
Overview of the MAUD architecture
& new applications of OpenMDAO v2

John T Hwang
First European OpenMDAO Workshop

ONERA • October 12, 2017

Several new MDO applications have been
recently developed in OpenMDAO

2

‣ Nanosatellite MDO 2014
‣ Aircraft design-allocation optimization 2016
‣ Aircraft trajectory-propulsion optimization 2017
‣ Electric aircraft MDO 2018
‣ Aerostructural optimization with morphing 2018
‣ Topology optimization 2018

The common thread in these examples
is large-scale optimization

3

Number of design
and state variables

Number of
disciplines

e.g.,
CFD-based optimization

topology optimization
aerostructural optimization

e.g.,
gradient-free optimization
parameter sweeps
ModelCenter

Large-scale
MDO

OpenMDAO

The ability to solve large-scale problems
affords significant flexibility

4

 April 1st, 2014 July 1st, 2014

 1.0892(rad)
 1.4936(rad)

Optimal control
and design

Topology
optimization

Shape
optimization

Design-operations optimization

Gradient-based opt. is key to large-scale
but derivative computation is the bottleneck

5

Gradient-based (SNOPT)
41 iterations

Gradient-free (ALPSO)
1340 iterations

Efficient derivative computation is difficult
especially with multiple disciplines

MAUD was developed to simplify efficient
differentiation of multidisciplinary models

6

Optimizer

Model

Inputs
(design variables)

Outputs
(objective, constraints)

Derivatives
x

f

df

dx

The most efficient method for computing is different for each model
df

dx

MAUD: modular analysis and unified derivatives

Outline

7

1. MAUD: mathematical formulation and theory
• Unification of the methods for computing derivatives
• Automation of a significant part of derivative computation

2. MAUD: algorithmic aspects
• Hierarchical solution for minimal overhead
• Automated parallelization

3. Overview of OpenMDAO v2 applications

Outline

8

1. MAUD: mathematical formulation and theory
• Unification of the methods for computing derivatives
• Automation of a significant part of derivative computation

2. MAUD: algorithmic aspects
• Hierarchical solution approach
• Parallel execution

3. Overview of OpenMDAO v2 applications

Component
inputs

Component
outputs

Partial derivatives:
‣ Derivative of a function with

respect to one of its arguments
‣ A local property computed at

the component level
‣ Methods: FD, CS, AD, symb., …

Derivatives are computed in two steps:
(1) partial derivatives (2) total derivatives

9

Total derivatives:
‣ Derivative of a variable with

respect to another variable
‣ A global property computed at the

model level
‣ Methods: FD, chain rule, adjoint, …

Model
inputs

Model
outputs

MAUD unifies all of these methods

Examples of total derivative computation
1. Two sequential disciplines: chain rule

10

y1 = Y1(x)

y2 = Y2(x, y1)

f = F(x, y1, y2)f

y1

y2

Discipline 1

Discipline 2

Objective &
Constraints

Chain rule

dy1

dx

= @Y1
@x

dy2

dx

= @Y2
@x

+ @Y2
@y1

dy1

dx

df

dx

= @F

@x

+ @F

@y1

dy1

dx

+ @F

@y2

dy2

dx

Examples of total derivative computation
2. Implicit discipline: direct/adjoint method

11

States defined
implicitly

Objective &
Constraintsf

y
R(x, y) = 0

f = F(x, y)

Direct method

@R
@y

dy

dx

= �@R
@y

df

dx

= @F
@x

+ @F
@x

dy

dx

Adjoint method

@R
@y

T

df

dr

T

= � @F
@y

T

df

dx

= @F
@x

+ df

dr

@R
@x

Examples of total derivative computation
3. Two coupled disciplines: GSE method

12

f

y1

y2

Discipline 1

Discipline 2

Objective &
Constraints

y1 = Y1(x, y2)

y2 = Y2(x, y1)

f = F(x, y1, y2)

"
I �@Y1

@y2

�@Y2
@y1

I


dy1

dx

dy2

dx

�
=


@Y1
@x

@Y2
@x

�

df

dx

= @F
@x

+ @F
@y1

dy1

dx

+ @F
@y2

dy2

dx

Forward form

"
I �@Y2

@y1

�@Y1
@y2

I

#"
df

dy1
df

dy2

#
=

"
@F
@y1
@F
@y2

#

df

dx

= @F
@x

+ df

dy1

@Y1
@x

+ df

dy2

@Y2
@x

Reverse form

We can unify all methods for computing
total derivatives using a single equation

13

R(u) = 0

reformulate

@
�
R�1

�

@r
=

@R

@u

�1
!

du

dr
:=

@
�
R�1

�

@r

If you are curious about the details:

Inverse
Function
Theorem @R

@u

du

dr
= I =

@R

@u

T du

dr

T

By choosing the right u & R, each method
can be derived from the unifying equation

