

Les Oscillateurs Paramétriques Optiques: fondements et Applications

E. ROSENCHER DSG/ONERA Tout a commencé comme ça...

T.H. Maiman, Nature (1960)

P.A. Franken, A.E. Hill, C.W. Peters and G. Weireich, Phys. Rev. Lett. (1961)

- Modèle mécanique de l'optique non linéaire
- Equations de couplage paramétrique: aspect ondulatoire
- Equations de Manley-Rowe: aspect corpusculaire
- Amplification paramétrique
- Oscillation paramétrique optique
- Accord et quasi-accord de phase
- Comportement dynamique des OPO
- Quelques applications et développements actuels

Optique non linéaire quadratiqueSYSTEME SYMETRIQUESYSTEME NON SYMETRIQUE

 $P(t) = \mathbf{e}_0 \mathbf{c}^{(1)} E(t)$

Potentiel anharmonique

R

$$U(x) = \frac{1}{2}m w_0^2 x^2 + \frac{1}{3}m D x^3$$

Force d'excitation périodique:

$$F(t) = q E \cos(\mathbf{w}t) = \frac{q E}{2} \left(e^{i\mathbf{w}t} + cc \right)$$

Equation différentielle

$$\ddot{x} + \boldsymbol{g}\,\dot{x} + \boldsymbol{w}_0^2\,x + D\,x^2 = \frac{q\,E}{2\,m} \Big(e^{i\,\boldsymbol{w}\,t} + c\,c \Big)$$

Analyse harmonique de x(t)

$$x(t) = x_0 + x_1 e^{iWt} + x_2 e^{i2Wt} + \dots + cc$$

Réponse linéaire:
Indice
absorption
Génération de
Seconde harmonique ONERA

Réponse linéaire:

$$x_1 = \frac{qE}{m} \frac{1}{\left(\mathbf{w}_0^2 - \mathbf{w}^2\right) + i\mathbf{w}\mathbf{g}} \approx \frac{qE}{2\mathbf{w}m} \frac{1}{(\mathbf{w}_0 - \mathbf{w}) + i\mathbf{g}/2}$$

 $P_{I}(t) = N q x_{I}(t) = \frac{N q x_{I}}{2} \left(e^{i \mathbf{W}t} + cc \right)$

Polarisation du milieu:

$$P_{I}(t) = \frac{\mathbf{e}_{0}}{2} \left(\mathbf{c}_{1}^{(\mathbf{w})} E e^{i \mathbf{w} t} + cc \right) \qquad \text{Par définition}$$

Modèle de Lorentz:

$$\boldsymbol{c}_{1}^{(\boldsymbol{w})} = \frac{N q^{2}}{2 \boldsymbol{w} m \boldsymbol{e}_{0}} \frac{1}{(\boldsymbol{w}_{0} - \boldsymbol{w}) + i \boldsymbol{g}/2}$$

Identification terme à terme des termes en 2w

$$P_2(t) = N q x_2(t) = \frac{N q x_2}{2} \left(e^{i 2\mathbf{W}t} + cc \right)$$

Polarisation non linéaire du milieu:

$$P_2(t) = \frac{\mathbf{e}_0}{2} \left(\mathbf{c}_2^{(2\mathbf{w})} E^2 e^{i \, 2\mathbf{w} t} + cc \right) \qquad \text{Par définition}$$

Réponse non linéaire:

$$x_2 \approx \frac{q^2 D}{2 m^2} \frac{1}{[(\mathbf{w}_0 - \mathbf{w}) + i \mathbf{g}/2]^2 [(\mathbf{w}_0 - 2\mathbf{w}) + i \frac{2}{3}\mathbf{g}]}$$

