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Course Objectives

1. Introduction to real-time

– What is a real-time system?

– Definition of classical notions and terms for real-time

– WCET computation

2. Formal real-time languages : zoom on synchronous / asynchronous 

modelling languages

– Lustre

– SCADE (commercial version of Lustre)

– SDL (System Description Language)

3. Uniprocessor and multiprocessor scheduling

– Scheduling policies

– Scheduling analyses

i
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Course organisation

• Lecture 1 : introduction

• Lecture 2 & practical sessions 3, 4: Lustre

• Lectures 5, 8 & practical sessions 6, 9: SCADE

• Lectures 7, 12 & 13: scheduling

• Lecture 10 & practical session 11: SDL

• Practical session 14: scheduling analyses

Evaluation:

– Commented code of practical sessions 3 & 4

– Code and report (max 2 pages) of practical session 11

François-Xavier

Dormoy (Esterel Tech)
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Outline

1. Part I - What is a real-time system?

2. Part II – High level formal programming languages

3. Part III – Uniprocessor and multiprocessor scheduling
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Outline - Part I What is a real-time system?

1. First definitions

1. Definitions

2. A real example 

2. General architecture

3. WCET computation

4. Real-time problems
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1.1 Introduction

• Most of human made machines require a control or regulation system 

to work correctly (and safely)

• These kinds of systems existed long before the invention of computers

• Example:

– To maintain a locomotive at constant speed, the system regulates the amount 

of steam. Downhill, it should inject less steam and uphill, it should inject 

more.

• Automation: reduce human intervention
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1.1 First definitions

Is called real-time the behavior of a computer system subjugated to the dynamic 

evolution of a process connected to it. This process is controlled, piloted or 

supervised by the system which reacts to the state changes of the process.
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History – early 60s

• The first notable embedded real-time system was the Apollo Guidance Computer, 

onboard computation for guidance, navigation, and control of the spacecraft of the 

Apollo program. It has been developed by Charles Stark Draper of Massachusetts 

Institute of Technology.  

• First computer to use integrated circuits

• Used in real-time by the astronauts to collect and provide flight data, and to 

automatically control the navigation functions of the spacecraft.

• 16-bit wordlength memory : composed of 64 ko (32 000 words) ROM containing all the 

programs and of 4 ko (2 042 words) RAM for the computations. The processor weights 

around 35 kg.

Source: http://fr.wikipedia.org/wiki/Apollo_Guidance_Computer
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Embedded system market

“Over 4 billion embedded processors were sold last year and the global 

market is worth €60 billion with annual growth rates of 14%. Forecasts 

predict more than 16 billion embedded devices by 2010 and over 40 

billion by 2020.

Embedded computing and electronics add substantial value to products. 

Within the next five years, the share of embedded systems are expected 

to increase substantially in markets such as automotive (36%), industrial 

automation (22%), telecommunications (37%), consumer electronics

(41%) and health/medical equipment (33%). The value added to the

final product by embedded software is much higher than the cost of the 

embedded device itself. For example, in the case of a modern car, by 

2010 over 35% of its value will be due to embedded electronics. ”

[ARTEMIS JU Organisation - 2009]
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Some examples

– command and control in production line

– guiding of mobile systems (robotics…)

– embedded systems (railways, aeronautics, automotive…)

– supervising of physical reactions or phenomena (nuclear, chemistry,…)

– computer-assisted instrumentations and operations (medical…)

– communication systems (multimedia…) 

– dedicated systems (scientist experience, signal processing…)



11

Example: sample control loop

A-D : input data collection

D-A: output signal transmission

y : process output

u : new control signal
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Example: sample control loop
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Example : control-command system

Command: Laws which govern the dynamical evolution of a system

– Command a system = make the system evolve in order to reach a particular 

configuration or to follow a given trajectory

process

computer

inputs outputs

state

Equations of state

dx = f(x,u)

y = h(x)
u y

Control: Laws that govern the behaviour of a system

–choice between several commands depending on the environment and the system

–series of command

–realisation of a mission and monitoring of its correct progress

–discrete time
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Example: command of a continuous process

Regulation of a liquid level: 

• control the level in order to respect an order of the operator

• respect the thresholds

level measuring

instrument

level detector

measure

event

command
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Real-time System

The terminology real-time hides the notion of time of reaction relative to 

the dynamics of the industrial process to control. Indeed, the computer 

system must react in constraint time to the evolution and the delay of the 

process reactions is conditioned by the internal dynamics and the cadence 

of production. (reactive system)

In other words: a system works in real-time if it is able to absorb all the 

inputs not to old and reacts in time such that the reaction is adapted to the 

current state.

An absence of reaction can lead to a catastrophic situation (critical 

system). 



16

What time is it?

Two entities: the plant (or physical process) to control and the real-time 

computer system

⇒ Two times: the time of the environment and the time of the real-time system

• Environment time = chronometric time (the real time)

• Computer system time = chronological time, composed by the sequence of 

events or instructions of the system (steps of the real time seen by the system)

⇒ Requirements of real-time = concordance between the chronometric time of 

the environment and the chronological time of the computer system. 

⇒ The computer system must put its actions in phase with the chronometric time 

of the process 

⇒ the actions of the system will be tasks and messages. Use of techniques of 

scheduling of tasks and communications
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Real-time ≠≠≠≠ go quick

– Need of a short reaction (1 ms) for the control of an military aircraft 

– Need of a slower reaction (10 ms) for the control of a civil aircraft 

– Need of a slower reaction (1s) for an HCI (human-computer interaction)

– Need of a slower reaction (1mn) for the control of a production line 

– Need of a slower reaction (1h) for the control of chemical reaction 

– …

– Need of a reaction of several hours to make a meteorological prediction 

– Need of a reaction of several days for computation of the pay of the 

employees…

=> Respect the deadline is essential

=> A correct result out of deadline may be unusable and may generate a fault.
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Hard and soft real-time

Two notions of criticality when a deadline is not respected

– Strict real-time constraints : the exceed of a deadline is catastrophic

– Relatives real-time constraints:  the exceed of some deadlines may be 

tolerated

=> Hard real-time / soft real-time

Consequences…

=> In the case of hard real-time systems, conceivers want to be predictable, 

deterministic and reliable

=> Use of mathematical techniques (scheduling, worst case evaluation…)

=> In the case of soft real-time systems, conceivers want to minimise the 

probability to miss a deadline several times
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1.2 Example of hard real-time: aircraft flight 

control

From physics to a computer-aided navigation …

CG

Y

X

Z

East

North

Vertical
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Aircraft attitude

roll

pitch

yaw

pitch

roll

yaw
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Flight control system

The aircraft primary flight control system is the set of elements between 

the stick and the surfaces which aim at controlling the attitude, the 

trajectory and the speed of the aircraft.

The system is composed of:

– piloting elements: stick (or yoke or control column), pedals, throttle controls…

– transmitting and computing organs

• cables and calculators (for fly-by-wire)

– sensors, actuators and servocommand to command the surfaces
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Fly-by-wire flight control system
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(Some) Aircraft sensors

– GPS

– altimeter: measures the altitude of an object above a fixed level

– inertial measurement unit is an electronic device that measures and reports on a craft's 
velocity, orientation, and gravitational forces, using a combination of accelerometers 
and gyroscopes.

An attitude indicator, also known as gyro horizon or artificial horizon, is an 

instrument used in an aircraft to inform the pilot of the orientation of the 

aircraft relative to earth. It indicates pitch and roll.

A pitot tube is a pressure measurement instrument used to measure fluid flow velocity

A weather vane, also known as a peach patrolwind vane or 

weathercock, is an instrument for showing the direction of 

the wind.
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A320 flight controls systems

Fly-by-wire system

– 9 calculators

• Functions allocation :

– 2 redundant calculators for the slats and the flaps (SFCC1-2)

– 2 redundant calculators for the rudder (FAC1-2)

– 3 redundant calculators the spoilers, the elevators and the trim (SEC1-2-3)

– 2 redundant calculators for the ailerons, the elevators and the trim (ELAC1-

2), replaced in case of failure by the SEC1-2-3

• Safety requirements

– each calculator must be "fail-silent"

– each calculator must have a failure rate less than 10-3 per flight hour

– ...
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A320 flight controls systems architecture
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Reconfiguration policies

B Hydraulic blue system

G Hydraulic green system

Y Hydraulic yellow system

GND-SPL: Ground Spoiler

SPD-BRK: Speed Brake

LAF: Load Alleviation Function

ELAC 2
ELAC 1

SEC 3
SEC 2

SEC 1

B → G

G Y B Y G GYBYG

ELAC          1      2                                          Normal Control                           1     2    ELAC

SEC                                    2         1        1     1        3         Normal Control          3       3        1        1       2                           SEC

SEC                                                             2                   Standby Control                  2   SEC

Roll

LAF SPD-BRK

GND-SPL

Roll

LAFSPD-BRK

GND-SPL

L. Ail R. Ail

B → G Y → G

G Y

Trimmable Horizontal

Stabilizer Actuator

Motor        2            1

2        3

ELAC           1         2

SEC              3         2

2         1     ELAC

2         3     SEC

B → G

Redundancies allocation
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Outline - Part I What is a real-time system?

1. First definitions 

2. General architecture

1. Material architecture

2. Functional behaviour

3. Executive support

3. WCET computation

4. Real-time problems
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2.1 Embedded real-time architectures

Computer

System 

Environment
data

measures

events

commands

• a programmable automaton

• an integrated circuit (ASIC)

• a calculator (monoprocessor)

• a multiprocessor system with a shared memory

• a distributed system

• ...