14

Chain
rule

dy1

dx

= @Y1
@x

dy2

dx

= @Y2
@x

+ @Y2
@y1

dy1

dx

df

dx

= @F

@x

+ @F

@y1

dy1

dx

+ @F

@y2

dy2

dx

@R
@y

dy

dx

= �@R
@y

df

dx

= @F
@x

+ @F
@x

dy

dx

@R
@y

T

df

dr

T

= � @F
@y

T

df

dx

= @F
@x

+ df

dr

@R
@x

"
I �@Y1

@y2

�@Y2
@y1

I


dy1

dx

dy2

dx

�
=


@Y1
@x

@Y2
@x

�

df

dx

= @F
@x

+ @F
@y1

dy1

dx

+ @F
@y2

dy2

dx

"
I �@Y2

@y1

�@Y1
@y2

I

#"
df

dy1
df

dy2

#
=

"
@F
@y1
@F
@y2

#

df

dx

= @F
@x

+ df

dy1

@Y1
@x

+ df

dy2

@Y2
@x

Direct method

Adjoint method

Forward GSE

Reverse GSE

@R

@u

du

dr
= I =

@R

@u

T du

dr

T

Example: the direct / adjoint method

15

I

�@R
@x

�@F
@x

0

�@R
@y

�@F
@y

0

0

I

I

dy

dx

df

dx

0

dy

dry

df

dry

0

0

I

=

I

0

0

0

I

0

0

0

I

I

0

0

�@R
@x

�@R
@y

0

�@F
@x

�@F
@y

I

I

0

0

dy

dx

dy

dry

0

df

dx

df

dry

I

=

I

0

0

0

I

0

0

0

I

I

0

0

�@R
@x

�@R
@y

0

�@F
@x

�@F
@y

I

I

0

0

dy

dx

dy

dry

0

df

dx

df

dry

I

=

I

0

0

0

I

0

0

0

I

I

0

0

�@R
@x

�@R
@y

0

�@F
@x

�@F
@y

I

I

0

0

dy

dx

dy

dry

0

df

dx

df

dry

I

=

I

0

0

0

I

0

0

0

I

I

0

0

�@R
@x

�@R
@y

0

�@F
@x

�@F
@y

I

I

0

0

dy

dx

dy

dry

0

df

dx

df

dry

I

=

I

0

0

0

I

0

0

0

I

I

0

0

�@R
@x

�@R
@y

0

�@F
@x

�@F
@y

I

I

0

0

dy

dx

dy

dry

0

df

dx

df

dry

I

=

I

0

0

0

I

0

0

0

I

@R

@u

du

dr
= I =

@R

@u

T du

dr

T

f

y R(x, y) = 0

f = F(x, y)
R(u) =

2

66664

x� x

⇤

�R(x, y)

f � F(x, y)

3

77775
u =

2

66664

x

y

f

3

77775

Significance: when building large models,
total derivative computation is automated

16

OpenMDAO Partition Tree and N^2 diagram.
! " # $ % % & & ' () * + ,

 -

root

comp_pax_flt pax_flt

msn_group mission_0

inputs_comp

eta
x_1e3_km_cp

h_km_cp
M0

bsplines

comp_x x_1e3_km
comp_h h_km

comp_x_con x_1e3_km_con
comp_h_con h_km_con

comp_x_smooth x_1e3_km_smooth
comp_h_smooth h_km_smooth

atmos

comp_temp temp_1e2_K
comp_pressure p_1e6_Pa

comp_density rho
comp_speed_sound a_1e2_ms

comp_mach M
comp_speed v_1e2_ms

preprocess

comp_dh_smooth dh_dx_smooth
comp_dh2_smooth d2h_dx2_smooth
comp_gamma_con gamma_con

comp_gamma gamma

comp_vel v_ms_x
v_ms_y

comp_dvx dvx_dx
comp_dvy dvy_dx

comp_accel a_ms2_x
a_ms2_y

comp_max_thrust maxT_1e6_N

coupled_analysis

comp_vertical_eom CL

comp_aero CD
alpha

comp_horizontal_eom CT
comp_tau tau

comp_prop SFC_1em6_NNs
comp_delta_fuel dWfuel_1e6_N

comp_fuel Wfuel_1e6_N

functionals

KSmin Tmin
KSmax Tmax

fuelburn fuelburn_1e6_N
blocktime blocktime_hr
objective objective

Connections:

. / 0

Figure 6: Dependency graph for the mission analysis model.

change the number of constraints. This is a universal problem that is always present in adaptive refinement applica-
tions, and it must be overcome to be able to take advantage of reconfigurability in shape or curve optimization.

The solution is a bi-level parametrization and the use of two discretizations of the curve. First, let us introduce
two new variables, nc̄ and np̄. We shall evaluate a B-spline with nc control points at nc̄ points, then evaluate another
B-spline with nc̄ control points at np and np̄ points. Let Bc̄ be an nc̄ ⇥ nc matrix representing the evaluation of a
B-spline with nc control points at nc̄ uniformly-spaced points. Let Bp and Bp̄ be np ⇥ nc̄ and np̄ ⇥ nc̄ matrices
representing the evaluation of a B-spline with nc̄ control points at np and np̄ uniformly-spaced points, respectively. If
c 2 Rnc is the vector of altitude design variables, the discretized altitude profile used for the mission analysis is p̄ and
the discretized altitude profile used for evaluating the slope constraints is p, then we have

p = BpBc̄c (6)
p̄ = Bp̄Bc̄c. (7)

With this formulation, c̄ can be arbitrarily varied to control the resolution of the parametrization and p̄ can be
arbirarily varied to control the resolution of the discretization. Meanwhile, c and p can be held fixed to ensure that
the number of design variables and the number of constraints do not change. Normally, c̄ < c, therefore, the Hessian
matrix is singular with respect to the nc control points, which can cause failure in some optimizers. Moreover, it can
result in oscillations in the nc control points despite a smooth profile because of the additional degrees of freedom
that have no impact on the altitude profile. To address both of these issuues, a penalty term is added to the objective
function to minimize the integral of the second derivative of the altitude profile given by a direct c to p B-spline
map. This approach is used to adaptively refine the parametrization and discretization in the mission model, while
maintaining a fixed optimization problem.