ONERA

Susceptibilité quadratique optique:

$$\boldsymbol{c}_{2}^{(2\boldsymbol{w})} = \frac{Nq^{3}D}{24\boldsymbol{w}^{3}m^{2}\boldsymbol{e}_{0}} \frac{1}{[(\boldsymbol{w}_{0} - \boldsymbol{w}) + i\boldsymbol{g}/2]^{2}[(\boldsymbol{w}_{0} - 2\boldsymbol{w}) + i\frac{2}{3}\boldsymbol{g}]}$$

Double résonance à w₀et w₀/2

Règle de Miller:

Loin des résonnances

$$\frac{\mathbf{c}_2^{(2\mathbf{w})}}{\mathbf{e}_0^2 \left(\mathbf{c}_1^{(\mathbf{w})}\right)^2 \left(\mathbf{c}_1^{(2\mathbf{w})}\right)} = \frac{mD}{2N^2 q^3} = \mathbf{d}^{(2\mathbf{w})}$$

mat	n ₁	n ₂	C ^{pm/V}	d
GaSb	3.8	3.82	628	3.2 10 ⁹
GaAs	3.27	3.30	368	5.4 10 ⁹
ZnSe	2.42	2.43	78	8 10 ⁹

ONERA

Origine microscopique de la règle de Miller:

Pour a = 0,5 nm alors D =2 10^{41} SI soit d = 6 10^{19} SI pour N = 6 10^{28} m⁻³

Aspect tensoriel
$$E_x^2$$
 $\begin{bmatrix} P_x \\ P_y \\ P_z \end{bmatrix} = \mathbf{e}_0 \begin{bmatrix} d_{11} & d_{12} & d_{13} & d_{14} & d_{15} & d_{16} \\ d_{21} & d_{22} & d_{23} & d_{24} & d_{25} & d_{26} \\ d_{31} & d_{32} & d_{33} & d_{34} & d_{35} & d_{36} \end{bmatrix} \begin{bmatrix} E_x^2 \\ E_y^2 \\ E_z^2 \\ E_z E_y \\ E_z E_x \\ E_x E_y \end{bmatrix}$

GaAs:

 $\begin{bmatrix} 0 & 0 & 0 & d_{14} & 0 & 0 \\ 0 & 0 & 0 & 0 & d_{14} & 0 \\ 0 & 0 & 0 & 0 & 0 & d_{14} \end{bmatrix}$

$$P_x = d_{14} E_{zy}$$

Pas de non linéarité le long des axes cristallographiques Non linéarité le long de (110)

$$\begin{bmatrix} d_{11} & -d_{11} & d_{13} & 0 & d_{15} & 0 \\ 0 & 0 & 0 & d_{15} & 0 & -d_{11} \\ d_{31} & d_{31} & 0 & 0 & 0 & 0 \end{bmatrix}$$

 $P_{z} = d_{31} E_{x}^{2}$

Non linéarité le long de (010)

ONERA

2. Équation de propagation de l'interaction non linéaire

$$\nabla \cdot E = 0$$

$$\nabla \cdot B = 0$$

$$\nabla \times E = -\frac{\partial}{\partial t}B$$

$$\nabla \times B = \mathbf{m}_0 \frac{\partial}{\partial t} (\mathbf{e}_0 E + P) = \frac{1}{c^2} \frac{\partial}{\partial t} E + \mathbf{m}_0 \frac{\partial}{\partial t} P$$

D
Courant de déplacement

Polarisation linéaire et non linéaire:

 $P(t) = P_l(t) + P_{nl}(t) = \mathbf{e}_0 \mathbf{c}_1 E(t) + P_{nl}(t)$

Indice optique:

$$n_{op}^2 = l + c_1$$

$$\nabla^2 E - \left(\frac{n_{op}}{c}\right)^2 \frac{\partial^2}{\partial t^2} E = \mathbf{m}_0 \frac{\partial^2}{\partial t^2} P_{nl}(t)$$

. Équation de propagation de l'interaction non linéaire

Mélange à 3 ondes
$$cos(w_1t)cos(w_2t) \rightarrow cos[(w_1+w_2)t]$$
 $et \ cos[(w_1-w_2)t]$ $P_2(t)$ SommeDifférence $P_2(t)$ SommeDifférence P_e P_e