May be realised by
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Multiprocessor architecture
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Distributed architecture
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2.2 Functioning

General functioning : infinite loop

While TRUE do

Inputs acquisition(measures…)

Computation of orders to send to the process

Orders emission

End while

But, two kinds of functioning :

– cyclical running (time driven or synchronous system)

– event running (event driven)

=> mixed functioning : based on cyclic and aperiodic treatments
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Cyclic run

Cyclic scanning of an input memory (polling)

=> Sampling of inputs on the system clock

=> Activation at each tick of the clock

At each clock tick do

Read of the input memory

Orders computation for the process

Emission of orders

End

But : 

– system not much "reactive" if the environment produces information at 
different frequencies

=> need to foresee all possible reactions of the system in the loop

=> bad performance

=> or interleaving of loops at different frequencies

=> difficulties for realisation, code readability, evolution
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Chronogram of cyclical implementation

Regulation of the level and the temperature of liquid

• Events: H (for high), L (for low), C (for cold) and W (warm)

fill

empty

time

events C L W H

cool

warm
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Event run

Activation of the system at each event occurrence (=> notion of 
interruption)

At each interruption do

Read of the new information

Activation of the correspondent treatment

Emission of orders

Fin

But : what happens when an interruption appears when the system is 
treating the precedent interruption?

=> Priority among the interruptions

=> notion of tasks associated to interruptions

=> mechanism of preemption and resumption of tasks

=> management of concurrent execution of tasks (scheduling)

=> A real-time system is often a multitasks system including a scheduler
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Chronogram of event driven implementation

Regulation of the level and the temperature of liquid

• Events: H (for high), L (for low), C (for cold) and W (warm)

• Priorities: 2, 2, 1, 1

fill

empty

time

events C L W H

cool

warm ….…

….…
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Shared resources

empty

events W H

cool ….…

when interrupted, the task cool was acceding to a shared resource (for instance 

memory). Conflict problem.

=> A solution: interdiction to preempt a task when using a shared memory.

empty

events W H

cool

W H

….…
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Example: Sojourner

The Sojourner rover was the second 

space exploration rover to successfully 

reach another planet, and the first to 

actually be deployed on another planet. 

Sojourner landed on Mars as part of the 

Mars Pathfinder mission on July 4, 1997.

Priority inversion:

“Even though NASA knew the problem, 

because it already occurred on all the tests 

that had been performed. But NASA thought 

it won't be a problem because on earth the 

situation didn't occur very often, NASA only 

underestimated the number of situations the 

problem appeared.”

[http://en.wikipedia.org/wiki/Sojourner_%28rover%29]

Robert Franz. Advanced Course SeminarAnalysis of computer bugs, Priority Inversion 

Mars Sojourner. 2008.
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2.3 Real-time system support 

Simpler solution: nude application on the calculator

Kernel

Library

Tasks

CPU Polling of the data

Library with deterministic functions

Sequencing by hand of tasks
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Solution with an executive component

Tasks 

handler

Events 

handler

Time 

handler

Scheduler

clock

events 

from the 

process

Executive

Application

Task

measures commands

Task Task Task

Services             calls
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Real-time OS

• OS for hard real-time

– Precise management of priorities

– Rapid system primitives, in bounded time (interruptions, semaphores…)

– No virtual memory

– Minimisation of the « overhead » (time for the system to  execute and monitor 

its own behaviour)

• OS for soft real-time

– Extension of classical OS (such as UNIX..)

– Extension of real-time scheduling

– Light processes

– Preemption …
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Market for the real-time OS

[TIM00] M. Timmerman. « RTOS Market survey : preliminary result ». 

Dedicated System Magazine, (1):6–8, January 2000.
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Example: APEX Arinc 653

• Arinc (Aeronautical Radio, Incorporated) established in 1929, is the 

leading provider of transport communications and system engineering 

solutions

• Publication of the first standard ARINC 653 : summer 1996

• Start of the works : 1991

• Arinc 653: Application programming interface (API) between an OS

of an avionics resource and an application. Airbus implementation 

interface APEX (APplication / EXecutive)
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A653 functioning

Operating system :

– Schedule the module partitions

– Schedule the processes of each partition

– Ensure segregation (partitioning) spatially and temporally

Partition 1  

p11
p1n

Partition 2  

p21
p2n

Partition 3  

p31
p3n

APEX

OPERATING SYSTEM

Hardware
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Sharing of resources

Spatial segregation:

Memory zone predetermined for each partition

Temporal segregation (CPU) :

– A partition does not have any priority

– Deterministic and cyclical allocation of the CPU to the partitions :

=> OS repeats a base cycle (MAjor time Frame: MAF) of fix duration

=> Allocation of time slots in the MAF to each partition

=> The resource allocation is statically defined off-line and cannot be 
modified

Part 1 Part 2 Part 3 Part 1 Part 3 Part 2 Part 3

Base cycle MAF

timeT+1T

Time slots for partition 3Time slots for partition 1

Time slots for partition 2



45

Partitions handling

• OS starts the partitions scheduler

• During a time slot, a partition is in one of the following states:

– Idle : no processus is executed

– Cold_start ou Warm_start : initialisation of the partition

• Cold start : initial values

• Warm start : recovery of the context of the partition

– Normal : execution of the processes

• Out of its slices, a partition is suspended

• All the objects (ports, processes …) are created during the initialisation phase
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Processes handling

Standard

• 2 types of processes: periodic and aperiodic

• No segregation between processes of a same partition

• The processes of a partition are not visible by other partitions

• A unique process is running at a time

• Several scheduling are proposed for the processes
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Example: Paparazzi project

Pararazzi is a free and open source project for programming UAV 

(Unmanned Air Vehicle System). Developed at ENAC.

http://paparazzi.enac.fr/wiki/Main_Page

The environment provides the code for:

- airframe

- airframes ranging from 30cm to 1.4m, and 180g to 1.4 kg

- flight simulator
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Paparazzi project
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Hardware architecture 
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Functional architecture
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Code



52

Outline - Part I What is a real-time system?

1. First definitions 

2. General architecture

3. WCET computation

4. Real-time problems
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The WCET Problem

Given

� the code for a software task

� the platform (OS + hardware) that it will run on

Determine the WCET of the task.

Can the WCET always be found?

� In general, no, because the problem is undecidable.

Usual restrictions in embedded systems (to ease the estimation)

� loops with finite bounds

� no recursion

� no dynamic memory allocation

� no goto statements

� single-threaded if possible
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Methods

Measuring: 

� Compile, link and download onto target CPU

� Hook up logic analyzer or oscilloscope or use built in registers 

� Run the code with test inputs, and record execution times

� Take the maximum as WCET

� No guarantee to hit the worst case!

Simulation: 

� Various levels of precision possible (cycle accurate, instruction accurate); 

difficulty to simulate behavior of environment.

Analysis: 

� Compute estimate of run time, based on program analysis and model of target 

hardware
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Overview of the methods results

WCET: The longest time taken by a software task to execute

=> Function of input data and environment conditions
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Influence of input size

� Instruction execution time can be different

� MUL (multiply) can take a variable # clock cycles, depending on input size

� Control flow (while, for loops) can run for variable number of 

iterations

Parameters: 

• A positive integer, n.

Returns: The sum of the integers from 1 to n.

{ sum := 0;

for i := 1 upto n

{ sum := sum + i;}

return sum;}
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WCET computation by static analysis

even = 0;
odd = 0;
for (i=0 ; i<N ; i++) {

if (i%2 == 0)
even++;

else
odd++;

source code

compiler binary code CFG 
extraction B

C D

E

A

Li
ne

ar
 p

ro
gr

am

max T=xA.cA + xB.cB+ xC.cC + xD.cD + xE.cE

xA = 1 xA = xAB
xB = xAB + xEB xB = xBC + xBD
xC = xBC xC = xCE
xD = xBD xD = xDE
xE = xCE + xDE xE = 1 + xEB

flow analysis

xEB ≤ 255; xBC ≤ 0.5 xB; 

low level 
analysis

cA = …; cB = …; cC = …; cD = …; cE = …;

1100101

ILP solver

Tmax = … (WCET)
with:
xA = … xB = … xC = …
xD = … xE = …

solution

N = input

[Rochange2012]
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Control flow graph (CFG)

test.c

int ex(int n) {

int i, s=0;

for(i=0; i< n; i++){

s+=i;

}

return s;

}

• Nodes  represent basic blocks. A Basic Block (BB) is piece of code with a single 

entry point and a single exit point, with no branching in-between.

• Edges represent flow of control (jumps, branches, calls,...)

Example

terminal

>gcc –c –g –lrm test.c

>dissy test.o
Deassemble the code

BB1

BB3

BB2

BB4
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CFG - example

test.c

int ex(int n) {

int i, s=0;

for(i=0; i< n; i++){

s+=i;

}

return s;

}

B1:

int i, s=0;

i=0;

B2:

i < n

B3:

s+=i;

i++;

B4:

return s;

CFG idea
B1:

0x000005e

…

0x00000079

B2:

0x0000085

…

0x0000008b

B3:

0x000007b

…

0x00000081

B4:

0x000008d

…

0x00000091

Generated CFG
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Identification of the longest path in a CFG

CFG can have loops, how to infer loop bounds?
– unroll loops, resulting in directed acyclic graph (DAG)

– construct system of equations

Example

xi → # times Bi is executed

dij → # times edge is executed

Ci →WCET of Bi

B1:

int i, s=0;

i=0;

B2:

i < n

B3:

s+=i;

i++;

B4:

return s;

x1

x2

x3x4

d12

d32

d23

d24

d01

d40

maximize ∑∑∑∑i Ci xi

subject to flow constraints 

d01 = 1 

x1 = d01 = d12

x2 = d12+d32 = d24+d23

x3 = d23 = d32 = n 

x4 = d24 = d40=1
designer must give an 

upper bound of n
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Computation of basic blocks WCET

Require to make a micro-architecture modeling

– perform a cycle-wise evolution of the pipeline, determining all possible successor pipeline states

Model of the behaviour of the architecture

–Pipeline

• Determine each instruction’s worst case effective execution time by looking at its surrounding 

instructions within the same basic block.