RESULTS Four optimization problems are solved: one with no refinement, and one with one, two, and four re-
finements. The optimization problem with no refinement does not use the bi-level parametrization, and it maps the nc

control points directly to the np discretization points. The four optimization problems are summarized in the following
table:

In all 4 problems, refinement occurs when the optimality and feasibility are within a factor of 10 of the optimization
convergence tolerances, which are 1e-5 for optimality and 1e-6 for feasibility. Figure 7 shows the effect of refinement
on the optimization convergence metrics. As one would expect, there is an immediate increase in optimality and fea-
sibility after refinement, followed by rapid convergence. Optimization with one refinement is faster than optimization

12 of 17

American Institute of Aeronautics and Astronautics

VariablesComponents

1. We implement our components and their partial derivatives

2. Solving the unifying equation automatically applies the right method

Outline

17

1. MAUD: mathematical formulation and theory
• Unification of the methods for computing derivatives
• Automation of a significant part of derivative computation

2. MAUD: algorithmic aspects
• Hierarchical solution approach
• Parallel execution

3. Overview of OpenMDAO v2 applications

Running the model now becomes
solving a system of equations

18

Optimizer

Model

Inputs
(design

variables)

Outputs
(objective,
constraints)

Derivativesx

f

df

dx

Solve the linear system,
@R

@u

du

dr
= I =

@R

@u

T du

dr

T

Solve the
nonlinear system,

R(u) = 0

To solve these systems efficiently,
we use hierarchical solvers

19

G1
G2

G3

G4

G1

C1

G2

G3
C2

C3

G4
C4

C5

C6

At each level in the hierarchy, we will apply the
appropriate solver (nonlinear and linear)

For Group 1, its subsystems are sequential

20

G1

G3

G4G2

G1

C1

G2

G3
C2

C3

G4
C4

C5

C6

Since all dependencies are feed-forward at this level,
a single block Gauss—Seidel iteration is sufficient

C1

C6

For Group 2, its subsystems are decoupled

21

G1
G2

G3

G4

G1

C1

G2

G3
C2

C3

G4
C4

C5

C6

Since there are no dependencies at this level,
a single block Jacobi iteration is sufficient

For Group 3, its subsystems are coupled

22

G1
G2

G3

G4

G1

C1

G2

G3
C2

C3

G4
C4

C5

C6

Since the dependencies include a feedback loop,
a (nonlinear or linear) solver is required.

We can parallelize anywhere
at any level in the hierarchy

23

For instance, if we run this model with 4 processors:

G1
G2

G3

G4

In group G2, it does
makes sense to
parallelize.
G3: 2 processors
G4: 2 processors

G1

G3

G4G2

In group G1, it does
not make sense to
parallelize.
C1: 4 processors
G2: 4 processors
C6: 4 processors

C1

C6 G1
G2

G3

G4

In group G3, we might
parallelize based on
our solver (say we do).
Comp 2: 1 processors
Comp 3: 1 processors

C2
C3

Proc

1 2 3 4

Significance: we can assign solvers and/or
choose to parallelize at any level

24

OpenMDAO Partition Tree and N^2 diagram.
! " # $ % % & & ' () * + ,

 -

root

comp_pax_flt pax_flt

msn_group mission_0

inputs_comp

eta
x_1e3_km_cp

h_km_cp
M0

bsplines

comp_x x_1e3_km
comp_h h_km

comp_x_con x_1e3_km_con
comp_h_con h_km_con

comp_x_smooth x_1e3_km_smooth
comp_h_smooth h_km_smooth

atmos

comp_temp temp_1e2_K
comp_pressure p_1e6_Pa

comp_density rho
comp_speed_sound a_1e2_ms

comp_mach M
comp_speed v_1e2_ms

preprocess

comp_dh_smooth dh_dx_smooth
comp_dh2_smooth d2h_dx2_smooth
comp_gamma_con gamma_con

comp_gamma gamma

comp_vel v_ms_x
v_ms_y

comp_dvx dvx_dx
comp_dvy dvy_dx

comp_accel a_ms2_x
a_ms2_y

comp_max_thrust maxT_1e6_N

coupled_analysis

comp_vertical_eom CL

comp_aero CD
alpha

comp_horizontal_eom CT
comp_tau tau

comp_prop SFC_1em6_NNs
comp_delta_fuel dWfuel_1e6_N

comp_fuel Wfuel_1e6_N

functionals

KSmin Tmin
KSmax Tmax

fuelburn fuelburn_1e6_N
blocktime blocktime_hr
objective objective

Connections:

. / 0

Figure 6: Dependency graph for the mission analysis model.

change the number of constraints. This is a universal problem that is always present in adaptive refinement applica-
tions, and it must be overcome to be able to take advantage of reconfigurability in shape or curve optimization.

