Separation in three-dimensional steady flow

Part 3: TOPOLOGY OF SOME REMARKABLE THREE-DIMENSIONAL FLOWS

Separation on a blunt body

Separation on a blunt body Two-vortex structure. Skin friction line pattern

Separation on a blunt body Two-vortex structure. Skin friction line pattern

Separation on a blunted body Two-vortex structure. Skin friction line pattern

Separation on a blunt body Two-vortex structure. Skin friction line pattern

Separation on a blunted body. Skin friction line pattern with two foci. Formation of tornado like vortices

 C_2 N. N₂ À₃ M(C) (S_2) (S₃) (S₁) (A_1)

The body surface is dveloped

Separation on a blunt body. Structure with two tornado like vortices. First detachment surface

Separation on a blunt body. Structure with two tornado like vortices. Second detachment surface

Separation on a blunt body. Structure with two tornado like vortices. Third detachment surface

Separation on a blunt body Assembling of the detachment surfaces

Flow past a delta wing at incidence

Starting of the primary detachment surface at the wing apex

Skin friction line pattern on the suction side

Skin friction line pattern

Starting of the primary detachment surface

What is seen as two vortices are in fact the traces of the horseshoe vortex forming at the wing apex

Field projected in a plane normal to the wing surface

Vortices over a delta wing with a sweep angle of 70°

Separation on a delta wing at incidence One-vortex system. Other organisation

Skin friction line pattern

Field projected in a plane normal to the wing surface

Vortices over the Concorde wing

Vortices over a Concorde type wing. Cut by a downstream vertical plane

Skin friction line pattern on the wing leeside

Flow in the vicinity of the wing apex

Water tunnel visualization

Field projected in a plane normal to the wing surface

Separation on a delta wing at incidence Two-vortex system with limit circle

Field projected in a plane normal to the wing surface

Wake vortex of a classical wing

Wake vortex of a classical wing Detachment surface and vortices

Due to the overpressure on the pressure side, the flow is pushed by the pressure difference and tends to stream on the suction side.

Wake vortex of a classical wing Detachment surface and vortices

Vorticity (entropy) produced in the boundary layers is concentrated in the two tip vortices

Formation of a wing tip vortex

Wake vortex of a wing with control surfaces Skin friction line pattern on the suction side

Wake vortex of a wing with control surfaces Vortices emitted by tips of wing and control surfaces

Wake vortex of a wing with control surfaces Field projected in a downstream plane

Separation on a delta wing at very low Reynolds number

Vortices emanate from foci distinct from the wing apex

Separation on a slender body

Separation on a space launcher ogive

Separation on a blunted slender body Separation with two tornado like vortices. Skin friction line pattern.

Separation on a blunted slender body Separation with two tornado like vortices. Detachment surfaces

Detachment on a missile ogive with flat faces Separation with four tornado like vortices

Two-vortex system

Field projected in a plane normal to the body axis

Three-vortex system

Field projected in a plane normal to the body axis

Separation on a sharp slender body in a Mach 2 flow Laser sheet visualization

Asymmetric configuration and side force

Interaction between the two vortices may lead to a loss of symmetry for the system

This occurs in a well defined range of angle of incidence. Asymmetry entails existence of a side force

Field projected in a plane normal to the body axis

Separation on a sharp slender body Symmetrical and asymmetrical configurations

Separation induced by a blunt obstacle

Separation induced by a blunt obstacle Skin friction line pattern

One-vortex system

Separation induced by a blunt obstacle Flow in the symmetry plane

One-vortex system

Separation induced by a blunt obstacle Detachment surface

One-vortex system

Separation induced by a blunt obstacle Skin friction line pattern

Three-vortex system

Separation induced by a blunt obstacle Detachment surface

Three-vortex system

Separation induced by a blunt obstacle Flow in the symmetry plane

Four-vortex system

Impact regions : pressure and heat transfer peaks

Separation induced by a blunt obstacle Flow in the symmetry plane. Variant

Structure with one detachment

Separation induced by a blunt obstacle Flow in the symmetry plane. Variant

Structure with two detachments

Separation induced by a blunt obstacle Flow in the symmetry plane. Variants

Attachment at the obstacle foot

Detachment on the obstacle

Detachment induced by an obstacle in supersonic flow

Detachment induced by an obstacle in supersonic flow Skin friction line pattern on the horizontal floor

Separation induced by a blunt obstacle Flow in the vertical symmetry flow

Separation induced by a blunt obstacle Detachment surfaces forming on the obstacle

Separation on a blunt obstacle The various detachment surfaces

Separation induced by a protuberance

Separation induced by a protuberance

Skin friction line pattern on the flat plane

Separation induced by a protuberance Skin friction line pattern on the protuberance

Side view

Completely immerged protuberance

Separation induced by a protuberance The detachment surfaces

