Embedding network calculus and event stream theory in a common model

21st IEEE Int. Conf. on Emerging Technologies and Factory Automation [ETFA 2016]
Track 3: Real-Time and (Networked) Embedded Systems [RTNES]

Marc Boyer Pierre Roux

Wednesday, September 7th, 2016
Outline

Context and goal

The unifying model

Model evaluation

Conclusion
Outline

Context and goal

The unifying model

Model evaluation

Conclusion
Global context

Kind of systems

- real-time system

Kind of property

- worst case response time
Global context

Kind of systems
Distributed real-time system

Kind of property
worst case response time
Global context

Kind of systems: flow/component

Distributed real-time system
- Components (computation node, bus, switch, etc.)
- Event flows between components
- Event reception triggers a local workload (computation, data forwarding...)

Kind of property
worst case response time
Global context

Kind of systems: flow/component

Distributed real-time system

- Components (computation node, bus, switch, etc.)
- Event flows between components
- Event reception triggers a local workload (computation, data forwarding...)

Kind of property

Bounds on worst case response time
Global context

Kind of systems: flow/component

Distributed real-time system
- Components (computation node, bus, switch, etc.)
- Event flows between components
- Event reception triggers a local workload (computation, data forwarding...)

Kind of property

Bounds on worst case response time
- local latency
- end-to-end latency
Two flow/component models

<table>
<thead>
<tr>
<th>Event Stream/CPA</th>
<th>Network Calculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E \xrightarrow{C} E'$</td>
<td>$A \xrightarrow{C} A'$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow model</th>
<th>$E(t)$: number of events up to time t</th>
<th>$A(t)$: amount of data up to time t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract</td>
<td>η^+, η^-: event arrival functions</td>
<td>α: arrival curve</td>
</tr>
<tr>
<td>$\forall t, d \geq 0$</td>
<td>$E(t + d) - E(t) \leq \eta^+(d)$</td>
<td>$A(t + d) - A(t) \leq \alpha(d)$</td>
</tr>
<tr>
<td>$E(t + d) - E(t) \geq \eta^-(d)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Busy window
- Residual service

- Two very close models
- No best method (depends on the system)
<table>
<thead>
<tr>
<th>Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>more accurate results</td>
</tr>
<tr>
<td>better understanding of each theory</td>
</tr>
<tr>
<td>modelling of new kind of components: CAN/AFDX gateway, per block memory allocation...</td>
</tr>
</tbody>
</table>
Toward unifying model

Goals

- more accurate results
- better understanding of each theory
- modelling of new kind of components: CAN/AFDX gateway, per block memory allocation...

Success criteria

- accurate
- easy to use
 - modelling
 - proofs
Toward unifying model

Goals
- more accurate results
- better understanding of each theory
- modelling of new kind of components: CAN/AFDX gateway, per block memory allocation...

Success criteria
- accurate
- easy to use
 - modelling
 - proofs

Guidelines
- a compositional model
- an algebraic model
Outline

Context and goal

The unifying model

Model evaluation

Conclusion
The global picture

Real World System \[\xrightarrow{\text{Input data flow}}\] Network Calculus \[\xrightarrow{\text{Output data flow}}\] Event Stream / CPA

New model

\[\xrightarrow{\text{A}} S \xrightarrow{\text{A'}}\] \[\xrightarrow{\text{E}} C \xrightarrow{\text{E'}}\]
Definition of the new model

<table>
<thead>
<tr>
<th>Arrival curve</th>
<th>Packet count</th>
<th>Event count</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A : \mathbb{R}^+ \rightarrow \mathbb{R}^+$</td>
<td>$P : \mathbb{R}^+ \rightarrow \mathbb{N}$</td>
<td>$E : \mathbb{R}^+ \rightarrow \mathbb{N}$</td>
</tr>
<tr>
<td>$A(t)$: amount of data up to t</td>
<td>$P(d)$: number of full packets in the d first “bits”</td>
<td>$E(t)$: number of full packets up to t</td>
</tr>
</tbody>
</table>

\[
P(A) = E \quad \text{NC/CPA}
\]

Scenario:

- First packet: size 1, throughput 1
- Second packet: size 1, throughput 1/2
- Third packet: size 2, throughput 2
- Fourth packet: size 1, throughput 1
Scenario:

- **First packet**: size 1, throughput 1
- **Second packet**: size 1, throughput 1/2
- **Third packet**: size 2, throughput 2
- **Fourth packet**: size 1, throughput 1
Scenario:

- First packet: size 1, throughput 1
- Second packet: size 1, throughput 1/2
- Third packet: size 2, throughput 2
- Fourth packet: size 1, throughput 1
Scenario:
- First packet: size 1, throughput 1
- Second packet: size 1, throughput 1/2
- Third packet: size 2, throughput 2
- Fourth packet: size 1, throughput 1
Interval Bounding Pair (IBP)

- Real behaviours are unknown at design
- Performance studies based on contract
- Interval Bounding Pair: renaming of arrival curves/event stream
 \(\phi = (\underline{\phi}, \overline{\phi}) \) is an Interval Bounding Pair (IBP) of \(f \) iff

 \[
 \forall t, d \geq 0 : \underline{\phi}(d) \leq f(t + d) - f(t) \leq \overline{\phi}(d)
 \]

- Handle the contract tuple \(\langle \alpha, \pi, \eta \rangle \) where \(\alpha, \pi, \eta \) are respective IBPs of \(A, P, E \)
Outline

Context and goal

The unifying model

Model evaluation

Conclusion
Defining a new model is easy
Model evaluation is hard
Taking in hand the model:
 - basic properties of the model itself
 - modelling basic component
 1. packetizer
 2. aggregation
 - model accuracy (new)
Mathematical operators

- **Min/max-plus convolution:** associative, commutative, monotonous

\[
(f \ast g)(t) = \inf_{0 \leq s \leq t} f(t - s) + g(s) \quad (f \bar{\ast} g)(t) = \sup_{0 \leq s \leq t} f(t - s) + g(s)
\]

- **Composition:** associative, monotonous

\[
(f \circ g)(t) = f(g(t))
\]

- **Pseudo-inverses**

\[
f(x) \quad x \quad f^{-1}(y) \quad y \quad f^{-1}(y) \quad y
\]
Intrinsic properties

- IBP properties (from NC and CPA)
Intrinsic properties

- IBP properties (from NC and CPA)
 - min/max: if \((\phi, \overline{\phi})\) and \((\phi', \overline{\phi'})\) are IBP of \(f\), also is \((\max(\phi, \phi'), \min(\overline{\phi}, \overline{\phi'}))\)
Intrinsic properties

- IBP properties (from NC and CPA)
 - min/max: if \((\phi, \overline{\phi})\) and \((\phi', \overline{\phi'})\) are IBP of \(f\), also is \((\max(\phi, \phi'), \min(\overline{\phi}, \overline{\phi'}))\)
 - Kleene star closure: if \((\phi, \overline{\phi})\) is an IBP of \(f\), also is \((\overline{\phi}^*, \overline{\phi}^*)\)
 where \(\cdot^*\) are Kleene-star of min/max convolutions.
Intrinsic properties

- IBP properties (from NC and CPA)
 - min/max: if $(\phi, \overline{\phi})$ and $(\phi', \overline{\phi}')$ are IBP of f, also is $(\max(\phi, \phi'), \min(\overline{\phi}, \overline{\phi}'))$
 - Kleene star closure: if $(\phi, \overline{\phi})$ is an IBP of f, also is $(\phi^*, \overline{\phi}^*)$
 where \cdot^*, \cdot^\star are Kleene-star of min/max convolutions.

- Between IBP (contribution): from two IBPs, build the missing one
Intrinsic properties

- **IBP properties (from NC and CPA)**
 - min/max: if (ϕ, ϕ') and (ϕ', ϕ'') are IBP of f, also is $(\max(\phi, \phi'), \min(\phi, \phi'))$
 - Kleene star closure: if (ϕ, ϕ) is an IBP of f, also is (ϕ^*, ϕ^*)
 where \iddots, \iddots^* are Kleene-star of min/max convolutions.
- **Between IBP (contribution):** from two IBPs, build the missing one

<table>
<thead>
<tr>
<th>A</th>
<th>P</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\alpha, \overline{\alpha})$</td>
<td>$(\pi, \overline{\pi})$</td>
<td></td>
</tr>
</tbody>
</table>
Intrinsic properties

- IBP properties (from NC and CPA)
 - min/max: if \((\phi, \phi')\) and \((\phi', \phi'')\) are IBP of \(f\), also is
 \[(\max(\phi, \phi'), \min(\phi, \phi'))\]
 - Kleene star closure: if \((\phi, \phi')\) is an IBP of \(f\), also is \((\phi^*, \phi'^*)\)
 where \(\cdot^*, \cdot'^*\) are Kleene-star of min/max convolutions.