The solution is a bi-level parametrization and the use of two discretizations of the curve. First, let us introduce
two new variables, nc̄ and np̄. We shall evaluate a B-spline with nc control points at nc̄ points, then evaluate another
B-spline with nc̄ control points at np and np̄ points. Let Bc̄ be an nc̄ ⇥ nc matrix representing the evaluation of a
B-spline with nc control points at nc̄ uniformly-spaced points. Let Bp and Bp̄ be np ⇥ nc̄ and np̄ ⇥ nc̄ matrices
representing the evaluation of a B-spline with nc̄ control points at np and np̄ uniformly-spaced points, respectively. If
c 2 Rnc is the vector of altitude design variables, the discretized altitude profile used for the mission analysis is p̄ and
the discretized altitude profile used for evaluating the slope constraints is p, then we have

p = BpBc̄c (6)
p̄ = Bp̄Bc̄c. (7)

With this formulation, c̄ can be arbitrarily varied to control the resolution of the parametrization and p̄ can be
arbirarily varied to control the resolution of the discretization. Meanwhile, c and p can be held fixed to ensure that
the number of design variables and the number of constraints do not change. Normally, c̄ < c, therefore, the Hessian
matrix is singular with respect to the nc control points, which can cause failure in some optimizers. Moreover, it can
result in oscillations in the nc control points despite a smooth profile because of the additional degrees of freedom
that have no impact on the altitude profile. To address both of these issuues, a penalty term is added to the objective
function to minimize the integral of the second derivative of the altitude profile given by a direct c to p B-spline
map. This approach is used to adaptively refine the parametrization and discretization in the mission model, while
maintaining a fixed optimization problem.

RESULTS Four optimization problems are solved: one with no refinement, and one with one, two, and four re-
finements. The optimization problem with no refinement does not use the bi-level parametrization, and it maps the nc

control points directly to the np discretization points. The four optimization problems are summarized in the following
table:

In all 4 problems, refinement occurs when the optimality and feasibility are within a factor of 10 of the optimization
convergence tolerances, which are 1e-5 for optimality and 1e-6 for feasibility. Figure 7 shows the effect of refinement
on the optimization convergence metrics. As one would expect, there is an immediate increase in optimality and fea-
sibility after refinement, followed by rapid convergence. Optimization with one refinement is faster than optimization

12 of 17

American Institute of Aeronautics and Astronautics

OpenMDAO v2 methods and applications

25

1. New methods
• Reconfigurability
• Ozone: ODE and optimal control solver library

2. Recent applications
• Topology optimization
• Aircraft design-allocation optimization
• Electric aircraft MDO

OpenMDAO v2 methods and applications

26

1. New methods
• Reconfigurability
• Ozone: ODE and optimal control solver library

2. Recent applications
• Topology optimization
• Aircraft design-allocation optimization
• Electric aircraft MDO

‣ Adaptive preconditioners
‣ Adaptive globalization methods
‣ Automatically partitioning solvers

‣ Adaptive time stepping
‣ Overset/unstructured CFD
‣ Adaptive mesh refinement
‣ Multi-fidelity optimization

Reconfiguration: changing the model
in the middle of running it

27

Changing variable sizes/adding or removing variables:

Changing the hierarchy/parallelization:

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6

Group 3 Group 4

Group 2

Group 1

Reconfigurability is used for adaptive
optimization of an aircraft mission profile

28

altitudes up to 20 km. However, one modification is made to the temperature change near the tropopause at 11 km
altitude. Instead of an abrupt change from a negative slope to a zero slope, a cubic function is fitted to the region to
smoothly vary temperature as altitude is increased from 10.5 km to 11.5 km. The continuity in slope is desirable for
gradient-based optimization, as discontinuities may cause the optimization process to be stuck in a loop. The equation
of the cubic fit is determined to be the following:

T (h) = (2.00 ⇥ 10�11)h3 + (2.59 ⇥ 10�6)h2 � (6.75 ⇥ 10�2)h + 6.20 ⇥ 10�2 (1)

for
10500  h  11500 (2)

Having determined the altitude airspeed and flight conditions, we can now enforce the flight equilibrium equations
at these points, and compute the state of the aircraft. We start by writing out the full flight equilibrium equations:

L + (We + Wp + Wf) cos � � T sin ↵ +
We + Wp + Wf

g

v

2 cos �

d�

dx

= 0 (3)

T cos ↵ + D + (We + Wp + Wf) sin � +
We + Wp + Wf

g

v cos �

dv

dx

= 0 (4)

M � I

✓
d2

�

dx

2
(v cos �)2 +

d�

dx

dv

dx

v(cos �)2
◆

= 0 (5)

where We represents the operating empty weight of the aircraft, Wp represents the weight of the payload carried by
the aircraft, and Wf represents the weight of the fuel carried at a particular time instance. The direction of forces
and the flight angles are shown on Figure 1. As shown on the figure, the flight path angle is represented by �, and
the angle of attack is represented by ↵. �T represents the angle at which the engines are mounted with respect to the
horizon. It is assumed to be small, therefore neglected in our formulation. From these equations, we assume each
of the collocation points to be in a steady flight condition. Although this assumption may not necessarily be valid,
the high-fidelity solvers and the aerodynamic surrogate models used have already made the steady flight assumption,
resulting in the loss of unsteady aerodynamic effects. Therefore, even by including the unsteady terms in the flight
equilibrium equations, we are still not able to model the dynamics accurately. In addition to neglecting the unsteady
terms, we have also substituted in the target values for the lift, drag, and moment coefficients: C̃L, C̃D, C̃M in the
following equations:

Figure 1: Free body diagram of flight equilibrium.