Terme de somme de fréquences:

$$P_{nl}(z,t) = \frac{\mathbf{e}_0 \mathbf{c}_2}{2} \left(E_2(z,t)^* E_3(z,t) + cc \right)$$

$$\mathbf{W}_1 \quad \longleftarrow \quad \mathbf{W}_2 \quad + \mathbf{W}_3$$

Transfert d'énergie entre les ondes

$$E_{j}(z,t) = \frac{1}{2} \left(E_{j}(z)e^{i\left(\mathbf{w}_{j}t - k_{j}z\right)} + cc \right)$$

InteractionOndes planesÉvolue lentement(sans interaction)ONERA

Équation de propagation de l'interaction non linéaire

Approximation de la Fonctions- enveloppe

$$\left| \frac{d^2 E_j}{dz^2} \right| << \left| k_j \frac{d E_j}{dz} \right|$$

$$\mathbf{w}_{3} - \mathbf{w}_{2} \rightarrow \mathbf{w}_{1} \qquad \qquad \frac{d}{dz} E_{1} = -i \frac{\mathbf{w}_{1}}{2n_{1}c} \mathbf{c}_{2} E_{3} E_{2}^{*} e^{-i \mathbf{D}k z}$$
$$\mathbf{w}_{3} - \mathbf{w}_{1} \rightarrow \mathbf{w}_{2} \qquad \qquad \frac{d}{dz} E_{2} = -i \frac{\mathbf{w}_{2}}{2n_{2}c} \mathbf{c}_{2} E_{3} E_{1}^{*} e^{-i \mathbf{D}k z}$$
$$\mathbf{w}_{1} + \mathbf{w}_{2} \rightarrow \mathbf{w}_{3} \qquad \qquad \frac{d}{dz} E_{3} = -i \frac{\mathbf{w}_{3}}{2n_{3}c} \mathbf{c}_{2} E_{1} E_{2} e^{+i \mathbf{D}k z}$$

Désaccord de phase $Dk = k_3 - k_1 - k_2$

Équation de propagation de l'interaction non linéaire: doublage de fréquence

Doublage de fréquence
$$w_1 = w_2 = w$$
 et $w_3 = 2w$

$$2\mathbf{w} - \mathbf{w} \to \mathbf{w} \qquad \qquad \frac{d}{dz} E_{\mathbf{w}} = -i \frac{\mathbf{w}}{2n_{\mathbf{w}}c} \mathbf{c}_{2} E_{2\mathbf{w}} E_{\mathbf{w}}^{*} e^{-i \mathbf{D}k z} \qquad \text{reconver}$$
$$\mathbf{w} + \mathbf{w} \to 2\mathbf{w} \qquad \qquad \frac{d}{dz} E_{2\mathbf{w}} = -i \frac{\mathbf{w}}{n_{2\mathbf{w}}c} \mathbf{c}_{2} E_{\mathbf{w}}^{2} e^{+i \mathbf{D}k z}$$

TAZ

 $E_{\mathbf{I}}$ Pompe non déplétée:

$$\mathbf{W}(z) \approx E_0$$

$$E_{2\mathbf{W}}(z) = \frac{\mathbf{W}}{n_{2\mathbf{W}}c} \mathbf{c}_2 E_0^2 L \operatorname{sin} c \left(\frac{\mathbf{D}k\,l}{2}\right)$$

Rendement de conversion

$$P_{2\mathbf{W}}(z) = 2 \frac{Z_0^3}{n_{2\mathbf{W}} c} (\mathbf{w} \ \mathbf{e}_0 \ \mathbf{c}_2 \ L)^2 \ \operatorname{sinc}^2 \left(\frac{\mathbf{D} k \, l}{2}\right) P_{\mathbf{W}}^2$$

rsion

ONERA

DI

. Équation de propagation de l'interaction non linéaire: désaccord de phase dans le doublage de fréquence