- Between IBP (contribution): from two IBPs, build the missing one

<table>
<thead>
<tr>
<th>(A)</th>
<th>(P)</th>
<th>(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\alpha, \bar{\alpha}))</td>
<td>((\bar{\pi}, \bar{\pi}))</td>
<td>((\bar{\pi} \circ \alpha, \bar{\pi} \circ \bar{\alpha}))</td>
</tr>
</tbody>
</table>
Intrinsic properties

- IBP properties (from NC and CPA)
 - min/max: if (ϕ, ϕ') and (ϕ', ϕ'') are IBP of f, also is $(\max(\phi, \phi'), \min(\phi, \phi'))$
 - Kleene star closure: if (ϕ, ϕ) is an IBP of f, also is (ϕ^*, ϕ^*)
 where \cdot^*, \cdot^* are Kleene-star of min/max convolutions.
- Between IBP (contribution): from two IBPs, build the missing one

<table>
<thead>
<tr>
<th>A</th>
<th>P</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\alpha, \overline{\alpha})$</td>
<td>$(\pi, \overline{\pi})$</td>
<td>$(\pi \circ \alpha, \overline{\pi} \circ \overline{\alpha})$</td>
</tr>
<tr>
<td>$(\pi, \overline{\pi})$</td>
<td>$(\pi, \overline{\pi})$</td>
<td>$(\eta, \overline{\eta})$</td>
</tr>
</tbody>
</table>
Intrinsic properties

- IBP properties (from NC and CPA)
 - min/max: if \((\phi, \phi')\) and \((\phi', \phi')\) are IBP of \(f\), also is
 \((\max(\phi, \phi'), \min(\phi, \phi'))\)
 - Kleene star closure: if \((\phi, \phi)\) is an IBP of \(f\), also is \((\phi^*, \phi^*)\)
 where \(\cdot^*, \cdot^*\) are Kleene-star of min/max convolutions.
- Between IBP (contribution): from two IBPs, build the missing one

<table>
<thead>
<tr>
<th>(A)</th>
<th>(P)</th>
<th>(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\alpha, \bar{\alpha}))</td>
<td>((\pi, \bar{\pi}))</td>
<td>((\pi \circ \alpha, \bar{\pi} \circ \bar{\alpha}))</td>
</tr>
<tr>
<td>((\pi^{-1} \circ \eta, \pi^{-1} \circ \bar{\eta}))</td>
<td>((\pi, \bar{\pi}))</td>
<td>((\eta, \bar{\eta}))</td>
</tr>
</tbody>
</table>
Intrinsic properties

- **IBP properties (from NC and CPA)**
 - min/max: if \((\phi, \phi')\) and \((\phi', \phi'')\) are IBP of \(f\), also is
 \((\max(\phi, \phi'), \min(\phi, \phi''))\)
 - Kleene star closure: if \((\phi, \phi)\) is an IBP of \(f\), also is \((\phi^*, \phi^*)\)
 where \(-\cdot^*, \cdot^*\) are Kleene-star of min/max convolutions.
- Between IBP (contribution): from two IBPs, build the missing one

<table>
<thead>
<tr>
<th>(A)</th>
<th>(P)</th>
<th>(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\alpha, \overline{\alpha}))</td>
<td>((\pi, \overline{\pi}))</td>
<td>((\pi \circ \alpha, \overline{\pi} \circ \overline{\alpha}))</td>
</tr>
<tr>
<td>((\pi^{-1} \circ \eta, \pi^{-1} \circ \eta))</td>
<td>((\pi, \overline{\pi}))</td>
<td>((\eta, \overline{\eta}))</td>
</tr>
<tr>
<td>((\alpha, \overline{\alpha}))</td>
<td></td>
<td>((\eta, \overline{\eta}))</td>
</tr>
</tbody>
</table>
Intrinsic properties

- **IBP properties (from NC and CPA)**
 - **min/max:** if \((\phi, \overline{\phi})\) and \((\phi', \overline{\phi'})\) are IBP of \(f\), also is \((\max(\phi, \phi'), \min(\overline{\phi}, \overline{\phi'}))\)
 - **Kleene star closure:** if \((\phi, \overline{\phi})\) is an IBP of \(f\), also is \((\phi^*, \overline{\phi}^*)\)
 where \(\cdot^*, \cdot^\ast\) are Kleene-star of min/max convolutions.
 - **Between IBP (contribution):** from two IBPs, build the missing one