– branch prediction

• Predict which branch to fetch (ex static, always then for an if)

– Data dependent instruction execution times

– caches

–in case of multicore, common bus

–…

Read the processor handbook
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Example - micro architectural analysis

Let us consider the following processor architecture and basic block

i0: load A r0

i1: add r0 r1 r0

i2: mul r3 r2 r3

fetch

decode

issue

IU1

IU2

LSU

complete

scenario 1

A in the L1D

scenario 1

A not in L1 and not in L2
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Outline - Part I What is a real-time system?

1. First definitions 

2. General architecture

3. WCET computation

4. Real-time problems
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Choices for the conceiver

1. The material architecture: at system and component level. The system 

architecture must take into account several constraints (such as the 

distance between components). The component must consider the 

input/output and interconnections means. 

2. Communication model: internal communication of process on a 

component and distant communication. Different kinds: message passing, 

rendez-vous, … Physical support: time triggered busses and networks 

(1553, Arinc429, TTP…), real-time (CAN, AFDX…), classical network 

(Ethernet, Wifi…)

3. Calculator technology: a PC, workstation, processor, real-time 

calculator, SOC, …

4. Operating system and scheduling: real-time operating system 

(VxWorks, PikeOS, Arinc 653,…), micro kernel, no OS …

5. Languages: programming by hand (C, Ada,…), high level semi formal 

languages (AADL, UML…), high level formal languages (SCADE, 

Lustre, SDL…)
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Characteristics

“Classical” program:

1. (1) ends; (2) returns a result and (3) handles complex data structure with 

quite simple control structure. 

2. For such programs, properties to be fulfilled are often “when the 

function is called and the pre-condition is satisfied, then the function 

ends and the post-condition is satisfied”.

Typical examples of classical program : compiler, sort algorithm.

Real-time reactive programs. 

1. (1) do not necessarily end; (2) do not compute a result but instead 

maintain an interaction ; (3) data structures are often simple but the 

control graph is complex (concurrent execution of components). 

Moreover, they interact with their environment via actuators 

(information acquisition) and actuators (action).

[Bar08]
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Temporal properties

The properties are very different from those of standard programs. Typically, we 

are interested of event interleaving all along infinite executions. For instance:

- If a process requests infinitely often to execute, then the OS will execute it at 

some point;

- it is always possible during the execution to return to the initial state; 

- whenever a failure is detected, an alarm is raised;

- whenever an alarm is raised, a failure has been detected.

[Bar08]
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Future courses

1. The material architecture: dependability and safety course, AADL 

2. Communication model: courses on network and busses

3. Calculator technology: ?

4. Operating system: real-time operating system course

5. Scheduling

6. Languages



69

Outline

1. Part I - What is a real-time system?

2. Part II – High level formal programming languages

3. Part III – Uniprocessor and multiprocessor scheduling
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Outline - Part II – High level programming 

language

1. Lustre

2. SDL
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Outline – II.1 - Presentation of Lustre

1. Programming real-time system

2. Lustre overview

3. Semantics, clocks and activations
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Difficulties

• Classical difficulties of programming

• … and difficulties associated to the management of time

– Signal dating

– Order of the action execution

– Wait for signal during some delays …

And: the world is full of delays, deadlines, drifts …

Typical example:

In a world where actions like communication or computation take a 

variable amount of time, how to interpret the absence of an information?

– The absence may be due to:

• A delay

• A real absence

– A misunderstanding of the situation

– …
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Asynchronous vs. Synchronous programming

Asynchronous programming:

– Processes are independent with each other and with the environment

– No global time

– Actions have a non-deterministic duration

– Needs for synchronisation mechanisms (rendez-vous…)

Advantage:

– Close to the real world

Problem:

– Concurrence is not deterministic

– Example:
product X(0); [product X(1);product X(2);] || product Y(X+1);

The result can be either Y(1), Y(2) or Y(3)

=> product X(1);product X(2); not equiv to  product X(2)

No code compaction!
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Asynchronous vs. Synchronous programming

Synchronous programming idea:

– Simplify the world in order to simplify the programming

– Omission of some details

– Synchronous hypothesis:

• Assumption of the existence of a global time

• Two actions executed at the same time are supposed to take no time (or at least to not exceed 

the basic period evolution)

Advantage:

– Determinism

– Simpler programs

But:

– Need to verify that the implementation respects the hypothesis

Similar to physicians or chemists approaches:

– Simplification of the world

– Here simplification of the time dimension!
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Development process of control command systems

Simulink

continuous 

models

physicist

control engineer

Simulink 

discrete 

models

Embedded 

executable

C code

ACG Mathworks

Lustre/SCADE 

programs

ACGLustre

Constraints:

-OS

-hardware

computer scientist



76

Panorama of synchronous languages

Main applicative domains

- control-command

- Circuits

Name Location People Type Commercial

Esterel Paris, Sophia-

Antipolis

G. Berry (1983) Control flow Esterel

Lustre Grenoble Paul Caspi and 

Nicolas 

Halbwachs 

(1984)

Data flow SCADE

Signal Rennes Albert 

Benveniste and 

Paul LeGuernic 

(1984)

Data flow

StateCharts David Harel Finite state 

machine 

extension

Integrated in several 

languages such as 

UML

And others
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Outline– II.1 - Presentation of Lustre

1. Programming real-time system

2. Lustre overview

1. Introduction

2. Syntax

3. Examples

4. Over sampling and sub sampling

3. Semantics, clocks and activations
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Presentation

Motivation:

Allow a natural programming

– of control command systems

– of circuits …

for the safe programming (of critical and reactive systems)

Mean:

Classical techniques of programming close to traditional methods used in 

industries by engineers

– block diagrams and data-flow

– sampled systems

LUSTRE:

– Formal language defined in 1985 by P. Caspi and N. Halbwachs in Grenoble 
Verimag.

– Commercial distribution SCADE - Esterel Technology

– Industrial use: Airbus, Schneider electric



79

Examples

Logic gate

For all n, Zn = Xn or Yn

Relay

For all n, Un = if Zn then Vn else Wn

Filter

O0 = aU0

O1 = aU1 + bU0

∀n≥2, On = aUn + bUn-1 + cUn-2

X

Y
Z

V

W
U

Z

a+bz-1+cz-2U O
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Examples

Generalisation:

– Description of a system by a sequence of sampled values: the data-flow

– A system = a set of operators applied on the data-flow

Example

Z = X or Y;

U = if Z then V else W;

O = a.U + B. pre(U) + c.pre(pre(U));

X

Y

Z

V

W
a+bz-1+cz-2

U
O
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Approach

Data-flow:

– X is a sequence of values Xn with n ≥0

– Xn is the value of X at the instant n (nth top)

Basic clock: all the flows are assumed to be cadenced at the same clock

– Xn and Yn are the values of X and Y at the same instant

Definition of flows:

– A flow is defined by an equation O=F(X,Y,..) which computes On depending 

on Xn and Yn (at the same instant)

A program Lustre:

– set of equations

– at each top, the variables are evaluated depending on the values of the inputs
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Approach

Working hypothesis

– We program as if the communications and the reactions take no time.

– We focus on the relation between inputs and outputs

Validation of working hypothesis

– The method guarantees that the reactions are realised in a bounded time, 

computable for a given architecture

– The hypothesis is valid if this bound is less than the dynamic of the 

environment
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General syntax

[declaration of types and external functions]

node name (declaration of input flows) 

returns (declaration of output flows)

[ var declaration of local flows]

let

[assertions]

system of equations defining once each local flow 
and output depending on them and the inputs

tel.

[other nodes]

Types :

– basic types: int, bool, real

– tabular : int^3, real^5^2…
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Equations

– an equation is defined on a internal flow or an output depending on internal 

flows, inputs and outputs

X = Y + Z

Z = U

means 

for all n≥ 0, Xn = Yn + Zn et Zn = Un

=> an equation defines a mathematical egality, and not an computer assignment : 

a flow may be replaced by its definition in all the equations of the node

X = Y + Z is equivalent to X = Y + U

Z = U Z = U

=> equations are not ordered

X = Y + Z is equivalent to Z = U

Z = U X = Y + Z
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Operators

Classical operators:

Arithmetical :

Binary : +, - , * , div , mod, / , **

Unary : -

Logical :

Binary : or, xor, and, =>

Unary : not

Comparison :

=, <>, <, >, <=, >=

Control :

if . then . else

Temporal operators :

pre (precedent) : operator which allows to work on the past of a flow

-> (followed by) : operator which allows to initiate a flow
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Operator pre

Memorization of the precedent value of a flow or a set of flows.

Let 

X be the flow (X0, X1, … , Xn, …)

then 

pre(X) is the flow  (nil, X0, X1, … , Xn, …)

By extension, the equation

(Y, Y') = pre(X, X')

means

Y0 = nil,   Y'0 = nil

and for all n≥ 1, Yn = Xn-1 and Y'n = X'n-1

Example : detection of the overtaking

Distance = if (X>pre(X)) then X-pre(X) else pre(X)- X ;

Over = (Distance > Threshold) ;
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Operator ->

Initialisation of a flow.