3. Equations de Manley-Rowe: aspect corpusculaire

abracadabra...:

Amplitude de flux de photons:

$$\boldsymbol{F}_{j} = \frac{P_{j}}{\hbar \boldsymbol{w}_{j}} = \frac{1}{2 \hbar Z_{0}} \left| A_{j} \right|^{2}$$

$$w_{3} - w_{2} \rightarrow w_{1} \qquad \qquad \frac{d}{dz}A_{1} = -i\mathbf{k} A_{3} A_{2}^{*} e^{-i\mathbf{D}k z}$$

$$w_{3} - w_{1} \rightarrow w_{2} \qquad \qquad \frac{d}{dz}A_{2} = -i\mathbf{k} A_{3} A_{1}^{*} e^{-i\mathbf{D}k z}$$

$$w_{1} + w_{2} \rightarrow w_{3} \qquad \qquad \frac{d}{dz}A_{3} = -i\mathbf{k} A_{1} A_{2} e^{+i\mathbf{D}k z}$$

avec:
$$\mathbf{k} = \frac{1}{2} \frac{\mathbf{c}_2}{c} \sqrt{\frac{\mathbf{w}_1 \, \mathbf{w}_2 \, \mathbf{w}_3}{n_1 \, n_2 \, n_3}}$$

. Équations de Manley-Rowe: aspect corpusculaire

Si: Dk = 0

$$\frac{d}{dz} \left(|A_1|^2 \right) = \frac{d}{dz} \left(|A_2|^2 \right) = -\frac{d}{dz} \left(|A_3|^2 \right)$$
$$\frac{d}{dz} \left(\mathbf{F}_1 \right) = \frac{d}{dz} \left(\mathbf{F}_2 \right) = -\frac{d}{dz} \left(\mathbf{F}_3 \right)$$

Manley-Rowe: conservation du flux de particules

Interprétation corpusculaire $\hbar w_3 = \hbar w_1 + \hbar w_2$ conservation de l'énergie $\hbar k_3 = \hbar k_1 + \hbar k_2$ conservation de l'impulsion

THE PHASE MATCHING PROBLEM: THE PHOTON ASPECT

4. L'amplification paramétrique

Hypothèse de la pompe non appauvrie avec accord de phase

$$\frac{d}{dz}A_{1} = -ig A_{2}^{*}$$
$$\frac{d}{dz}A_{2} = -ig A_{1}^{*}$$

Avec le gain paramétrique

$$g = \frac{1}{2} \frac{\mathbf{c}_2}{c} \sqrt{\frac{\mathbf{w}_1 \, \mathbf{w}_2}{n_1 \, n_2}} E_3(0)$$

$$A_{1}(z) = A_{1}(0)Cosh(g z) - i A_{2}(0)^{*} Sinh(g z)$$
$$A_{2}(z) = A_{2}(0)Cosh(g z) - i A_{1}(0)^{*} Sinh(g z)$$

Pour des gains paramétriques forts

$$A_{1}(z) \approx A_{2}(z) \approx \frac{l}{2} A_{1}(0) e^{g z}$$

Exemple: dans GaAs pour 5 MW/ cm² Fondamental 5,3 μ m ® 10,6 μ m c = 100 pm/V G= 0,35 cm⁻¹

4. L'amplification paramétrique

Génération et fluorescence paramétrique optique

$$|n_1, n_2, n_3\rangle \Rightarrow |n_1+1, n_2+1, n_3-1\rangle$$

Hypothèse de la pompe non appauvrie sans accord de phase

$$\frac{d}{dz}A_1 = -ig A_2^* e^{-i\mathbf{D}k z}$$
$$\frac{d}{dz}A_2 = -ig A_1^* e^{-i\mathbf{D}k z}$$

Avec le gain paramétrique

 $A_{1}(0)$

$$\boldsymbol{g} = \sqrt{g^2 - (\boldsymbol{D}k)^2}$$

correspond à un seul photon par mode

détecteur

(a)