<table>
<thead>
<tr>
<th>(A)</th>
<th>(P)</th>
<th>(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\alpha, \overline{\alpha}))</td>
<td>((\pi, \overline{\pi}))</td>
<td>((\pi \circ \alpha, \overline{\pi} \circ \overline{\alpha}))</td>
</tr>
<tr>
<td>((\pi^{-1} \circ \eta, \pi^{-1} \circ \overline{\eta}))</td>
<td>((\pi, \overline{\pi}))</td>
<td>((\eta, \overline{\eta}))</td>
</tr>
<tr>
<td>((\alpha, \overline{\alpha}))</td>
<td>((\eta \circ \overline{\alpha}^{-1}, \overline{\eta} \circ \alpha^{-1}))</td>
<td>((\eta, \overline{\eta}))</td>
</tr>
</tbody>
</table>
Packetizer:
- store bits, up to end-of-packet
- instantaneous packet output
- model: E, P unchanged

$$A' := P^{-1} \circ P \circ A \quad E' := E \quad P' := P$$
Packetizer:

- store bits, up to end-of-packet
- instantaneous packet output
- model: E, P unchanged

$$A' := P^{-1} \circ P \circ A$$
$$E' := E$$
$$P' := P$$

$$\alpha' := \pi^{-1} \circ \eta$$
$$\overline{\alpha}' := \pi^{-1} \circ \overline{\eta}$$
Aggregation:

- mix of flows
- “sum” of flows
 - is a flow
- no delay

\[
\begin{align*}
A_1, E_1, P_1 & \rightarrow S \rightarrow A, E, P \\
A_2, E_2, P_2 & \rightarrow S
\end{align*}
\]

\[
A := A_1 + A_2 \\
E := E_1 + E_2 \\
P(A_1 + A_2) := P(A_1) + P(A_2)
\]

\[
\begin{align*}
\alpha := \alpha_1 + \alpha_2 \\
\eta := \eta_1 + \eta_2 \\
\pi := \lfloor \pi_1 \star \pi_2 \rfloor
\end{align*}
\]

\[
\begin{align*}
\overline{\alpha} := \overline{\alpha}_1 + \overline{\alpha}_2 \\
\overline{\eta} := \overline{\eta}_1 + \overline{\eta}_2 \\
\overline{\pi} := \lceil \overline{\pi}_1 \star \overline{\pi}_2 \rceil
\end{align*}
\]
Case study

Two data flows, \(F_1, F_2 \), from \(S \) to \(C \)

Using a link of throughput 1

<table>
<thead>
<tr>
<th>Flow</th>
<th>Packet size</th>
<th>Burst</th>
<th>Throughput</th>
<th>(\alpha_i)</th>
<th>(\pi_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_1)</td>
<td>1/2</td>
<td>1</td>
<td>1/4</td>
<td>(x/4 + 1)</td>
<td>(\lceil 2x \rceil)</td>
</tr>
<tr>
<td>(F_2)</td>
<td>1</td>
<td>1</td>
<td>1/4</td>
<td>(x/4 + 1)</td>
<td>(\lfloor x \rfloor)</td>
</tr>
</tbody>
</table>

Goal: evaluation of the packet throughput

- \(F = F_1 + F_2 \)
- what is \(\bar{\eta} \) ?
- challenge: modelling the link shaping
Packet throughput: no shaping

No shaping:

\[\overline{\eta}_1 = \overline{\pi}_1 \circ \overline{\alpha}_1 = \left\lfloor \frac{x}{2} \right\rfloor + 2 \]

\[\overline{\eta}_2 = \overline{\pi}_2 \circ \overline{\alpha}_2 = \left\lfloor \frac{x}{4} \right\rfloor + 1 \]

\[\overline{\eta} \leq \overline{\eta}_1 + \overline{\eta}_2 \]
Packet throughput: with shaping

Link throughput: $\lambda(t) = t$

- Shaping reduces data throughput
 - for each flow, $\bar{\alpha}_i^s = \lambda \land \bar{\alpha}_i$
 - for the aggregate flow: $\bar{\alpha}_{1+2} = \lambda \land (\bar{\alpha}_1 + \bar{\alpha}_2)$

- Impact on packet throughput
 - per flow: $\bar{\eta}_i^s = \bar{\pi}_i \circ \bar{\alpha}_i^s$
 - aggregate flow:
 $\bar{\eta}_{1+2}^s = [\bar{\pi}_1 \ast \bar{\pi}_2] \circ \bar{\alpha}_{1+2}^s$
 - both $\bar{\eta}_1^s + \bar{\eta}_2^s$ and $\bar{\eta}_{1+2}^s$ are packet throughput bounds
- the shaping only affects start of curve
- the simple method has better long term throughput
- the new method is locally better
Outline

Context and goal

The unifying model

Model evaluation

Conclusion
Conclusion

- A new model, unifying NC and Event-Stream/CPA
- Taking the model in hand
 - algebraic results
 - some accuracy gains
- Next steps
 - composition implementation
 - aggregation improvement
 - realistic case study
Toward unifying model

Figure: http://xkcd.com/927/