j from 1 to n do

for i from 1 to j − 1 do

Ri,j :=
(

Ai,j −
i−1∑
k=1

Rk,iRk,j

)
/Ri,i ;

od

Rj,j :=

√√√√Mj,j −
j−1∑
k=1

Rk,j
2;

od
▶ If it succeeds (no √ of negative or div. by 0) then A ⪰ 0.

3 / 10

Cholesky Decomposition
▶ To prove that a ∈ R is non negative,

we can exhibit r such that a = r2 (typically r =
√

a).
▶ To prove that a matrix A ∈ Rn×n is positive semi-definite

we can similarly expose R such that A = RT R
(since xT

(
RT R

)
x = (Rx)T (Rx) = ∥Rx∥2

2 ⩾ 0).

▶ The Cholesky decomposition computes such a matrix R:
R := 0;
for j from 1 to n do

for i from 1 to j − 1 do

Ri,j :=
(

Ai,j −
i−1∑
k=1

Rk,iRk,j

)
/Ri,i ;

od

Rj,j :=

√√√√Mj,j −
j−1∑
k=1

Rk,j
2;

od
▶ If it succeeds (no √ of negative or div. by 0) then A ⪰ 0.

3 / 10

Cholesky Decomposition
▶ To prove that a ∈ R is non negative,

we can exhibit r such that a = r2 (typically r =
√

a).
▶ To prove that a matrix A ∈ Rn×n is positive semi-definite

we can similarly expose R such that A = RT R
(since xT

(
RT R

)
x = (Rx)T (Rx) = ∥Rx∥2

2 ⩾ 0).
▶ The Cholesky decomposition computes such a matrix R:

R := 0;
for j from 1 to n do

for i from 1 to j − 1 do

Ri,j :=
(

Ai,j −
i−1∑
k=1

Rk,iRk,j

)
/Ri,i ;

od

Rj,j :=

√√√√Mj,j −
j−1∑
k=1

Rk,j
2;

od
▶ If it succeeds (no √ of negative or div. by 0) then A ⪰ 0.

3 / 10

Cholesky Decomposition (end)

With rounding errors A ̸= RT R, Cholesky can succeed while A ⪰̸ 0.

But error is bounded and for some (tiny) c ∈ R:
if Cholesky succeeds on A then A + c I ⪰ 0.

Hence:
Theorem
If floating-point Cholesky succeeds on A − c I then A ⪰ 0

holds for any c ⩾
(s + 1)ε

1 − (s + 1)ε
tr(A) + 4s

(
2(s + 1) + max

i
(Ai,i)

)
η

(ε and η relative and absolute precision of floating-point format).

Proved in Rocq (paper proof: 6 pages, Rocq: 5.1 kloc)

4 / 10

Cholesky Decomposition (end)

With rounding errors A ̸= RT R, Cholesky can succeed while A ⪰̸ 0.

But error is bounded and for some (tiny) c ∈ R:
if Cholesky succeeds on A then A + c I ⪰ 0.

Hence:
Theorem
If floating-point Cholesky succeeds on A − c I then A ⪰ 0

holds for any c ⩾
(s + 1)ε

1 − (s + 1)ε
tr(A) + 4s

(
2(s + 1) + max

i
(Ai,i)

)
η

(ε and η relative and absolute precision of floating-point format).

Proved in Rocq (paper proof: 6 pages, Rocq: 5.1 kloc)

4 / 10

Incompleteness: Empty Interior SDP Problems
If the interior of the feasibility set of the problem is empty
(i.e., no feasible Q s.t. every Q′ in a small neighborhood is feasible)
pure numerical methods won’t work.

{X | X ⪰ 0}

{ Q + E }Q

cannot conclude

equality constraints
5 / 10

Intuitively, Rounding to an Exact Solution
{X | X ⪰ 0}

Q̃

Q̃

Q

equality constraints

6 / 10

Intuitively, Rounding to an Exact Solution
{X | X ⪰ 0}

Q̃

Q̃

Q

equality constraints

6 / 10

Intuitively, Rounding to an Exact Solution
{X | X ⪰ 0}

Q̃

Q̃

Q

equality constraints

6 / 10

Intuitively, Rounding to an Exact Solution
{X | X ⪰ 0}

Q̃

Q̃

Q

equality constraints

6 / 10

Intuitively, Rounding to an Exact Solution
{X | X ⪰ 0}

Q̃

Q̃

Q

equality constraints

6 / 10

Intuitively, Rounding to an Exact Solution
{X | X ⪰ 0}

Q̃

Q̃ Q

equality constraints

6 / 10

Network Calculus, Arrival Model
▶ Arrival A:

▶ the cumulative amount of data received up to time t,
▶ at some observation point in the network.

▶ Arrival curve α: upper bound on all behaviors

∀t, d ∈ R+, A(t + d) − A(t) ⩽ α(d)

time

da
ta

A

0 t1 t2 t3

t t + d

⩽ α(d)

7 / 10

Network Calculus, Arrival Model
▶ Arrival A: some real behavior

▶ the cumulative amount of data received up to time t,
▶ at some observation point in the network.

▶ Arrival curve α: upper bound on all behaviors

∀t, d ∈ R+, A(t + d) − A(t) ⩽ α(d)

time

da
ta

A

0 t1 t2 t3

t t + d

⩽ α(d)

7 / 10

Network Calculus Arrival Curve

In the case of periodic messages with fixed size.

time

da
ta

α

period

m
es

sa
ge

8 / 10

Network Calculus Service Model
▶ Service curve β: a lower bound on the output
▶ Example: Rate-latency service

▶ Server treats at least R bits per second,
▶ after at most a latency T .

time

da
ta

T

R

β

9 / 10

Convolution

Defined as: ∀t, (f ∗ g)(t) = inf
0⩽s⩽t

f (t − s) + g(s).

f

t

g

t

10 / 10

Convolution

Defined as: ∀t, (f ∗ g)(t) = inf
0⩽s⩽t

f (t − s) + g(s).

f

t

g

t

10 / 10

Convolution

Defined as: ∀t, (f ∗ g)(t) = inf
0⩽s⩽t

f (t − s) + g(s).

f

t

g

t

10 / 10

Convolution

Defined as: ∀t, (f ∗ g)(t) = inf
0⩽s⩽t

f (t − s) + g(s).

f

t

g

t

10 / 10

Convolution

Defined as: ∀t, (f ∗ g)(t) = inf
0⩽s⩽t

f (t − s) + g(s).

f

t

g

t

f ∗ g

10 / 10

	Verifying Polynomial Invariants
	Verifying Real-Time Embedded Networks
	Technical Expertise
	Perspectives
	Appendix