Génération et fluorescence paramétrique optique

Calcul effroyable:

Nombre de modes w_1 entrant acceptable pour w_3

on met un photon w_1 par mode et on utilise le résultat de la planche précédente

On somme sur toutes les paires acceptables tombant dans l'angle de vue **q** du détecteur

$$\boldsymbol{b} = \frac{\hbar \boldsymbol{w}_1 \boldsymbol{w}_2^4 n_2 \boldsymbol{c}_2^2}{\boldsymbol{p}^2 c^5 n_1 n_3 \boldsymbol{e}_0^3}$$
$$\boldsymbol{b} = \frac{\partial k_2}{\partial \boldsymbol{w}_2} \Big|_{\boldsymbol{w}_{20}} - \frac{\partial k_1}{\partial \boldsymbol{w}_1} \Big|_{\boldsymbol{w}_{10}}$$

Utilisation:

- précurseur de l'oscillation paramétrique
- courbe d'accord de phase expérimentaux

Sum and Difference Frequency Generation vs parametric interaction

. L'amplification paramétrique

Largeur de gain paramétrique $Dk L = \pm p$

Dl₁ =

ccord de phase

Conservation de l'énergie

La pompe $m{I}_{\mathcal{Z}}$ est fixée

Accord de type I: polar. identique pour 1 et 2 Accord de type II: polar. différente pour 1 et 2

 $\frac{\mathbf{l}_{1}^{2}/L}{\left(n_{1}-n_{2}+\frac{d\,n(\mathbf{l}_{2})}{d\mathbf{l}_{2}}\mathbf{l}_{2}-\frac{d\,n(\mathbf{l}_{1})}{d\mathbf{l}_{2}}\mathbf{l}_{2}\right)}$

Niobate de lithium Accord de type I

5. l'oscillateur paramétrique simplement résonant

$$A_{I}(0)cosh(gL)e^{ik_{I}L}$$

$$A_{I}(0)cosh(gL)e^{ik_{I}L}$$

$$A_{I}(0)e^{i2k_{I}L}$$

$$A_{I}(0)e^{i2k_{I}L}$$

$$A_{I}(0)=r_{e}r_{s}cosh(gL)e^{i2k_{I}L}A_{I}(0)$$

$$Cosh(g_{seuil}L)=\frac{1}{\sqrt{R_{e}R_{s}}}$$
Condition sur l'amplitude de pompe

 $k_1 L = m \mathbf{p}$

Condition de résonance

Optical Parametric Oscillator: basic principles

$$\begin{split} \omega_{s} + \omega_{c} &= \omega_{p} & (\text{energy conservation}) \\ \mathbf{k}_{s} + \mathbf{k}_{c} &= \mathbf{k}_{p} & (\text{phase matching condition}) \end{split}$$

1.064
$$\mu$$
m
3 * 5 μ m
ONERA

5. l'oscillateur paramétrique doublement résonant

DOUBLY RESONANT OPO (DROPO)

SEUIL:
gain = perte
$$g(I_{pompe})L \gg \sqrt{T_s T_c}$$

5. l'oscillateurs paramétriques optiques: 2 exemples

SROPO: $R_e = R_s = 99\%$ $Cosh(g_{seuil}L) \approx \sqrt{1-R_1}$ \longrightarrow $P_{seuil} = 6 \text{ MW/cm}^2$

DROPO: $R_e = R_s = 99\%$

$$Cosh(g_{seuil} L) \approx \sqrt{(1-R_1)(1-R_2)} \longrightarrow P_{seuil} = 0,2 \text{ MW/cm}^2$$