1

2
⇢v

2
SC̃L + (We + Wp + Wf) cos � � 1

2
⇢v

2
SC̃T sin ↵ = 0 (6)

1

2
⇢v

2
SC̃T cos ↵ +

1

2
⇢v

2
SCD + (We + Wp + Wf) sin � = 0 (7)

C̃M = 0 (8)

4 of 14

American Institute of Aeronautics and Astronautics

The flight equilibrium equations are
solved using a collocation approach

altitudes up to 20 km. However, one modification is made to the temperature change near the tropopause at 11 km
altitude. Instead of an abrupt change from a negative slope to a zero slope, a cubic function is fitted to the region to
smoothly vary temperature as altitude is increased from 10.5 km to 11.5 km. The continuity in slope is desirable for
gradient-based optimization, as discontinuities may cause the optimization process to be stuck in a loop. The equation
of the cubic fit is determined to be the following:

T (h) = (2.00 ⇥ 10�11)h3 + (2.59 ⇥ 10�6)h2 � (6.75 ⇥ 10�2)h + 6.20 ⇥ 10�2 (1)

for
10500  h  11500 (2)

Having determined the altitude airspeed and flight conditions, we can now enforce the flight equilibrium equations
at these points, and compute the state of the aircraft. We start by writing out the full flight equilibrium equations:

L + (We + Wp + Wf) cos � � T sin ↵ +
We + Wp + Wf

g

v

2 cos �

d�

dx

= 0 (3)

T cos ↵ + D + (We + Wp + Wf) sin � +
We + Wp + Wf

g

v cos �

dv

dx

= 0 (4)

M � I

✓
d2

�

dx

2
(v cos �)2 +

d�

dx

dv

dx

v(cos �)2
◆

= 0 (5)

where We represents the operating empty weight of the aircraft, Wp represents the weight of the payload carried by
the aircraft, and Wf represents the weight of the fuel carried at a particular time instance. The direction of forces
and the flight angles are shown on Figure 1. As shown on the figure, the flight path angle is represented by �, and
the angle of attack is represented by ↵. �T represents the angle at which the engines are mounted with respect to the
horizon. It is assumed to be small, therefore neglected in our formulation. From these equations, we assume each
of the collocation points to be in a steady flight condition. Although this assumption may not necessarily be valid,
the high-fidelity solvers and the aerodynamic surrogate models used have already made the steady flight assumption,
resulting in the loss of unsteady aerodynamic effects. Therefore, even by including the unsteady terms in the flight
equilibrium equations, we are still not able to model the dynamics accurately. In addition to neglecting the unsteady
terms, we have also substituted in the target values for the lift, drag, and moment coefficients: C̃L, C̃D, C̃M in the
following equations:

Figure 1: Free body diagram of flight equilibrium.

1

2
⇢v

2
SC̃L + (We + Wp + Wf) cos � � 1

2
⇢v

2
SC̃T sin ↵ = 0 (6)

1

2
⇢v

2
SC̃T cos ↵ +

1

2
⇢v

2
SCD + (We + Wp + Wf) sin � = 0 (7)

C̃M = 0 (8)

4 of 14

American Institute of Aeronautics and Astronautics

Baseline optimization with no refinement

29

Minimal fuel-burn altitude optimization: 100 B-spline control points

50 100 150 200 250

10

�11

10

�9

10

�7

10

�5

10

�3

10

�1

Function evaluations

C
o
n
v
e
r
g
e
n
c
e
m
e
t
r
i
c

Optimality

Feasibility

520 seconds

Optimization with refinement

30

Minimal fuel-burn altitude optimization: 40; 100 degrees of freedom

Optimality

Feasibility

50 100 150 200 250

10

�10

10

�8

10

�6

10

�4

10

�2

Function evaluations

C
o
n
v
e
r
g
e
n
c
e
m
e
t
r
i
c

470 seconds

Optimization with a single adaptive
refinement is the most efficient

31

50 100 150 200 250

10

�11

10

�9

10

�7

10

�5

10

�3

10

�1

Function evaluations

C
o
n
v
e
r
g
e
n
c
e
m
e
t
r
i
c

50 100 150 200 250

10

�10

10

�8

10

�6

10

�4

10

�2

Function evaluations

C
o
n
v
e
r
g
e
n
c
e
m
e
t
r
i
c

With refinement
(~470 s)

Optimality

Feasibility

No refinement
(~520 s)

OpenMDAO v2 methods and applications

32

1. New methods
• Reconfigurability
• Ozone: ODE and optimal control solver library

2. Recent applications
• Topology optimization
• Aircraft design-allocation optimization
• Electric aircraft MDO

ODEs or optimal control problems
are often found in MDO

33

0

25

Alt (103 ft)

�3

22

Path Angle (deg)

0.20

0.85

Mach

�2

4

AoA (deg)

0.15

0.65

C

L

5

30
L/D

0

225

Thrust (103 lb)

Range
0

20

Fuel (103 lb)

Figure 10: Altitude and Mach Number optimization for a 1000-nautical mile mission.

profile optimization has been demonstrated, but further implementation is required for realistic results. The progress
of the proposed tool thus far has demonstrated its suitability for the eventual use in a simultaneous multidisciplinary
optimization problem.

Several immediate future goals remain for this tool. The first of which involves utilizing grid-sequencing to
improve the performance of the optimizer for missions with higher number of B-spline control points. Secondly, a
cost-index-based optimization problem needs to be implemented to realistically optimize for altitude and airspeed for a
given mission. Lastly, accurate parameterization of the optimized trajectory curves has the potential of further reducing
computation time while retaining much of the existing accuracy. This planned approach can make the previously
proposed simultaneous optimization of different disciplines more computationally tractable.

