

Invitation à la soutenance de thèse d'Erwin BEKAERT

Analyse d'écoulements instables dans les statoréacteurs par simulation numérique

13 février 2025, 14h15

Salle Marcel Pierre, ONERA, 6 chemin de la Vauve aux Granges, 91120 Palaiseau Lien à distance : rdv.onera.fr/TheseErwinBekaert

Devant le jury composé de :

Diana BALTEAN-CARLES	Maître de conférence - Sorbonne Université	Rapporteur
Arnaud MURA	Directeur de recherche - CNRS - Pprime	Rapporteur
Aymeric VIE	Professeur - CentraleSupélec	Examinateur
Mathieu VOISINE	Ingénieur de recherche - DGA	Examinateur
Thierry SCHULLER	Professeur - Université Toulouse 3	Directeur de thèse
Aurélien GENOT	Chargé de recherche - ONERA	Encadrant de thèse
Thomas LE PICHON	Ingénieur de recherche - ONERA	Encadrant de thèse

Les statoréacteurs sont des systèmes propulsifs aérobies permettant d'atteindre des vitesses de Mach 2 à 6. Comme d'autres systèmes propulsifs, ils peuvent être sujets à des instabilités de combustion générant de fortes oscillations des grandeurs physiques de l'écoulement interne, provoquant des extinctions prématurées et des dommages structurels.

Le Statoréacteur de Recherche (SdR) de l'ONERA, avec ses deux prises d'air latérales en opposition, est un banc expérimental représentatif de la géométrie et des conditions d'opération retrouvées par des statoréacteurs industriels. Il permet, entre autres, l'étude d'instabilités thermoacoustiques qui peuvent se déclarer dans ses deux configurations : monophasique avec du propane gazeux comme combustible et diphasique avec du kérosène liquide.

Les réalisations de cette thèse sont, en s'appuyant sur des simulations numériques ZDES réalisées avec le solveur CEDRE, de caractériser l'écoulement, le champ acoustique ainsi que les dynamiques prenant place dans chacune des deux configurations. Puis, à l'aide de modèles acoustiques d'ordre réduit développés à partir des observations réalisées par simulations numériques, des éléments de compréhension supplémentaires sont apportés quant aux caractéristiques suivies par le champ acoustique et leurs origines.

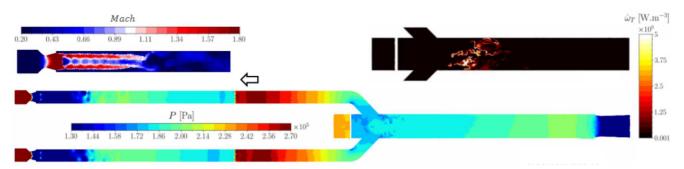


FIGURE 1 – Champs instantanés de taux de dégagement de chaleur, de la pression et du Mach respectivement dans la chambre, le SdR et un train de chocs en configuration monophasique.