6. Comportement dynamique des OPO

Linéarisation des équations

$$u_i^n(L) = u_i^n(L/2) \pm \frac{\mathbf{k} L}{2} u_j^n(L/2) u_k^n(L/2)$$

$$\frac{d}{dt}a_{1}(t) = -\frac{a_{1}}{t_{1}} + g_{1}a_{2}a_{3}$$
$$\frac{d}{dt}a_{2}(t) = -\frac{a_{2}}{t_{2}} + g_{2}a_{1}a_{3}$$
$$\frac{d}{dt}a_{3}(t) = f(t) - \frac{a_{3}}{t_{3}} - g_{3}a_{1}a_{2}$$

avec

 $\frac{T_{AR}}{l-r_i}$ t_i

et
$$\boldsymbol{g}_j = (l+r_j)\frac{\boldsymbol{k}\,c'}{4}$$

7.a Accord de phase par biréfringence

Une onde se propage dans zOy avec un angle avec l'axe optique: deux directions de propagation de polarisation linéaire

- L'indice ordinaire (le long de Ox) est indépendant de l'angle q_s
- L'indice extraordinaire dépend de l'angle q_s

Accord de phase par biréfringence

7.a Exemple : doublage dans le niobate de lithium

$$n_e(2\mathbf{w}, \mathbf{q}_s) = n_o(\mathbf{w})$$
 \longrightarrow $\frac{1}{n_o(\mathbf{w})^2} = \frac{\cos^2 \mathbf{q}_s}{n_o(2\mathbf{w})^2} + \frac{\sin^2 \mathbf{q}_s}{n_e(2\mathbf{w})^2}$

Relation de Sellmeier

$$n^2 = A - \frac{B}{C - l^2} - D l^2$$

	А	В	С	D
n _e	4.5820	0.099169	0.044432	0.021950
n _o	4.9048	0.11768	0.04750	0.027169

Exemple : 1,3 μ m ® 0,65 μ m $\mathbf{q}_s = 45^{\circ}$

7.a Exemple : oscillation paramétrique dans le niobate de lithium

Accord de phase ® eeo

 $\mathbf{w}_1 + \mathbf{w}_2 = \mathbf{w}_3$ $n_o(\mathbf{w}_1)\mathbf{w}_1 + n_o(\mathbf{w}_2)\mathbf{w}_2 = n_e(\mathbf{w}_3, \mathbf{q}_s)\mathbf{w}_3$

7.b First order quasi-phase matching

7.b le quasi accord de phase

Indice non linéaire modulé
$$\mathbf{c}_{2}(z) = \mathbf{c}_{2} f(z)$$
 avec $f(z) = \sum_{n} f_{n} e^{in(2\mathbf{p} / \mathbf{L})z}$
Pompe non appauvrie $\frac{d}{dz} E_{2\mathbf{W}} = -i \frac{\mathbf{w}}{n_{2\mathbf{W}}c} \mathbf{c}_{2} E_{\mathbf{W}}^{2} f(z)e^{+i\mathbf{D}k z}$
 $\mathbf{E}_{2\mathbf{W}}(z) = -i \frac{\mathbf{w}}{n_{2\mathbf{W}}c} \mathbf{c}_{2} E_{\mathbf{W}}^{2} \int_{0}^{L} f(z)e^{+i\mathbf{D}k z} dz$
Seul terme non nul $k_{2\mathbf{W}} - 2k_{\mathbf{W}} = n\frac{2\mathbf{p}}{L}$ soit $\mathbf{L} = (2n+1)L_{c}$
Susceptibilité effective $\mathbf{c}_{2}^{eff} = \mathbf{c}_{2} |f_{n}| = \frac{2}{\mathbf{p}} \mathbf{c}_{2}$
 $f(z)$ ONERA

wavelength vs T

ONERA

wavelength vs period

d_{eff} = 27 pm/V !!!!!!

