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he Blg Ficture of Joan's thesis

» Dynamic Aeroelastic Similarity between a reference aircraft and a
scaled model

» Design variables (passive+active)

» New objective function (aeroelasticity-based) to ensure the similarity

Thicknesses = Passive
actionon [K] & [M]

Moving Masses—>
Active action on[M]

‘PZTQ Active action
on[K]

What if our methodology could help to - Test/validate
new (or derved) concepts on a fight demonstrator”?

www.dai-kong.com



Alrcrait DNA: Modal basis



Computational Tools for CFD/CSM

[§ *[github.com/nasa/NASTRAN-95]

» Nastran 95%: Normal Modes and FHutter Analysis (DLIV) [@ [pdas.com/panair.html]

e Panair/ab027: Static aerodynamics [ *[Gray et al., AIAA/ISSMO, 2014]
Allemang, R. J. (2003). The modal assurance

* QD@HMDAOi Framework criterion—twenty years of use and

abuse. Sound and vibration, 37(8), 14-23.

» Optimizer: SLSQP (Gradient-based, from Scipy library) and SEGOMOE  (Surrogate-based)

\ethod for Modal Analysis

« MAC (Modal Assurance Criterion) usualy used for Experimental/Numerical correlation (late 70s)

-2 Adapted here for Reference/Scaled arcraft
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QOutlines

1. OpenVDAQ strategy
2. Hrst application: Modes tracking strategy
3. Second application: Wing planform optimization for flutter similarity




1.OpenMDAQ strategy



Preliminary works MDA Static Aeroelasticity XDsIM
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Static asroelasticity Optimization
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mplementation in OpenNVDAO (1)

ExternalCode
components

Displacement E
Transfer

..................................................................

m ExternalCode type of component

m From the inputs of the component, the input file of the
external analysis code is written

m Analysis is run

m Output files are read and the outputs are set accordingly



mplementation in OpenNVDAO (2)
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m All components are added into a group

m The nonlinear solver of the group is defined as
Gauss—Seidel



mplementation iIn OpenMDAO (3)

)
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* [he optimizer Is defined as the prolblem’s driver
i« NDF architecture

R
i

m The rest of components and MDA group are added
larger group



2. FIrst application: Mode tracking strategy

 Blind identification
» From ONERA Chatillon's optimized CRM (thanks to C. Blondeau)

Model provided by T. Achard and C. Blondeau*



Thickness initialization :Vector of size
10 t1-t10 (meter):

\odes parring/tracking: Protlem definition array(

0.01863388, 0.01661411, 0.012733
71, 0.01495363, 0.00847329,

Objective Function Dimension Bounds 0.01743593, 0.02332176, 0.020234
Mode shape difference minimization min(N — trace(MAC([®,], [¢.]))) R 47, 0.02068164, 0.0213995 ])
Design Variables

Skin thicknesses vector [t] R0 [0.0889,26.67) mm

Constraints

Reduced frequency matching |wr —wm| =0 R

Mass matching M, —M,=0 R

Generalized masses matching |lm;, — mp|| =0 R

— Upper skin panels

' . CROSSING




\odal Optimization
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1 st Validation CREM Blind Updating

1.19 Hz (Ref.) 1.32 Hz (Baseline) 4.36 Hz (Ref.) 4.64 Hz (Baseline) 4.78 Hz (Ref.) 4.97 Hz (Baseline)

9.99 Hz (Ref.) 10.49 Hz (Baseline) 15.20 Hz (Ref.) 16.35 Hz (Baseline) 16.40 Hz (Ref.) 17.89 Hz (Baseline)

17.89 Hz (Ref) 19.89 Hz (Baseline) 26.01 Hz (Ref.) 27.61 Hz (Baseline) 31.19 Hz (Ref.) 36.34 Hz (Baseline)
1st European OpenVIDAD WOrksnop
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Baseline vs Ref (Frequency)

Graphicaly AT CONVERGENCE. .

0 y=1,1353x - 0,5216
s R?=0,99561 (1) .
10 " L y =0,9999x + 0,001
1.19 Hz (Ref.) 1.19 Hz (Opt.) 4.36 Hz (Ri S
s - R%Z=1 (last)
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3. sSecond application: Futter similarity

 \Wing planform optimization using Nastran DLM




[heoretical Backgrounao

Aeroelastic scaling theory and similarity criteria

With the purpose of determining the parameters that must be respected for the design of an aeroelasti-
cally scaled flight demonstrator, we will adimensionalize the dynamic aeroelastic equation of motion,

[M[{Z} + [K[{z} = [A[{z} + [Ac{Z} + [Am[{Z} + [M[{a,},

where [M] is a vector of elastic and rigid body degrees of freedom, [K] is the stifness matrix, [Ay], [Ac],
and [A ] are the aerodynamic matrices, which relate the aerodynamic forces to the displacements, speeds, and
accelerations respectively, and {a,} is the vector of gravitational acceleration for each degree of freedom.