VI. Acknowledgments
The authors gratefully acknowledge support from NASA through award No. ???????. The authors would also like

to thank Rhea P. Liem for providing the aerodynamic surrogate models.

13 of 14

American Institute of Aeronautics and Astronautics

0

25

Alt (103 ft)

�3

22

Path Angle (deg)

0.20

0.85

Mach

�2

4

AoA (deg)

0.15

0.65

C

L

5

30
L/D

0

225

Thrust (103 lb)

Range
0

20

Fuel (103 lb)

Figure 10: Altitude and Mach Number optimization for a 1000-nautical mile mission.

profile optimization has been demonstrated, but further implementation is required for realistic results. The progress
of the proposed tool thus far has demonstrated its suitability for the eventual use in a simultaneous multidisciplinary
optimization problem.

Several immediate future goals remain for this tool. The first of which involves utilizing grid-sequencing to
improve the performance of the optimizer for missions with higher number of B-spline control points. Secondly, a
cost-index-based optimization problem needs to be implemented to realistically optimize for altitude and airspeed for a
given mission. Lastly, accurate parameterization of the optimized trajectory curves has the potential of further reducing
computation time while retaining much of the existing accuracy. This planned approach can make the previously
proposed simultaneous optimization of different disciplines more computationally tractable.

VI. Acknowledgments
The authors gratefully acknowledge support from NASA through award No. ???????. The authors would also like

to thank Rhea P. Liem for providing the aerodynamic surrogate models.

13 of 14

American Institute of Aeronautics and Astronautics

For example, in the problem we just saw:

Optimizing the aircraft altitude profile…

…to minimize fuel burn over the mission

dWfuel / dt = f(Wfuel)

There are many families of methods
but we require them to be differentiated

34

Explicit methods
(e.g., forward Euler)

Implicit methods
(e.g., backward Euler)

Multistep methods
(e.g., 2nd order BDF)

Multistage methods
(e.g., Runge—Kutta 4)

All major ODE integration schemes are
unified by general linear methods (GLM)

35

Our notation for GLMs assumes r steps and s stages. As with the Runge–Kutta methods, let Y1, . . . , Ys denote the
state values for the s stages. Following Burrage and Butcher [5], we define Y, F 2 RsN and y

[n�1]
, y

[n] 2 RrN where

Y =

2

64
Y1
...
Ys

3

75 , F =

2

64
F1
...
Fs

3

75 , y

[n�1] =

2

664

y

[n�1]
1

...
y

[n�1]
r

3

775 , y

[n] =

2

664

y

[n]
1
...

y

[n]
r

3

775 , (7)

where Y1, . . . , Ys are the states at the s stages; F1, . . . , Fs are the derivatives at the s stages; y[n�1]
1 , . . . , y

[n�1]
r are the

states from the steps available at the previous time step; and y

[n]
1 , . . . , y

[n]
r are the states from the steps available at the

current time step.
The GLMs are given by

Yi =
sX

j=1

haijFj +
rX

j=1

uijy
[n�1]
j , i = 1, . . . , s, (8)

y

[n]
i =

sX

j=1

hbijFj +
rX

j=1

vijy
[n�1]
j , i = 1, . . . , r, (9)

where the first equation computes the stages and the second computes the new state values at the current time step.
Representing the a⇤⇤, b⇤⇤, u⇤⇤, v⇤⇤ coefficients using matrices A,B,U, V , the GLMs can be compactly written as


Y

y

[n]

�
=


A⌦ I U ⌦ I
B ⌦ I V ⌦ I

� 
hF

y[n� 1]

�
, (10)

where I is the identity matrix.
The significance of this formulation is that all linear multistep and Runge–Kutta methods can be expressed in this

form with the right choice of the matrices A,B,U, V . Part of the planned work for this paper is to implement an
adjoint-differentiated ODE solver that uses this GLM formulation. This would greatly expedite the implementation of
a large range of integration methods, since all linear multistep or multistage methods can be implemented by specifying
the correct A,B,U, V matrices.

B. Formulations for implicit schemes
Under the umbrella of general linear methods, the linear multistep and Runge–Kutta classes of methods include explicit
and implicit schemes. For implicit schemes, there are additional decisions to be made regarding the formulation, which
we discuss in this section.

1. SAND vs MDF

SAND (simultaneous analysis and design) and MDF (multidisciplinary feasible) are MDO architectures. In general
MDO problems, SAND is an approach where all disciplines’ state variables and their residuals are design variables
and constraints, respectively, in the optimization problem. In contrast, MDF keeps ownership and convergence re-
sponsibility for the state variables within the disciplines, so the states are hidden from the optimizer.

For implicit integration methods, the same decision applies for the ODE state variables. In some problems, it can
be more efficient to include the ODE state variables and their constraining equations in the larger optimization problem
to reduce the model run time by freeing it of the responsibility of actually solving the ODE (SAND approach). In other
problems, this approach may result in an excessive number of optimization iterations, making it beneficial to solve the
ODE within the model, despite the increase in model run time (MDF approach).

Numerical experiments suggest that the tradeoff is case-dependent. The planned ODE solver will support both
formulations, facilitating comparison of the two on test problems. This comparison is one of the objectives of the final
paper.