Optical Parametric OscillatorThreshold: PPLN breakthrough

Gaussian pulse ;DROPO, $\Phi = 40 \ \mu m$; f = 10 kHz ; L_{cav} = 2 cm

8. Quelques développements récents

- 8.a Etat de l'art des OPO impulsionnels
- 8.b Etat de l'art des OPO continus
- 8.b Accord de phase dans les guides d'ondes
- 8.c Biréfringence de Fresnel
- 8.d Amplification paramétrique géante d'impulsions chirpées

ONERA

8.e Matériaux non linéaire quantique

Semi-monolithic dual cavity mid-IR DROPO

Performances : $f \sim 15 \text{ kHz}$ $E = 1 \mu J/\text{pulse}$ $\lambda i \text{ tunable 3 to 4,5 } \mu \text{m}$ Threshold ~ 4 $\mu J/\text{pulse}$ single frequency (~ 200 MHz)

ONERA

Lefebvre, Rosencher, Ribet, Drag JOSA 2000, OL 2002

SEMICONDUCTORS

- 0.45 μ m < l_{cutoff} < 20 μ m (0.05 eV < E_{gap} < 3 eV)
- High nonlinear peformance (band theory) :

E.

E)

E

PHASE MATCHING BY ARTIFICIAL BIREFRINGENCE

cristaux biréfringents: (ex. KTP)

$$n_o(\mathbf{w}) = n_e(2\mathbf{w}) \mathbf{P}$$
 accord de phase

GIANT BIREFRINGENCE IN GaAs/AIOx heterostructures

SAMPLE AND ELECTRIC FIELD DISTRIBUTION

OPTIMISATION DE $\partial E_1(z)E_2(z)E_3(z) dz$

IR OUTPUT AND TUNABILITY

Fiore, Berger, Rosencher, Nagle Nature 1998

QUASI PHASE MATCHING IN GaAs/AlGaAs waveguide: the patterned growth method

MBE: Ben Yoo ,APL (1997) MOCVD : M. Fejer and B. Gérard, APL (2000)

Quasi Phase Matching by Total Internal Reflexion * taking into account Fresnel Birefringence

$$df_{tot} = Dk.L + F_F + \begin{cases} 0 & \text{if } d_{up} \cdot d_{down} > 0 \\ p & \text{if } d_{up} \cdot d_{down} < 0 \end{cases}$$

*Armstrong et al., Phys. Rev. **127**, 1918-1939 (1962)

Fresnel phase matching Configuration : experimental set-up

Tuning behaviour of Fresnel phase matching

Haidar, Kupecek, Rosencher APL 2002, 2003

Familles de semiconducteurs

Différentes structures asymétriques

ORIGIN OF GIANT OPTICAL SUSCEPTIBILITY

Second Fermi golden rule :

$$\boldsymbol{c^{(2)}} = \frac{q^3 n_s}{\boldsymbol{e}_0 \hbar^2} \, \boldsymbol{m}_1 \frac{\boldsymbol{m}_{12}}{\text{total energy mismatch} 1 \, \mathbb{R} \, 2} \, \frac{\boldsymbol{m}_{23}}{\text{total energy mismatch} 2 \, \mathbb{R} \, 3}$$

Approche quantique de l'Optique Non Linéaire:1

 \boldsymbol{r} matrice densité du système quantique $\boldsymbol{r} \equiv \sum_{i} p_i |\boldsymbol{j}_i\rangle\langle \boldsymbol{j}_i|$

 p_i probabilité statistique que le système soit dans un état j_i

$$\langle \overline{A} \rangle = Tr(\mathbf{r}A)$$

 r_{ii} population moyenne de l'état i r_{ij} cohérence entre les états i et j

$$\frac{\partial \mathbf{r}_{ij}}{\partial t} = \frac{1}{i\hbar} \left[H_0 - q \, z \, E(t), \, \mathbf{r} \right]_{i,j} - \mathbf{G}_{i,j} \left(\mathbf{r} - \mathbf{r}^{(0)} \right)_{i,j}$$