—Inal normalized equation. .. and list of the conditions

WOk =

() {77} + () {n} = 5% (@I} + a8l (i} + (7))

o (0) @17 a,)

implies that the solution of two models which have different scales is the same (in terms
of the nondimensional variables) as long as the nondimensional parameters are respected. This translates into
satisfying the following conditions:

reduced frequency of the first mode 1,
inertia ratio 4,

Froude number F'r,

nondimensional modal masses (m),
nondimensional modal frequencies (),
nondimensional mode shapes [®],
aerodynamic shape,

Nonlinear aeroelastic scaling of a joined-wing aircraft

AP Ricciardi, RA Canfield, MJ Patil... - Proceedings of the 53rd ..., 2012 - arc.aiaa.org
This paper develops and demonstrates a nonlinear aeroelastic scaling procedure. Previous
work showed that matching scaled structural frequencies and mode shapes as well as a
buckling eigenvalue produced a scaled model that did not have adequately consistent

Yr 99 Cité8fois Autres articles Les 2 versions 99

mmme) Nonlinear aeroelastic-scaled-model optimization using equivalent static
loads

AP Ricciardi, CAG Eger, RA Canfield, MJ Patil - Journal of Aircraft, 2014 - arc.aiaa.org

Copyright® 2014 by Anthony P. Ricciardi., Charles AG Eger, Robert A, Canfield, and

Mayuresh J. Patil. Published by the American Institute of Aeronautics and Astronautics, Inc.,

with permission. Copies of this paper may be made for personal or internal use, on condition

Yr 99 Cité 8fois Autres articles Les 6 versions Web of Science: 5 99

Mach number if compressibility effects are important, and
Reynolds number if viscous effects are important.

[HTML] @iaa.org



Reference aircraft: r
—roblem description Scaled model: m

This complex aerodynamic matrix is
computed for each frequency w and depends on the flow conditions (M). Taking this into consideration, and
considering that we have a reference aircraft (r) and the model we want to optimize to have the same aeroelastic
behavior (r), we can write Eq. for each aircraft as

() (7} + (m52) (1} = 557 e (Ko 5, M) 1),

a1

Match [®], (@) , ()
(from the problem
— (2 —
’; wh [M]{¢} —_0) Equal if same aerodynamic
through optimization shape and flow similarity

/_"\_\
(en) (7} + (FnZ2) (1} = 52 e (Karm, 5, Men)] {7}

1m



What it the flow Is not similar’?

Reference aircraft: r

Scaled model: m

) (7} + (a2 {n} = %fj—% (o (X, £, M) {7}

matched through modal optimization

A optimize w.r. t. Xam

Ve

() {7} + (@2 {1 = 52" T (s 5, M) {7}

1m




Objective function

we can define an optimization problem that searches to optimize the design
variables defining the planform of the model wing in order to minimize the difference between these two terms.
Thus, we can an objective function

f= Z (||[5hr(Xar, KSi,Mr)] - [E—lhm(xama K'iaMm)]”)

that quantifies the difference between the two aerodynamic models through the L? sum of the norms of
the difference of the aerodynamic matrices for a set of reduced frequencies.



Goland WIing results

M=0.8 Baseline

1st European OpenMDAO workshop



Objective function & Design Variables

Objective Function Dimension Bounds
Aerodynamic matrix difference minimization ). (||[@hr(Xar, &i, Mr)] — [@hm(Xam, &i, Mm)]||) R
Design Variables

Chord Iengths [C] R* [O-Scbaselinea 2-5Cbaseline]
Leading edge positions [Xte] R* [0-5xtlaease/inea 1'5X1/)easeline]

' Mr=0.85

LE

c1

Mm=0.3

LE

Y,
4

Aerodynamic surface of the doublet lattice method along with the FEM model.

¢4

Design variables of the wing planform.
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—ResuUlts

Optimized planform (red) and baseline (blue).