Let 

X be the flow (X0, X1, … , Xn, …) and Y the flow (Y0, Y1, … , Yn, …)

then 

Y->X is the flow  (Y0, X1, … , Xn, …)

By extension, the equation

(Z,Z’) = (Y, Y') -> (X, X')

means

Z0 = Y0,   Z'0 = Y'0
and for all n≥ 1, Zn = Xn and Z'n = X'n

Example : monitoring of a temperature

A = (T>100) -> if (T>100) then true else pre(A) ;

equivalent to :

A0 = (T0>100)

An =     true si (Tn>100)

An-1 sinon
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Example

Detection of rising edges

Let X be an input Boolean flow, let Y be an output Boolean flow

node EDGE (X : bool) returns (Y : bool)

let

Y = X→→→→(X and not pre(X));

tel ;

pre
→→→→ Y

X

HorlogeX

Y



89

Example

Flip-flop

Let set and reset be two input Boolean flows, let level be an output 

Boolean flow

node Q (reset, set : bool) returns (level : bool)

let

level = true →→→→ if set and not pre(level)

then true else if reset then false

else pre(level) ;

tel ;

pre

→→→→

set

true

true

false

P1

reset

level
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Exercises

Compute the minimum and the maximum of a sequence

node MinMax (X:int)

returns (min, max : int)

let

tel

Compute the minimum and the maximum of 2 flows

node MinMaxPaire (X,Y:int)

returns (min, max : int)

let

tel
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Exercise

A resetable counter

– Input: reset reset the counter (Boolean flow)

– Output: counter value of the counter (Integer flow)

Write the program

node a_counter

let

tel
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Exercise

A timer:

– Input: set activation of the timer (Boolean flow)

– Output: level state of the timer (Boolean flow)

– Constante: delay duration of the timer in number of tops

Write the program

const delay : int;

node timer

let

tel
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Assertion

Allows the designer to make its hypothesis, on the evnironment and 

the program, explicit

– Optimisation at compilation

– Verification of properties

Example

assert (not (X and Y))

imposes that the Boolean flows X and Y are never true simultaneously

assert (true -> not (X and pre(X)))

imposes that the Boolean flow X can never transport two values equal to true 

consecutively
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Example: Lulu, the wolf, the goat and the cabbage

Lulu needs to bring a wolf, a goat, and a cabbage across the river.

– The boat is tiny and can only carry one passenger at a time.

– If he leaves the wolf and the goat alone together, the wolf will eat the goat.

– If he leaves the goat and the cabbage alone together, the goat will eat the 

cabbage.

– How can he bring all three safely across the river?
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Example: Lulu, the wolf, the goat and the cabbage

Inputs of the program: Lulu’s actions

– m: Lulu crosses the river alone

– mw: Lulu crosses the river with the wolf

– mg: Lulu crosses the river with the goat

– mc: Lulu crosses the river with the cabbage

Outputs of the program: positions of each one

– L: position of Lulu

– W: position of the wolf

– G: position of the goat

– C: position of the cabbage

– A position X is in {0,1,2}: 0 stands for X is on the river 0, 1 for X is on the 

river 1 and 2 for X has been eaten
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Example: Lulu, the wolf, the goat and the cabbage

Program
node river(m, mw, mg, mc : bool) returns (L, W, G, C : int)
assert (m or mw or mg or mc);
assert( not (m and mw));
assert( not (m and mg));
assert( not (m and mc));
assert( not (mw and mg));
assert( not (mw and mc));
assert( not (mg and mc));
assert( true -> not (mw and not (pre(L)=pre(W))));
assert( true -> not (mg and not (pre(L)=pre(G))));
assert( true -> not (mc and not (pre(L)=pre(C))));

let
L = 0 -> 1 - pre(L);
W = 0 -> if mw then 1 - pre(W) else pre(W);
G = 0 -> if pre(G) = 2 then pre(G)

else if mg then 1 - pre(G)
else if (pre(G)=pre(W) and not mw) then 2

else pre(G);
C = 0 -> if pre(C) = 2 then pre(C)

else if mc then 1 - pre(C)
else if (pre(C)=pre(G) and not mg) then 2

else pre(C);
tel.
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Example: Lulu, the wolf, the goat and the cabbage

Winning strategy: mg,m,mc,mg,mw,m,mg

What happens for the sequence: m,m,mw,m…



98

First conclusion

Lustre allows to describe naturally cyclical programs.

– deterministic: the order of the equation has no impact

– bounded execution time (no dynamical process, no variable loop …)

– bounded memory (number of pre)

– modular (reuse of nodes by nodes)
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Outline– II.1 - Presentation of Lustre

1. Programming real-time system

2. Lustre overview

3. Semantics, clocks and activations
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Clock-based semantics

Clock:

– a clock is a Boolean flow

Basic clock:

– is the flow true

Semantics of a flow:

– is the sequence of pairs (vi,ci) where vi is the value and ci is the clock 

associated to the flow

Equation:

– must be homogenous in term of clock

• X + Y has a sense iff X and Y have the same clock
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Operator when

Sub-samples a flow on a lower clock

Let X be a flow and B a Boolean flow (assimilated to a clock) of same clock. 

The equation

Y = X when B

defines a flow Y, of same type than X, and of clock B

• Y is present when B is true

• Y is absent when B is false or when B and X are absent
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Operator current

Over-samples a flow on a quicker clock

Let X be a flow and B a Boolean flow (assimilated to a clock) of same clock. 

The equation

Y = X current B

defines a flow Y, of same type than X, and of clock the clock of B

• Y is present iff B is present

• when Y is present, Y is equal to X if X is present and to the previous value of X 

otherwise
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Sampling

The operator when defines a slower flow than the input

X                4      1         -3      0        2       7       8 

C      true false false true   true  false  true

X when C  4                           0        2                8

Question: is  the flow X + X when C well defined?

The operator current constructs a faster flow than the input

X                    4      1        -3      0       2       7        8 

C                    true false false true true false true

Y=X when C  4                         0       2                8

current (Y)      4     4        4        0       2      2       8

Warning: current (X when C) ≠≠≠≠X
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Problem of initialisation of current

X                              4        1       -3      0       2      7       8 

C                              false false false true true false true

current(X when C)  nil      nil     nil      0      2      2    8

Idea 1 : sample with clocks which are initially true

C1 = true -> C            true false false true true false true

current(X when C1)   4      4        4       0      2      2    8

Idea 2: force a default value 

E = if C then current(X when C) else (dft -> pre E);

Idea 3: (to avoir additionnal memory) 

X1 = (if C then X else dft) -> X; 

E = current(X1 when C1);
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Exercise

For the following counters:

node counter (reset : bool) returns (n : int)

let n = O -> if reset then 0 else pre n + 1; tel

node decounter (reset : bool) returns (n : int)

let n = O -> if reset then 0 else pre n - 1; tel

node counter2 (reset,c : bool) returns (n : int)

let n = if c then counter(reset) 

else decounter(reset); tel

Precise the behaviour of the node

node counter3 (reset,c : bool) returns (n : int)

var c1,c2 : int;

let c1 = current (counter(reset when c));

c2 = current (counter2 (reset when not c, false whe n not 
c));

n = if c then c1 else c2; tel
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Recapitulative

B

X

Y

pre(X)

Y->pre(X)

Z=X when B

T=current Z

pre(Z)

0->pre(Z)

false

x0

y0

nil

y0

nil

true

x1

y1

x0

x0

x1

x1

nil

0

false

x2

y2

x1

x1

x1

true

x3

y3

x2

x2

x3

x3

x1

x1

false

x4

y4

x3

x3

x3

false

x5

y5

x4

x4

x3

true

x6

y6

x5

x5

x6

x6

x3

x3

true

x7

y7

x6

x6

x7

x7

x6

x6
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Exercise

Define the following flow with some LUSTRE equations:

1. 0,1,2,3,. . .

2. 0,1,0,1,0,1,. . .

3. 0,0,1,0,1,0,1,0,1,. . .

4. 1,1,2,3,5,8,13,. . . (suite de Fibonacci)

5. a flow S which value increments when E is true, for instance:

1. E: 0 1 0 0 1 0 0 0 1 . . .

2. S:     1       2         3 . . .

6. A flow S which takes the value of E each N tops, for instance:

1. E: 1  3  0  4  0  2  3  1 …

2. S: 1           4          3  …
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Exercise: 3 bits adder

Booleans are interpreted as binary:

• false = 0, true = 1

Write a node

• node Add3b(cin, x, y : bool) returns (cout, s : bool);

• Which computes cin, x and y

i.e. for all t cint + xt + yt = 2 * coutt + st
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Exercise: serial adder

The Boolean flows are interpreted (when possible) as binary numbers :

X = X0 + X1 * 2 + X2 * 22 + ... + Xt * 2t + ...