Exemple: valeur moyenne de la polarisation

$$P(t) = Tr(\mathbf{r} q \,\hat{z})$$

Approche quantique de l'Optique Non Linéaire:2

Approche perturbative

$$\mathbf{r}(t) = \sum_{n} \mathbf{r}^{n}(t)$$
 avec

$$\frac{\partial \mathbf{r}_{i,j}^{n+1}}{\partial t} = \frac{1}{i\hbar} \left\{ H_0, \mathbf{r}^{n+1} \right\}_{i,j} - i\hbar \mathbf{G}_{i,j} \mathbf{r}_{i,j}^{n+1} - \frac{1}{i\hbar} \left[q \,\hat{z} \, E(t), \mathbf{r}^n \right]_{i,j}$$

La polarisation est maintenant la somme de contribution d'ordres croissants

$$P^{n}(t) = Tr\left(\mathbf{r}^{n} q \,\hat{z}\right) \qquad \text{avec} \qquad \mathbf{r}^{n}(t) = \mathbf{r}^{n}(\mathbf{w})e^{i\,n\,\mathbf{w}t} + cc$$

aux deux premiers ordres

$$P(t) = \mathbf{e}_0 \mathbf{c}^{(1)} E e^{i\mathbf{W}t} + \mathbf{e}_0 \mathbf{c}^{(2)} E^2 e^{i2\mathbf{W}t} + \mathbf{e}_0 \mathbf{c}_r |E|^2$$
Optique linéaire GSH Rectification optique

Approche quantique de l'Optique Non Linéaire:3

Relation de récurrence

$$\boldsymbol{r}_{i,j}^{n+1}(\boldsymbol{w}) = \frac{q \left[\hat{z}, \boldsymbol{r}^{n} \right]_{i,j}}{\hbar \left[(n+1)\boldsymbol{w} + \boldsymbol{w}_{i,j} - i\boldsymbol{G}_{i,j} \right]} E$$

Aux deux premiers ordres

$$\begin{pmatrix} \mathbf{r}_{i,j}^{1}(\mathbf{w}) = \frac{q z_{i,j} (n_{j} - n_{i})}{\hbar [\mathbf{w} + \mathbf{w}_{i,j} - i \mathbf{G}_{i,j}]} E \\ \mathbf{r}_{i,j}^{2}(\mathbf{w}) = \frac{1}{\hbar [2\mathbf{w} + \mathbf{w}_{i,j} - i \mathbf{G}_{i,j}]} [q \hat{z}, \mathbf{r}^{1}]_{i,j} E$$

$$\mathbf{c}^{(2)} = \frac{q^3}{\mathbf{e}_0 \hbar^2} \sum_{i} \sum_{i} \frac{1}{(2\mathbf{w} + \mathbf{w}_{ki}) - i \mathbf{G}_{ki}} \qquad \text{Purement quantique}$$

$$\sum_{l} \mathbf{m}_{lk} \mathbf{m}_{kl} \mathbf{m}_{li} \left[\frac{n_i - n_l}{(\mathbf{w} + \mathbf{w}_{li}) - i \mathbf{G}_{li}} - \frac{n_l - n_k}{(\mathbf{w} + \mathbf{w}_{kl}) - i \mathbf{G}_{kl}} \right] \qquad \text{ONERA}$$

STRUCTURE QUANTIQUE ASYMETRIQUE: «LA» FORME OPTIMALE

Rosencher et Bois, Science 1996

CONCLUSIONS

• Semiconductors: already very useful parametric sources in the 6 – 13 µm range soon parametric oscillations

	pros	cons
QPM by molecular bonding	 No growth possibility of complex structures 	•Large tunablility only from the MIR •Time consuming, manual
QPM by patterned growth	 Large tunablility mass production 	•Extreme technological difficulties
Fresnel phase matching	 no technology parametric florescence NR-QPM: high tunability, tolerance 	 complex optical system highly demanding in roughness control
Microcavity OPO	 integration potential simple micro-device 	 low tunability
Artificial birefringence in waveguide	mass productionintegration potential	•Extreme technological difficulties ONERA

Future work

