

Invitation à la soutenance de thèse

SPECTROMETRE A BASE D'UN CIRCUIT PHOTONIQUE INTEGRE INSCRIT PAR LASER FEMTOSECONDE POUR L'IMAGERIE HYPERSPECTRALE

FEMTOSECOND LASER WRITTEN SPECTROMETER BASED ON A PHOTONIC INTEGRATED CIRCUIT FOR HYPERSPECTRAL IMAGING

Sébastien BOURDEL

Jeudi 11 Décembre 2025 à 14h00

Institut Pascal (Grand Amphithéâtre) 530 Rue André Rivière, 91400 Orsay

Devant le jury composé de :

Pascal Masselin	LPCA, Université du Littoral Côte d'Opale	Rapporteur
Ciro D'Amico	Laboratoire Hubert Curien, Université Jean-Monnet	Rapporteur
Delphine Marris-Morini	C2N, Université Paris-Saclay	Examinatrice
Guillermo Martin	IPAG, Université Grenoble Alpes	Examinateur
Andrés Almansa	MAP5, CNRS - Université Paris Cité	Examinateur
Sylvie Paolacci-Riera	Agence Innovation Défense, DGA	Invitée
Matthieu Lancry	ICMMO, Université Paris-Saclay	Directeur de thèse
Guillaume Druart	DOTA, ONERA	Co-Directeur de thèse
Olivier Gazzano	DOTA, ONERA	Encadrant

Résumé:

L'imagerie hyperspectrale, qui restitue la composante spectrale d'une scène, ouvre de nombreuses perspectives dans des domaines aussi variés que l'observation terrestre, la biologie, l'imagerie médicale ou l'astronomie. Toutefois, les systèmes hyperspectraux actuels restent souvent encombrants, lourds et très sensibles aux vibrations du porteur ainsi qu'aux variations environnementales.

L'objectif de cette thèse est de concevoir des modules technologiques permettant de réaliser un imageur hyperspectral compact, léger, avec une faible consommation d'énergie (contraintes SWaP) et résistant aux vibrations. Pour ce faire, nous nous sommes focalisés sur les circuits photoniques intégrés (PICs), qui offrent la possibilité de miniaturiser et de stabiliser des chaînes optiques complexes sur une puce.

Dans un premier temps, nous avons étudié la réalisation de PICs par structuration de la matière à l'aide d'un laser femtoseconde, afin d'inscrire les guides d'ondes dans un substrat de silice. Nous avons ensuite identifié les fonctions optiques indispensables à la mise en œuvre d'un interféromètre de Mach-Zehnder intégré : division de faisceau, contrôle de phase et recombinaison. Ces fonctions ont été analysées à la fois par simulations numériques et par mesures expérimentales, permettant de valider les modèles.

Nous avons finalement conçu et fabriqué une preuve de concept d'un spectromètre à transformée de Fourier basé sur une série de Mach-Zehnder intégré présentant des déphasages successifs. Les PICs, réalisés par laser femtoseconde dans du verre de silice, ont été caractérisés expérimentalement, confirmant la précision du processus de gravure et la concordance avec les simulations.

Cette étude démontre la faisabilité d'un spectromètre intégré sur une puce, ouvrant la voie à des systèmes d'imagerie hyperspectraux adaptés aux environnements contraints et aux applications embarquées.

Mots clés: Photonique intégrée, spectroscopie, imagerie hyperspectrale, micro-photonique