1. What is the integer for the flow false ?

2. What is the integer for the flow true -> false ?

3. Write a serial additionneur:

1. node AddSerie(X, Y : bool) returns (S : bool);

2. Such that S represents the sum of the binary numbers X and Y.

4. What is the flow AddSerie(true->false, true->false) ?

5. How is interpreted the flow true ?
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Outline - Part II – High level programming 

language

1. Lustre

2. SDL
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Outline – II.2 SDL

1. Where is it possible to apply a language?

2. Introduction of SDL

3. Syntax of SDL

4. Simulation and MSC
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high level programming
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Implementation

Conception, 

global architecture

Development process
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Specification, 

definition

Detailed conception, 

high level programming

Low level programming

Implementation

Conception, 

global architecture

Development process

UML-RT SDL
=> Use cases 

sequence diagram
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Specification, 

definition

Detailed conception, 

high level programming

Low level programming

Implementation

Conception, 

global architecture

Development process

=> choice of scheduling

=> choice of real-time OS
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Outline – II.2 SDL

1. Where is it possible to apply a language?

2. Introduction of SDL

3. Syntax of SDL

4. Simulation and MSC
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Generalities

SDL (Specification and Description Language):

– Defined in 1976 by the CCITT, Comité consultatif internationale 
télégraphique et téléphonique – now ITU-T International Telecommunication 
Union – recommendation Z.100 – Z.109

– Initially for the specification and the development of protocols

– Well adapted for the formal description of reactive (embedded real-time 
distributed …) systems

– Living language  (regular updates)

General features:

– the specification of a system is the description of the expected behaviour

– the description of a system is the description of the real behaviour

– the specifications and the descriptions made in SDL must be formal in the 
sense that it could be possible to analyse and interpret them without ambiguity

– SDL is easy to learn and use (several formal methods should be applied) 

=> Graphical language
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Brief historical

1968 first studies

1976 Orange book SDL – elementary graphical language

1980 Yellow book SDL – process semantics definition

1984 Red book SDL – data types, first tools

1988 Blue book SDL – concurrence, composition, tools

=> SDL-88 simple language with a formal semantics

1992 White book SDL – object oriented approach

=> SDL-92 more complex language

1996 SDL-96 minor modifications

2000 Integration with UML
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Advantages in the development process

Specification: description of the expected behaviour

Description: description of the real behaviour

• Possibility to simulate/execute system partially described

• Compiler verifies the coherence of the architecture

• Formal semantics: no ambiguity for the supplier and designer

• Behavioural semantics vs sequence diagram: diagram are incomplete 
and do not describe prohibited behaviour

• Interface with UML

• Tests: automatic generation and validation

Implementation: automatic code generation

• Independence with the API

• Automata coding error prone

Unique language all along the development



123

Industrial example: ATC (Air Traffic Control)

ATC is a service provided by ground-based controllers who direct 

aircraft on the ground and in the air. France is divided into 5 zones 

controlled by an ATC centre. Their purpose is

• to separate aircraft to prevent on ground and on air collisions,

• to organize and expedite the flow of traffic, 

• to provide information and other support for pilots: weather and traffic 

information, route clearances; 

• Information for rescue services

[wikipedia]
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Embedded ATC 

ON board data (position, altitude, speed, weather) are collected, 
transmitted regularly to on ground equipments. Electronic dialogue 
between pilot and controllers. 

– ADS (Automatic Dependant Surveillance) : surveillance technology for 
tracking aircraft. If an aircraft deviates from its flight profile, it reaches a specific 
monitored mode to quickly correct its position. Future generation: ADS-B 
(Broadcast), delays are improved 

– CPDLC (Controller-Pilot Data Link Communications) : method by which air 
traffic controllers can communicate with pilots over a datalink system. Formatted 
electronic dialogue (no ambiguity): set of clearance/information/request message 
elements which correspond to voice phraseology employed by Air Traffic Control 
procedures (eg clearance to climb or descend to a given flight altitude)

– CAP (Controller Access Parameters). On board systems compute and 
automatically send surveillance data (such as magnetic heading, indicated 
airspeed, vertical rate…). This allows a tighter surveillance of  the traffic for the 
ATC and reduce the overload on human 

[wikipedia]
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Embedded ATC

On board application: sub tasks are executed within an IMA partition. 

These sub functions are coded with SL processes.

456 000 C code lines from SDL

156 000 manual C code lines
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Outline – II.2 SDL

1. Where is it possible to apply a language?

2. Introduction of SDL

3. Syntax and semantics of SDL

4. Simulation and MSC
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Structure of an SDL system

An SDL system is a structured set of processes which execute in 
parallel and communicate by exchanging messages

An SDL system is a real-time system immersed in its environment 
through an interface

interface
environment

system



128

Structure of an SDL system

SDL provides structuring principles which consist in decomposing a 

system in components that can be developed independently and in no 

specific order.

3 levels of structuring:

1. System = block + communication channel

2. Block = processes + signal route

3. Process = an automaton

interface

environment

system

block block

block
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Structure of an SDL system

A block can be decomposed into blocks, but a block leaf is necessary a 

process or a set of processes

processprocess

channel

channelchannel

block
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Example: simple reactive system

system reactive_system

Signal order, result; 

reactive_block_1
input

[ order ]
output

[ result ]



131

Example: simple reactive system

Block reactive_block_1

reactive_process_1input
input1

[ order ]

output1
output

[ result ]
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Example: simple reactive system

process reactive_process_1

wait

order

result

wait
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Lexical rules

Comments:

– between /* …*/

– after keywords COMMENT

– special graphical symbol for the graphical version

Identifier: [a-z_+#@]*

Channels and signal route are typed

No shared variable

Components are visible by the parents

a comment
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Declarations

Declarations are made in block text:

At system level, declaration of signal

SIGNAL <ident> (, <ident>)*

A signal is a type, a signal occurrence is a typed message

Elementary types:

– Boolean: true, false

– Character: ‘A’,’1’, …

– Integer: Z

– Natural: N

– Real

– Charstring

– Pid: identifier of process (2 operators =, /=)

– Time

Signal Command, data;
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Example 2

system FTP_minimal

Signal Command, Data; 

[ command ] [ data ]
FTP_server FTP_client

FTP_connection

block FTP_client

process_client FTP_connection
[ command ]

[ data ] link

block FTP_server

process_serverFTP_connection
[ command ]

[ data ]
link

Verification of the coherence of the exchanges
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Definition of the behaviour in the process

A process is a finite machine state where the transition depend on the 

reception of some signal.

Symbol of a state:                                   (initial state                           )

Symbol of reception: 

Symbol of emission:

idle

command

data
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Example: process of the client

receive

receive

datacommand

receive

process FTP_client
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Example: process of the server

idle command

data

process FTP_server

idle
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Semantics of a process

An SDL process is transition system S=<ΣΣΣΣ,s0,T,Sigin,Sigout,Sv>:

- ΣΣΣΣ is a finite set of states

- s0 ЄЄЄЄ ΣΣΣΣ is the initial state

- Sigin and Sigout are input and output data of S

- is the set of transitions. A transition is 

(s1,a,σσσσ,s2) where s1 is the source, a is the triggering event, σσσσ is the sequence 

of output events produced by the process, s2 is the reached state

- Sv : ΣΣΣΣ →→→→ 2Sigin is the function that associates to each state the saved input 

events.

Σ×××Σ⊆ ∗
outin SigSigT
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Example

ΣΣΣΣ={init, wait, sleep, S1, S2}

Sigin = {off, on, mode1, mode2, 

dcapt}

Sigout = {req, data}

T={ (wait,off,(),sleep); 

(wait,mode1,(req),S1); 

(wait,mode2,(req),S2); 

(sleep,on,(),wait); 

(S1,off,(),sleep); 

(S1,dcapt,(data),wait); 

(S2,off,(),sleep); 

(S2,dcapt,(req),sleep); 

Sv(wait)=Sv(sleep)=();

Sv(S1)=Sv(S2)={on,mode1,mode2}.

wait

off

req
sleep

mode1

S1

req

mode2

S2

on

wait

sleep

S1

off

data
sleep

dcapt

wait

*

S2

off

req
sleep

dcapt

S1

*
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Communication semantics

• Communication between processes is asynchronous

• To each process, is associated a unique unbounded FIFO file

P1

m

P2

m

m

m

1

2

3
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Communication semantics

At the reception of a message:

– The message is removed from the file

– Progress of the process

s1 s1

s2 s2

m m

process P1 process P1 ppm

input(m)

control point

of the process
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Communication semantics

Unexpected messages are deleted.

s1
s1

s2
s2

m
m

process P1 process P1

p

m

input(m)

control point

of the process

s1

s2

m

process P1

input(m)

m

r

r

r
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Signal handling

The signal received by a process are stored in a FIFO.

In a state, only a subset of signals are awaited. By default, any signal 

in the head of the FIFO which is not awaited is deleted.

A back-up is possible by the use of the symbol Data
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Variables declaration

In a block text.

DCL <ident> (,<ident>)* <type> (, <ident> (,<ident>)* <type> )*

DCL a Character;

DCL b Character, i integer;

DCL c,d Character, n,m Natural ;
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Declarations

Signals can transport some values:

Signal Data(Integer, Boolean);

Signal Ack(Boolean);

Example: SIGNAL s(Integer);

idle s(val)

s(val+1)

idle

idle

DCL val Integer;
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Decision

During a transition (reception of a signal), it is possible to make a 

decision depending on some expression.

expr

( test ) ( test ) ( else )

Examples

n

( n<5 ) ( else )

n<5

( true ) ( false )
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Tasks

After a transition, it is possible to make some computation step task

n

( n<5 ) ( else )

n := 0

sending

s

ok

sending

n := n+1
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Loops

At any time after entering in a transition, it possible to put a loop

n

( n<5 ) ( else )

n := 0

sending

s

ok

sending

l

l

n := n+1
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Timers

Variables of type TIMER. Such a variable has 3 states: inactive, active

and expired.