SEGOMOE (A surrogate based optimizer with adaptative sampling)

L, Tools: Adflow+ SEGOMOE toolbox

Coe'Pressure

Problem definition ‘"" Bascline

alx) <0
m(x) <0

0354835
0.290323 -
/ 0.225808 qER T
oteras DOE
7742 R o Ly Ty
} | 0.0322581 R R P
. ReBT el @ . "

Basealine

Enrichment criteria \
/ Surrogate Y
Codes 31 Mmodels Q - |
Optimizet —___ AdaoiEaive v ey
1 C ' 0 ' . )
0677419 0677419
e v S
0483871 0483871
i Convergence”? i
0.290323 0.290323
0.225806 0.225806
S S
016129 016129
o e
Pyrres 0416088
0483871 0483871

N. Bartoli, T. Lefevbre, N. Bons, M. Bouhlel, S. Dubreuil, R. Olivanti, J.R.R. Martins and J. Morlier. An adaptive optimization strategy based on mixture of experts for wing aerodynamic
design optimization. Proceedings of AIAA AVIATION Forum 5-9 June 2017, Denver, Colorado 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference 2017



SEGOMOE results: objective function

Initial 9-points DOE

First steps to find an admissible point (constraints satisfied)
Then iterative process to reduce the objective function
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SEGOMOE (A surrogate based optimizer with adaptative sampling)
G: DOE or database :z:(OD

11,22-11:
Convergence check
(Limited Budget of
Evaluations)

4,104, 15,21—-15:
Optimization:
COBYLA, SLSQP, ...

9, 20:
/ 10, 21: (criteria, constraints) /h Enrichment criteria
(EL, WB2, ...)
l 2 7, 18:
8’. 19: (£,s), S):stem
(ci; 8,’), fmm functions

m SEGOMOE: a evolution of EGO (Efficient Global RVRT

Optimization) with Mixture of Experts [6,17: Gisi e /0,12: 20,z

m Wrapper done to pyOptSparse and OpenMDAO R L1
E Jones, Schonlau and Welch, Journal of Global optimization, 1998]
E Sasena, Ph.D. thesis, University of Michigan, 2002]

Bartoli et al., AIAA-2016-2301 and AIAA-2017-4433]

1st European OpenMDAO workshop 32



Conclusions

* Original contribution on scaled aircraft

e WO elementary bricks have been established to ensure the aercelastic similiraity
1. Blind modal identification tested with different initial design (robust updating)

2. Aeroglastic similarity between a demonstrator and a reference aircraft was ensured using an MDO
formulation

» (Sood performance of the Surrogate-based optimization methods versus Gradient-based
(SLSQP versus SEGONMOE)

 Strong interaction with UoM (PhD of Joan Mas Colomer) @ use of High FHdelity CFD code ADflow
N our optimization loop

e [ ast year of Joan's PND dedicated to mission-based optimization
» Opensource tools for aeroelastic sizing constraints (related to the next presentation on BWE)
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. . AEROSPACE SMT: Surrogate Modeling Toolbox
Visit : ENGINEERING

UNIVERSITY of MICHIGAN
. . (e.g., radial basis functions, kriging), sampling methods, and benchmarking problems. SMT is designed to make it easy for de-
. I
h tt p S .//g I t h u b . CO I I I/S M To rg/s M velopers to implement new surrogate models in a well-tested and well-document platform, and for users to have a library of

surrogate modeling methods with which to use and compare methods.

The surrogate model toolbox (SMT) is an open-source Python package consisting of libraries of surrogate modeling methods

ONERA The code is available open-source on GitHub.
' Focus on derivatives
Table Of Contents SMT is meant to be a general library for surrogate modeling (also known as metamodeling, interpolation, and regression), but its
SMT: Surrogate Modeling distinguishing characteristic is its focus on derivatives, e.g., to be used for gradient-based optimization. A surrogate model can
Toolbox be represented mathematically as
Focus on derivatives
Documentation contents y =f(x,xt, yt),

= Indices and tables
where xt € R"™ "™ contains the training inputs, yte R™ contains the training outputs, X € R™ contains the prediction inputs,

m and y € R contains the prediction outputs. There are three types of derivatives of interest in SMT:

Getting started 1. Derivatives (dy/dx): derivatives of predicted outputs with respect to the inputs at which the model is evaluated.

2. Training derivatives (dyt/dxt): derivatives of training outputs, given as part of the training data set, e.g., for gradient-en-
L3l age hanced kriging.

Show Source 3. Output derivatives (dy/dyt): derivatives of predicted outputs with respect to training outputs, representing how the predic-

M tion changes if the training outputs change and the surrogate model is re-trained.

Not all surrogate modeling methods support or are required to support all three types of derivatives; all are optional.
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