2. Time-marching vs monolithic

If the MDF approach, there are two ways to solve the nonlinear system resulting from the implicit integration scheme.
The obvious, traditional approach is to use time-marching, solving the smaller nonlinear system at each time step in
sequence. The alternate approach is to combine all the nonlinear systems from each time step into one monolithic

3 of 9

American Institute of Aeronautics and Astronautics

The coefficient matrices [aij, bij, uij, vij,] determines the scheme.
e.g., aij=bij=uij=vij=1 for forward Euler

General linear methods formulation:

Ozone is a new ODE solver library for
OpenMDAO v2 based on GLM

36

Ozone is a new ODE solver library for
OpenMDAO v2 based on GLM

37

2 steps of forward Euler (time-marching)

38

2 steps of backward Euler (time-marching)

39

2 steps of RK4 (time-marching)

40

A new vectorized formulation

41

OpenMDAO v2 methods and applications

42

1. New methods
• Reconfigurability
• Ozone: ODE and optimal control solver library

2. Recent applications
• Topology optimization
• Aircraft design-allocation optimization
• Electric aircraft MDO

Topology optimization (SIMP) treats every
element’s density as a continuous variable

43

The 2-D FEM solver and the topology
optimization are all entirely in OpenMDAO

44

OpenMDAO v2 methods and applications

45

1. New methods
• Reconfigurability
• Ozone: ODE and optimal control solver library

2. Recent applications
• Topology optimization
• Aircraft design-allocation optimization
• Electric aircraft MDO

Allocation-mission-design optimization

46

Background: aerostructural optimization
studies minimize estimated fuel burn

47

Select a single
design mission range, R

Select points (M1, CL,1) … (Mn, CL,n)
and their weights w1 … wn

minimize w1 fb(R, M1, CL,1) + … + wn fb(R, Mn, CL,n)

with respect to the aircraft design

In reality, the allocation, mission profiles,
and design should be optimized together

48

Why?
- Aircraft often flown below their design range
- Determine optimal design/sizing based on current fleets
- Model next-generation designs and morphing technology

design: shape, twist, area, sweep

mission: Mach number, altitude profile

airline allocation: flights per day

maximize airline industry-level profit
with respect to

36 CFD analyses are performed
to train a surrogate model in the loop

49

Optimizer Twist, shape
Cruise Mach,
alt. profile

Pax/flight,
flights/day

Vol., thickness
constraints

Geometry &
mesh warping

Mesh

CFD solver Training data

Aerodynamic
surrogate

Lift, drag
coe�cient

Thrust, slope
constraints

Angle of att.,
Mach number

Mission
analysis

Fuel burn &
block time

Profit, alloc.
constraints

Allocation
model

Figure 2: Extended design structure matrix (XDSM) diagram of the data flow in the allocation-mission-design opti-
mization.

16) training points for the surrogate model. The 128-route AMD problem is run with 128 processors, so the MAUD
framework automatically splits the 128 processors by 16, assigning 8 processors to each CFD evaluation. The 128
processors broadcast the data at the 16 training points to each other and re-combine to update the surrogate model
globally. They are then split up once again, one processor per mission analysis, before re-combining to evaluate the
allocation model and pass the outputs to the optimizer.

This parallelization scheme is all automated by the MAUD framework. MAUD allows us to build the AMD
problem in a hierarchical fashion where, for instance, each of the components in a mission analysis assembly are
grouped together, then all of the 128 mission assemblies are grouped together in parallel, and the collective assembly
of missions is grouped in sequence with the allocation, CFD, and surrogate modeling assemblies. MAUD also adjusts
accordingly if the problem is run with a different number of processors or a different number of missions. The
automatic handling of parallelism is an enabling feature that eliminates a large amount of time-consuming and error-
prone development.

Another detail relevant to the parallelization is the fact that adjoints are computed in parallel. For outputs involv-
ing all processors, such as the profit objective, the parallel solution of the linear system for the adjoint method is a
natural extension of the parallel solution of the nonlinear system for evaluating the multidisciplinary computational
model. However, for outputs that do not involve all processors, such as the individual mission constraints, a naive
implementation of Eq. (1) would compute the adjoint vector for each mission constraint in series, one right-hand side
at a time. In this case, all processors would always be idling except the one processor that owns the mission analysis
of the current constraint. As Fig. 3 illustrates, this issue is resolved by solving groups of multiple right-hand sides si-
multaneously [11]. By applying the linear block Jacobi solver across the mission analyses, each processor would solve
the one non-zero right-hand side it has in its group, all simultaneously, rather than waiting for the previous mission
analysis to complete its adjoint solution.

III. Software overview
The software components that are integrated to solve the AMD optimization problem include: an unstructured CFD

mesh deformation algorithm, a CFD solver, a mission analysis model, an aircraft allocation model, and an optimizer.