When declared, a timer is inactive. We set a timer by giving it a delay:

SET (<delay>,<timer>)

When the delay is overrun, the timer is expired. T

inactive active expired
set

set

reset

overrun

reset
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Example: process of the client

wait

wait

data
command

wait

set(NOW+10,T)

T

command

set(NOW+10,T)
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Outline – II.2 SDL

1. Where is it possible to apply a language?

2. Introduction of SDL

3. Syntax and semantics of SDL

4. Simulation and MSC
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Tools

At ENSEEIHT: RTDS par Pragma-dev

Using the simulator, generation of MSC (Message Sequence Chart)

FTP_client FTP_server

Command

Data

FTP_client FTP_server

Command

Data

Version 1 Version 2

T

T
Command

Data
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Exercise

Define a system composed of an emitter, a receiver and a medium.

The emitter sends a data and  the receiver replies a ack for each 

reception. The medium is not reliable and looses a data each 3 

emissions and duplicates an ack each 5 emissions.

Model this system in SDL. This will be useful for the next practical 

session.
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Outline

1. Part I - What is a real-time system?

2. Part II – High level formal programming languages

3. Part III – Uniprocessor and multiprocessor scheduling



157

Outline - Part III - Scheduling

1. First definitions

2. Uniprocessor real-time scheduling

3. Multiprocessors real-time scheduling
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Definitions

Functional architecture: set of communicating functions with a data-flow

Software architecture: set of applicative programs (or tasks) to be executed 

(some sequentially and others concurrently). Tasks and constraints are 

derived from the functional architecture.

Material architecture: limited set of heterogeneous interconnected resources 

(calculators, bus …).

Scheduling: spatial and temporal assignment of resources to the tasks with 

respect to the constraints (performance, location …). (e.g. for a 

monoprocessor, management of the sequence of tasks execution while 

optimising the CPU occupation).
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How to model a task?

A model should be : 
– accurate and precise enough to express the features of the application; 

– exploitable for validation. 

Several models have been proposed: 
– Liu et Layland (1973)
– Mok (1983)

– Mok et Chen (1996) : multiframe model 
– Baruah (1998) : recurring branching task model 

– Baruah et al. (1999) : GMF = generalized multiframe ... 

A task will be denoted by t i and a software architecture will be 
represented by a set of tasks, T = {t i |i = 1..n} 
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Model of a task

• Running: the task is allocated to a 

processor and is executed. Only 

one task can be running at a time 

on a processor

• Suspend: the task is passive and 

can be activated

• Ready: the task is ready to 

execute and waits for the resource 

to start. The scheduler chooses 

among the ready tasks which one 

will start next.

• Waiting: the task is blocked and 

is waiting for an event

running

suspendwaiting

ready

wait end
p

re
em

p
t

start

activate
wake up
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Execution time

Definition: duration necessary for a processor to execute the code of task 

integrally without preemption

– Worst case execution time (wcet): maximal duration

– Best case execution time (bcet): minimal duration

For any execution, bcet ≤≤≤≤ d ≤≤≤≤ wcet

….…

time

+
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Release time

Release time (or arrival time): 
– Instant when a task becomes ready, denoted by ri

Offset (or initial date):
– Delay after which a task becomes ready after the start of an 

application, denoted by Oi

Synchronous tasks 
– If ri = t0

….…

timet0 ri

Oi
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Deadline

Relative deadline:
– Maximal delay for the execution of a task, denoted by Di.

Deadline (or absolute deadline): 
– Date before which the execution of a task must be terminated, denoted 

by di : di = ri + Di

….…

t0 ri

Oi

di

Di
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Start and end of an execution

Start time: 
– Instant when the execution starts, denoted by si

Finishing time (or completion time) 
– Instant when the execution terminates, denoted by fi. 

….…

t0 ri

Oi

di

Di

si
fi
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Response time

Response time: 
– Delay between the activation and the end of an execution, denoted by 

Ri

Ri = fi − ri

….…

t0 ri

Oi

di

Ri

si
fi
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Repetitive task

Repetitive task:

– Task which executes several times

Task instance (or job):
– An execution of a task. The kth instance of a task ti is denoted tik

The execution of a task is given by a set of:
– Release times {ri

1 =ri, ri
2, ri

3... }
– Deadlines: {di

1,di
2,... di

k = ri
k+ Di…} 

– Start times: {si
1, si

2, si
3... }

– Finishing times: {fi1, fi2, fi3... }

….…

t0 ri

Oi

di
1

Di

si
1 fi

1 ri
2

si
2

di
2fi

2

r i
k > r i

k-1

f i
k-1 < s i

k
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Periodic task

Periodic task:
– Time interval between 2 activations is constant, of period Ti

ri
1= ri

ri
k = ri

1+ (k-1) Ti

….…

t0 ri
di

1

Ti

si
1 fi

1 ri
2

si
2

di
2fi

2

Ti
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Non-periodic task

Sporadic task:

– Time interval between 2 activations is more than a value, named inter arrival 

time denoted by Ti

ri
k - ri

k-1≥ Ti

….…

t0 ri
di

1

Ti

si
1 fi

1 ri
2

di
2fi

2

Ti

Aperiodic task:

– No constraint on the activation times 
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Real-time constraints

Hard real-time task:

– A finishing time that exceeds a deadline (fik> di
k ) has catastrophic 

consequences

Soft real-time task:

– A finishing time that exceeds a deadline (fik> di
k ) reduces the performance of 

the system

(m,k)-firm task:

– At least m instances among k consecutive instances (m<k) must respect their 

deadlines

Examples : 

– ABS control system:

– Emission of multimedia stream on internet: 

– Air conditioning control system:

hard real-time

contrainte (m, k )-firm 

soft real-time
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Outline - Part II - Scheduling

1. First definitions

2. Uniprocessor real-time scheduling

3. Multiprocessors real-time scheduling
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Outline – III.2 – Uniprocessor scheduling

1. Recalls

2. Real-time Scheduling

3. Priority-based Scheduling

4. Scheduling with shared resources
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Definitions

Predictability:

–The application performances must be defined in the worst case for any possible 

behaviour in order to ensure the respect of timed constraints

Determinism:

–There is non uncertainty on the behaviour: this behaviour is always the same in 

a given context

Reliability:

–ability of a system to perform and maintain its functions in normal 

circumstances. For real-time, reliability refers to the timed constraints respect. 

We may also want the system to remain reliable even when some failures occur: 

we then speak of fault tolerant system.
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Periodic sequencing

For a set of periodic tasks T = {τ1, τ2, …τn} which are sequenced off line. The 

sequence is made over a feasibility interval (or a meta period) H.

Case: for all i ri = 0

H = lcm (Ti) Task r 0 C D T
1 0 2 6 6
2 0 1 8 8
3 0 2 10 12

t

S S

6 8 12 16 18 24

General case:

H = max (ri) + 2 * lcm (Ti)

r0 C D T
1 0 2 6 6
2 2 1 8 8
3 0 2 10 12

Transitory phase
(duration = max{ri}+LCM{Ti})

t

Execution sequence S
(duration LCM{Ti})

S

Task
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Processor utilisation

Processor utilisation

– For a task Ui = Ci/Ti

– In general: fraction of processor time spent in the execution of the task set

Example

– Ui = 

Schedulability: if a set of tasks is schedulable then U ≤≤≤≤ 1

∑
=

=
n

i

ii TCU
1

/

Task r 0 C D T
1 0 2 6 6
2 2 1 8 8
3 0 2 10 12
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Dynamic parameters

Remaining execution time

– remaining time of execution C(t) = Cmax- Cexecuted

Critical dynamic delay

– remaining time before the deadline D(t)= d - t

Dynamic laxity

– spare time leaving by the task L(t) = D(t) - C(t)

t

r

Temporal execution diagram

D

d

D(t)

t

L(t)

C(t)

Cmax
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Scheduling overview

Scheduling policy:

– Algorithm by which tasks are given access to system resources (e.g. processor 

time, communications bandwidth).

Valid scheduling:

– The scheduling of a set of tasks is said to be valid if and only if no task 

instance misses its absolute deadline.

Schedulability:

– A set of tasks is said to be feasible with respect to a given class of schedulers 

(we consider 4 classes preemptive/non-preemptive, fixed/dynamic priority) if 

and only if there exists at least one valid schedule for this class.

Activities:

– For a given system, there are 2 main activities: choice of the scheduling policy 

and validation of this policy on the set of tasks.
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Outline - III.2 – Uniprocessor scheduling

1. Recalls

2. Real-time scheduling

3. Priority-based Scheduling

4. Scheduling with shared resources



178

Scheduler internal structure

Scheduler:

– the kernel module which applies the scheduling algorithm and handles the tables

Dispatcher:

– the kernel module which realises the effective activation and the context change

scheduler

T
a
b

le
s 

o
f 

 t
a
sk

s t1:ready

dispatcherexecution

Active

task

Task to execute

t2:ready

t3:suspend

t4:waiting
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Criteria associated to a scheduling

Efficiency: 

– the processor must spend the maximum time in executing the application 

(minimisation of the overhead)

Response time (adaptability):

– time between submission of requests and first response to the request (reaction 

to an external interruption, taking into account of changes …)

Predictability:

– guaranty of the delays, capacity of predicting the behaviour

Flexibility:

– ability to dynamically reallocate units of resource, fault tolerance …

…
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4 classes of scheduling

Off-line scheduling (or static, or pre-run-time) 

– Scheduling decision are taken before the application execution. The sequence is pre-

computed.
– Sequencing (simplest case)

– Not much flexible

On-line (or dynamic) scheduling:

– Scheduling decision are taken during the execution 
– Additional cost of the scheduler

– Very flexible

Non preemptive policy:

– Tasks cannot be interrupted (except on their demand)
– Important response time

– No mechanism for the shared critical resources

– Easy programming

Preemptive policy:

– Tasks can be interrupted at any time and the processor allocated to an other task
– Better response time

– Mechanism for shared resources

– Context handling
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Exercises

Are the previous classes incompatible?

