



# Invitation à la soutenance de thèse

STRATÉGIE DE RÉDUCTION DES INCERTITUDES ÉPISTÉMIQUES GÉNÉRÉES PAR L'IDENTIFICATION DE MODÈLES PROBABILISTES COUPLÉE A L'ESTIMATION PAR ÉCHANTILLONNAGE - APPLICATION AU FLAMBEMENT DE COQUES MINCES

STRATEGY FOR REDUCING EPISTEMIC UNCERTAINTIES GENERATED BY PROBABILISTIC MODEL IDENTIFICATION COUPLED WITH ESTIMATION BY SAMPLING - APPLICATION TO THIN SHELLS BUCKLING

# **Charles Surget**

## Vendredi 21 mars 2025 - 9h30

Office National d'Études et de Recherches Aérospatiales 2 Av. Marc Pélegrin, 31400 Toulouse Auditorium Caroline Aigle

## Devant le jury composé de :

CEA Cadarache Amandine MARREL Rapporteure Carsten PROPPE Rapporteur Karlsruhe IT **ISAE-SUPAERO** Christian GOGU Examinateur Franck MASSA Université Polytechnique Hauts-de-France Examinateur Cécile MATTRAND SIGMA Clermont Encadrante **ONERA Toulouse** Sylvain DUBREUIL Encadrant Nicolas GAYTON SIGMA Clermont Directeur de thèse Jérôme MORIO **ONERA Toulouse** Co-directeur de thèse

#### Résumé

Dans un contexte de quantification des incertitudes, le modèle probabiliste d'un vecteur aléatoire à l'entrée d'un code de calcul n'est pas toujours connu. Une identification de la distribution jointe sur un échantillon restreint de données expérimentales peut conduire à une mauvaise calibration du modèle. La quantité d'intérêt estimée à la sortie du code est alors soumise à une incertitude épistémique à deux niveaux qui doit être correctement quantifiée. Un premier niveau provient de l'estimation statistique tandis qu'un second provient de l'identification du modèle probabiliste. Chaque incertitude épistémique peut donc être réduite par un enrichissement avec de nouvelles données, soit en augmentant la taille de l'échantillon d'expériences physiques, soit en augmentant la taille de l'échantillon de simulations.



Lorsque la collecte de données est coûteuse, il est alors intéressant de savoir quelle source d'incertitudes à réduire en premier, ce qui introduit un compromis entre la simulation et l'expérience physique.

Cette question revêt un intérêt particulier dans des domaines complexes tels que l'aéronautique et le spatial. Dans ces domaines, un problème d'ampleur concerne le flambement des coques minces utilisées dans les ailes et les fuselages d'avions, les missiles ou les véhicules spatiaux. La charge critique de flambement est sensible à un certain nombre d'incertitudes, telles que les imperfections géométriques des coques minces. Dans la littérature, les praticiens étudient la sensibilité des charges critiques à ces imperfections géométriques à l'aide de simulations numériques. Cependant, les mesures de ces imperfections sont rares en raison de la complexité de leur obtention.

L'objectif principal de ce travail de thèse est de développer une stratégie pour déterminer s'il est préférable d'effectuer plus de mesures expérimentales des imperfections géométriques ou plus de simulations numériques pour estimer la charge critique de flambement en sortie du code de calcul.

Trois contributions sont présentées dans ce manuscrit. La première est le développement d'un estimateur qui prend en compte tous les niveaux d'incertitudes et qui est adapté à une stratégie d'enrichissement. En ce sens, cela signifie que l'estimateur est capable de s'adapter aux modifications apportées à l'identification du modèle probabiliste, tout en réutilisant les données provenant de simulations afin de ne pas générer de coûts supplémentaires d'appels à la boîte noire. La deuxième contribution consiste à développer deux stratégies d'enrichissement pour répondre au compromis essai-simulation. La première stratégie définit l'enrichissement dans la source prédominante d'incertitudes épistémiques, tandis que la seconde minimise la variance de l'estimateur en fonction de la taille des échantillons. Enfin, la dernière contribution est divisée en deux parties. Tout d'abord, le développement d'un modèle numérique dédié au flambement en tenant compte des imperfections géométriques est effectué sur la base des recommandations de la littérature. Ensuite, la stratégie de réduction de l'incertitude épistémique est appliquée au flambement des coques minces pour répondre à la problématique principale de la thèse.

### Mots clés

Petite donnée, Analyse de sensibilité, Optimisation, Compromis, Échantillonnage préférentiel, Enrichissement