A. CFD mesh deformation
The CFD mesh deformation algorithm we use propagates the displacements and rotations from the deformed surface
to the full CFD volume mesh by using inverse-distance weights [12]. More specifically, the deformation of each node
in the CFD volume mesh is the sum of the displacements and rotations of all the nodes on the deformed surface,

5 of 19

American Institute of Aeronautics and Astronautics

We developed a new surrogate model
based on nonlinear minimal-energy splines

50

Overall model

51

36 CFD groups

52

128 mission analysis groups

53

Inside a single mission analysis

54

OpenMDAO v2 methods and applications

55

1. New methods
• Reconfigurability
• Ozone: ODE and optimal control solver library

2. Recent applications
• Topology optimization
• Aircraft design-allocation optimization
• Electric aircraft MDO

II. Introduction

The study of electric aircraft for commercial use has grown in popularity in the last several years with

a ride range of aircraft sizes and required missions being considered.1,2 NASA’s X-57 “Maxwell” aircraft,

developed under the Scalable Convergent Electric Propulsion Technology and Operations Research (SCEP-

TOR) program,3 is a twin propeller aircraft that serves as a proof-of-concept and test bed for a wide set of

electric propulsion technologies including batteries, motors, and distributed electric propulsion. The X-57

features two main cruise motors on the wingtips with ten smaller electric motors and propellers for use in

high-lift situations. For the purpose of this work, we only consider operation of the cruise motors.

Figure 1. NASA’s X-57 “Maxwell” aircraft

The development of X-57 has highlighted a unique challenge posed by the use of electric propulsion

systems. Unlike piston engines or gas turbine based systems, for electric aircraft propulsion systems thermal

management is a primary concern during the design process. While traditional propulsion systems are only

around 60% thermally efficient, they produce waste heat in the form of exhaust air that is easily removed

from the aircraft. In contrast, an electric propulsion system could be close to 90% efficient, but its waste

heat is much more challenging to expel because there is no exhaust air with which to carry it. The motor,

inverter, wires, and battery each generate heat that must be rejected to the atmosphere or else they will

heat up to unacceptable temperatures over the course of a flight. Furthermore, these various components

are expected to be located close to temperature sensitive power electronics and composite structures which

must also be kept within acceptable temperature limits.

The amount of heat that needs to be rejected, and consequently the size of the required heat exchangers,

is a function of the efficiency of the electrical components and their overall power output. Moreover, the

power output of the propulsion system is not constant over the entire flight, hence the temperature profile of

the various components is also not constant. It follows that the aircraft thermal management requirements

can be posed as set of temperature limits that must be adhered to across the mission.

In this work we show that it is possible to partially mitigate the negative effects of these temperature

limits by optimizing electric aircraft trajectories using a coupled propulsive-thermal-aerodynamic model. To

demonstrate this we examine a series of trajectories for the X-57 aircraft subject to temperature constraints.

We compare thermally constrained optimal trajectories against unconstrained optimal trajectories, and show

that thermal constraints do alter the shape of the trajectory and can have a meaningful impact on overall

performance.
Although considerable bodies of work exist on trajectory analysis for electric aircraft and on thermally

constrained aircraft propulsion system analysis, few previous studies have considered the two issues simulta-

neously. Doman considered optimal cruise altitudes for aircraft subject to fuel tank temperature constraints.4

Alyanak and Allison showed that thermal considerations for military aircraft could lead to a significant in-

crease in takeoff gross weight if not properly accounted for in the early design process.5 Vegh, Alonso,

Tarik, and de Silva demonstrated combined flight path and aircraft design optimization for electric passen-

ger aircraft, although their model did not include thermal constraints due to waste heat of the propulsion

system.6 Antcliff, Guynn, et al. demonstrated combined mission analysis and sizing of a hybrid electric air-

craft in a multi-disciplinary optimization environment without explicit consideration of thermal constraints.7

Christie studied the effectiveness of various cooling methods for removing the excess heat generated by elec-

tric propulsion components, concluding that heat-exchanger surface area was one of the most critical factors

in determined cooling effectiveness.8 Dubois showed that increasing heat exchanger area also increases air-

2 of 16

American Institute of Aeronautics and Astronautics

Large-scale design-mission optimization
of an on-demand mobility electric aircraft

56

Optimizer
Prop sizing
wing area

Struct., prop,
Prpor,

battery sizing
RPM profiles

Prop sizing
Speed/alpha

profiles
Structural sizing RPM profiles Speed/alpha profiles

Geometry Wing span, chord Wing span, chord Wing span, chord

Weights Total weight Weights

Propeller analysis Power Power Thrust

Stall speed
constraints

Wing aerodynamics Loads Lift, drag

Structural
constraints

Structures

Battery
constraints

Battery Discharge rate

Thermal
constraints

Temperature

Equations
of motion

Mission
analysis

Energy usage

Profit Cost

The 2-way propeller-wing interaction is
modeled using the vortex lattice method

57

This is coupled to blade element
momentum theory with slipstream evolution

58

59

The VLM is also coupled to a 1-D FEA
solver with spatial beam elements

MAUD simplifies derivative computation,
but many challenges remain for large-scale

60

Number of design
and state variables

Number of
disciplines

e.g.,
CFD-based optimization

topology optimization
aerostructural optimization

e.g.,
gradient-free optimization
parameter sweeps
ModelCenter

Large-scale
MDO

OpenMDAO

Acknowledgments

61

- Transformational Tools and Technologies (T3) Project

- NASA Aeronautics Research Mission Directorate

- John P. Jasa for his help on the aircraft allocation-mission-design work

- Other collaborators: Prof. Joaquim R. R. A. Martins, Dr. Hayoung

Chung, Prof. H. Alicia Kim, Drayton W. Munster, Prof. Andrew Ning

- The OpenMDAO team, especially Bret A. Naylor and Justin S. Gray

- Nathalie, Thierry, and Remi for organizing this workshop!

www.openmdao.org www.nasa.gov

http://www.openmdao.org
http://www.nasa.gov