Some sets of tasks can be scheduled for a preemptive policy but not 

for a non preemptive one. Give an example?
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General purpose vs real-time scheduling

General purpose scheduling:

– Avoid situation of starvation

– Improve the average performance

– Examples: round robin, multi-level feedback (MLF)

Real-time scheduling:

– Guaranty the respect of deadlines

– Even in the worst case 
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Classical scheduling policies

First Come First Served (FIFO)

– Non preemptive

Shortest Job First

– Non preemptive

Best effort

– Preemptive 

Round robin policy

– Preemptive
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Round Robin strategy

Circular scheduling list

Ready tasks
Running 
task

Waiting and
Suspended tasks

Arriving of
ready tasks

τ5 τ2 τ4 τ3 τ1 τ6

Tasks ττττ1111
Execution time 10 ms 20 ms 30 ms 40 ms

ττττ2222 ττττ3333 ττττ4444

Configuration

10 20 30 40 50 60 70 80 90 100

Scheduling: time quantum 10 ms

t
ττττ1111 ττττ2222 ττττ3333 ττττ4444 ττττ2222 ττττ3333 ττττ4444 ττττ3333 ττττ4444 ττττ4444

End τ1=10 End τ2 =50 End τ3 =80 End τ4 =100
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Round Robin with several queues

M queues will execute in a circular manner with each other. Usually  the quantum 

are 4xT0, 2xT0, T0. The sequence is then F1 F2 F3 F1 F2 F3…

Quantum
T2

Quantum
T3

Quantum
T1

Processor

Running 
task

Time scaleCircular scheduling 
queues

F1

F2

F3

ττττ3333 ττττ8888 ττττ5555

ττττ4444

ττττ2222 ττττ10101010 ττττ1111
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Example of circular scheduling

Tasks ττττ1111
Execution time 10 ms 20 ms 30 ms 40 ms 50 ms

ττττ2222 ττττ3333 ττττ4444 ττττ5555

File F1 (quantum 20 ms ) File F2 (quantum 10 ms )

Configuration

Scheduling

t

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

F :
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Outline - III.2 – Uniprocessor scheduling

1. Recalls

2. Real-time scheduling

3. Priority-based Scheduling

4. Scheduling with shared resources
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Priority-based scheduling

Scheduler is often provided with several level of priorities. It means 

that it allocates the processor to the task with the highest priority. The 

designer must realise the priority allocation of the task during the 

execution. Note that 2 tasks can have the same level of priority. The 

decision if often empirical.
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Priority-based scheduling: example

WAIT_EVT(evt2)Configuration :
(3 tasks)

Scheduling

task ττττ1111

WAIT_EVT(evt1)

task ττττ2222

SIGNAL_EVT(evt1)

SIGNAL_EVT(evt2)

task ττττ3333

DELAY(1s)

Prio(ττττ1111)=2 - Prio(ττττ2222)=1 - Prio(ττττ3333)=3 

t

t

t

task ττττ1111

task ττττ2222

task ττττ3333

Attente evt2

Wait evt1

Signal evt1 Signal evt2 and end

End of task

Attente 1 s Fin de tâche

tBackground task

1 s
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Classical algorithms for choosing the priority

Constant priority:

1. Rate monotonic (RM)

2. Deadline monotonic (or inverse deadline, DM)

3. Audsley algorithm

4. …

Dynamic priority: 

1. Earliest deadline first (EDF)

2. Least laxity (LL)

3. …
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Optimality

A scheduling policy P of a family of scheduling C is optimal for the 

applications of a class T if for all application A in T, A is not 

schedulable by P implies that A is not schedulable for any algorithm 

in C.

Ex: The scheduling policy RM is optimal of the family of fixed priority 

preemptive scheduling for independent non blocking tasks with D=T 

and r=0. 

Corollary :   

– Any application A in T schedulable by an algorithm in C, is also schedulable 

by P.
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Rate monotonic (Liu & Layland 1973)

Hypothesis:

Periodic independent tasks with simultaneous start (for all i ri = 0)

Priority:

given to the smallest period

Example:

(r=0, C=3, T=20)

(r=0, C=2, T=5)

(r=0, C=2, T=10)

U=?

Scheduling?
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Exercise 1 on RM

T

ττττ1

ττττ2

ττττ3

r i Ci Di Ti u i Prio i

0

0

0

20

40

100

100

150

350

100

150

350

• Processor utilisation U =

• Period of study H =

• Response time for each task

tττττ1

100 200 300

tττττ2

100 200 300

tττττ3

100 200 300

tττττback

100 200 300
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Exercise 2 on RM

ττττ1

ττττ2

ri Ci Di Ti
T

0

0

1

3

2

5

3

6

Prioi

tττττ1

3 6

ττττ2 t

3 6
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Results for RM

Optimality:

RM is optimal for the family of independent periodic tasks with r=0, 

P=D and static priority: 

if any static priority preemptive scheduling algorithm can meet all the 

deadlines, then the rate monotonic algorithm can too

Critical instant theorem

the critical instant for any task occurs whenever the task is requested 

simultaneously with requests for all higher-priority tasks. Then, it 

sufficient to study RM schedulability the case where all tasks start at 

0.
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Feasibility tests for RM

1. Simulation (NSC on the feasibility interval)

2. Processor utilisation (SC)

3. Computation of the worst case response time (NSC)
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Schedulablity for RM: processor utilisation

Sufficient condition of schedulability:

U ≤≤≤≤n (21/n-1)

n (21/n-1)                            ln 2 ~ 0.69

Reference: Liu&Layland 73

nombre de tâches

Facteur d'utilisation : U

1

1 2 3

0,828
0,78

0,69

0

number of 

tasks

processor utilisation U
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Critical zone theorem for RM

The theorem of the critical zone is less restrictive than the processor utilisation condition. 

If all the tasks respect their first deadline then they will respect all their deadlines.

If for all i ri = 0, this condition is necessary and sufficient

Otherwise, it is sufficient.

Let τ1,...,τn be n tasks (Ti,0,Ci,Di) such that Ti ≤ Ti+k, the tasks are schedulable if and only 

if

Example: Is the task set {(10,0,3,10), (10,0,4,10), (20,0,4,20)} schedulable? 

Reference:

-J P Lehoczky, L. Sha and Y. Ding, The rate monotonic scheduling algorithm: exact characterization 

and average case behavior (1989), In Proc. of the 10th IEEE Real-Time Systems Symposium

  1min 1 ,
1

0
≤≤≤∀ ∑

=≤≤ j

i

j

j

Dt
Tt

t

C
nii

i
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Computation of the response time for RM

-Let hp(i) the set of indices of tasks with a higher (or egal) priority than ττττιιιι.

-The response time is given by the interference with tasks with higher (or egal) 
priority. The worst response time is equal to the least fixed point of the 
sequence:

The sequence converges if and only if U≤≤≤≤1

The system is schedulable iff the sequence converges and

References:
-M. Joseph and P. Pandya, Finding response times in a real-time system, The Computer Journal 
29 (5) (1986), pp. 390–395. 

-J P Lehoczky, Fixed priority scheduling of periodic task sets with arbitrary deadlines (1990), In 

Proc. of the 11th IEEE Real-Time Systems Symposium

j

ihpj j

n

i

i

n

i

ii
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CR
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∈

+
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


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
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Computation of the response time for RM

T

ττττ1

ττττ2

ττττ3

r i Ci Ti

0

0

0

2

1

6

7

4

14

Compute the response times for this set of tasks
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Deadline monotonic (Leung & Whitehead, 1980)

The priority depends on the relative deadline: the smaller is the 

deadline, the higher is the priority.

ττττ1

ττττ2

ri Ci Di Ti
T

0

0

1

1

2

1

Prioi

2

3

tττττ1

3 6

ττττ2 t

3 6
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Results for DM

Optimality:

RM is optimal for the family of independent periodic tasks with r=0, 

T>=D and static priority

Feasibility tests for DM:

- Simulation (NSC)

- Computation of the worst response time (idem that for RM, NSC)

- Processor utilisation (SC)

)12(/ /1

1

−≤∑
=

n
n

i

ii nDC
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Critical zone for DM

Let τ1,...,τn be n tasks (Ti,0,Ci,Di) such that Ti ≤ Ti+k, the tasks are schedulable if and 

only if

∀i, 1 ≤ i ≤ n Ci + Cj
j= 1

i− 1

∑ Di Tj  ≤ Di
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Optimality of DM

DM and RM are equivalent for the tasks where T=D

Optimality of DM:

– In the class of static priority preemptive scheduling, for independent periodic 

tasks with T ≤ D,  the politicy DM is optimal.

– In the class of static priority non-preemptive scheduling, for independent periodic 

tasks with T ≤ D,  the politicy DM is not optimal except if

jijiii DDCCjiPDi ≤⇒≤∀∧≤∀ ),,(,
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RM and DM example

T

ττττ1

ττττ2

ττττ3

r i Ci Di Ti Prio RM Prio DM

0

0

0

1

1

2

3

4

5

3

4

5

tττττ1

ττττ2

ττττ3

4 8 12 16 20 24

t

4 8 12 16 20 24

t

4 8 12 16 20 24

ττττfond t

4 8 12 16 20 24
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Audsley priority assignment (Audsley 1991)

Context:

– For independent periodic tasks with T≤D and r non necessarily null.

Algorithm:

– The response time only depends (for static priority) on the higher priority tasks 

and is independent from the combination of lower priorities. The idea is then 

to search among the set of tasks a candidate to have the lowest priority. The 

task accepts if the feasibility test is fine. Re do the same for the rest of tasks.

Feasibility test:

– The schedulability is ensured by construction

Optimality
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Audsley priority assignment

T

ττττ1

ττττ2

ττττ3

r i Ci Di Ti Prio

0

1

3

1

4

2

3

9

5

3

9

7

ττττ2 with the lowest priority?

ττττ1
ττττ1, ττττ3

ττττ1ττττ2 ττττ1
ττττ2

…

1th instance ok

1

2

3

4

5

1 2 3 4 5 6 7 8 9



208

Earliest Deadline First (EDF)

The priority evolves during the execution (dynamic priority). For an instance 
k of a task ττττιιιι the priority depends on the next absolute deadline di

k. At an 
instant t, the priority can be computed using the critical dynamic delay

D(t) = di
k – t= ri

k + Di - t

The priority increases when the critical dynamic delay decreases.

For a set of n tasks with T=D, a necessary and sufficient condition of 
schedulability is: U ≤≤≤≤ 1

In general, the condition is sufficient.

Optimality:

– In the class of dynamic priority preemptive scheduling, for independent periodic tasks, 
the policy EDF is optimal.

– For non preemptive scheduling, EDF is not anymore optimal
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EDF: example

T

ττττ1

ττττ2

ττττ3

r i Ci Di Ti

0

0

0

1

1

2

3

4

5

3

4

5

tττττ1

ττττ2

ττττ3

4 8 12 16 20 24

t

4 8 12 16 20 24

t

4 8 12 16 20 24

Di(t)

Di(t)

Di(t)
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Least laxity first (LLF)

The priority evolves during the execution (dynamic priority) and

depends on the dynamic laxity

L(t) = di
k – t – Ci(t)= Di(t) – Ci(t)

The priority increases when the dynamic laxity decreases.

For a set of n tasks with T=D, a necessary and sufficient condition of 

schedulability is: U ≤≤≤≤ 1

In general, the condition is sufficient.

Optimality:

– In the class of dynamic priority preemptive scheduling, for independent 

periodic tasks, the policy LLF is optimal.
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LLF: example

T

ττττ1

ττττ2

ττττ3

r i Ci Di Ti

0

0

0

1

1

2

3

4

3

3

4

6

tττττ1

ττττ2

ττττ3

4 8 12

t

4 8 12

t

4 8 12

L i(t)

L i(t)

L i(t)

tLLF

tEDF

tRM

tDM
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Outline - III.2 – Uniprocessor scheduling

1. Recalls

2. Real-time scheduling

3. Priority-based Scheduling

4. Scheduling with shared resources
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Scheduling with shared resources

Tasks with resource constraints

- Critical sections due to exclusive use of shared resources.

- Semaphores.

Problems encountered:

- Blocking

- Priority inversion phenomenon

- Scheduling anomaly

Consequence: simulation of the worst case is not anymore a NSC
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Anomaly of scheduling

tττττ1

ττττ2

ττττ3

4 8 12

t
4 8 12

t
4 8 12

shared resource

C3=4, simu OK

tττττ1

ττττ2

ττττ3

4 8 12

t
4 8 12

C3=3, simu NOK
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Priority inversion

tττττ1

ττττ2

ττττ3

4 8 12

t
4 8 12

t
4 8 12

shared resource

ττττ1>     ττττ2>    ττττ3

Request for the

resource

Priority inversion
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A solution: PIP Priority inheritance protocol

Context: 

– Static priority algorithms

Principle:

– When a task is blocked when accessing a resource, the task which is locking 

the resource inherits during the critical section of the priority of the requesting 

task.

Result:

– Suppression of priority inversion

– Other tasks may be blocked

Reference:

- L. Sha, R. Rajkumar and J. P. Lehoczky, Priority inheritance protocols : an 

approach to real-time synchronisation, IEEE Transactions on Computer, vol. 39 

(1990), pp. 1175–1185. 
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PIP example

Include the PIP protocol in this example

tττττ1

ττττ2

ττττ3

4 8 12

t
4 8 12

t
4 8 12

shared resource

ττττ1>     ττττ2>    ττττ3

Request for the

resource

tττττ1

ττττ2

ττττ3

4 8 12

t
4 8 12

t
4 8 12
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Outline - Part III - Scheduling

1. First definitions

2. Uniprocessor real-time scheduling

3. Multiprocessors real-time scheduling
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Outline – III.3 – multiprocessor scheduling

1. Generalities

2. Partitioned scheduling

3. Global scheduling
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General principles

We consider:

– a set of n tasks S= {ττττ1, ττττ2,…, ττττn }

– a parallel architecture composed of m processors P={p1, p2,…,pm} 

(applies for multicore)

Objective: 

– schedule the tasks on the platform.

• Resolution of two problems: allocation (on which processor) and priority

Constraints:

– A processor executes at most a task at a time

– A task executes at most on one processor at an instant
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Taxonomy of the multiprocessor platform

• Identical: all the processors are assumed to be identical, with the same 

computing capacity.

• Uniform: each processor is characterised by its computing capacity 

and the model assumed that: for a processor of capacity s, a time 

duration t, the processor executes s*t units of work.

• Specialised: we define an execution rate for every couple ri,j =(Ji,pj) 

meaning that: Ji executes ri,j*t units of work when it is hosted by pj

during t units of time.

Identical ⊂⊂⊂⊂ Uniform ⊂⊂⊂⊂ Specialised

In the following, we will only consider identical platforms.
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Taxonomy of the multiprocessor scheduling (I)

Task execution on the processors:

• No migration: each task is allocated on a unique 
processor and never changes

• Task-level migration: the jobs may execute on 
different processors, but a job is allocated on a 
unique processor and never changes

• Job-level migration (or full migration): a job can 
migrate

Priorities:

• Fixed task priority: each task has a fixed priority 
forever

• Fixed job priority: the jobs may have several 
priorities, but each job has a fixed priority (e.g. 
EDF)

• Dynamic priority: the priority of a job may evolve 
(e.g. LLF)

p1
p2

a new period

p1
p2

a new period

p1
p2

a new period

time

priority

time

priority

time

priority
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Taxonomy of the multiprocessor scheduling (II)

3: full migration (1,3)-scheduling (2,3) (3,3)

2: task level migration (1,2) (2,2) (3,2)

1: no migration (1,1) (2,1) (3,1)

1: fixed task priority 2: fixed job 

priority

3: fully 

dynamic
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Comparison of scheduling policies

– Dominance

– Equivalence

– Incomparable

P1

P2

P1 ⊂ P2

P1 = P2

P2

P1

P1 P2

P1 ⊗ P2

[Park 2007]
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Current state of the art

Solid theory of single processor systems

– Optimal schedulers, tight schedulability tests, shared resource protocols, 

bandwidth reservation schemes, hierarchical schedulers, OS, etc.

Much less results for multiprocessors

– “Few of the results obtained for a single processor generalize 

directly to the multiple processor case; bringing in additional 

processors adds a new dimension to the scheduling problem.The 

simple fact that a task can use only one processor even when 

several processors are free at the same time adds a surprising 

amount of difficulty to the scheduling of multiple processors.”

• C.L. Liu, “Scheduling algorithms for multiprocessors ina hard real-time 

environment”. JPL Space Programs Summary,vol. 37-60, pp. 28-31, 1969.

– Many NP-hard problems, few optimal results, heuristic approaches, 

simplified task models, only sufficient schedulability tests, etc.

– On going research



227

Optimality (non) results

“In 1988, Hong and Leung proved that there is no optimal online

scheduling algorithm for the case of an arbitrary collection of jobs that 

have more than one distinct deadline, and are scheduled on more than 

oneprocessor. Hong and Leung showed that such an algorithm would

require knowledge of future arrivals and execution times to avoid making 

decisions that lead to deadline misses; hence optimality in this case 

Is impossible without clairvoyance. In 1989, this result was extended by 

Dertouzos and Mok who showed that knowledge of arrival times is 

necessary for optimality, even if execution times are known.”

[Davis&Burns09]

NB: A scheduling algorithm is said to be clairvoyant if it makes use of 

information about future events, such as the precise arrival times of sporadic 

tasks, or actual execution times, which are not generally known until they 

happen.
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Families of algorithms

Two main approaches:

1. Partitioning: partition the set of tasks into m subsets, each set is the assigned 

to a unique processor. Tasks are not allowed to migrate, thus the 

multiprocessor scheduling is transformed into many uniprocessor scheduling 

problems.

2. Global strategy: store the tasks ready in one queue which is shared among all 

the processors. At every moment, the m highest priority tasks of the queue are 

selected for the m processors.

CPU1

CPU2

CPU3

τ1

τ2

τ3

τ2 τ1τ3τ4τ5

CPU1

CPU2

CPU3

τ1

τ2τ3

τ1τ4τ5

τ2

Global scheduler Partitioned scheduler
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Outline – III.3 – multiprocessor scheduling

1. Generalities 

2. Partitioned scheduling

3. Global scheduling
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Partitioning

• Partitioning problem is a bin packing problem
– Inputs:

• N objects of size S(i) for i=1,…,N
• infinite number of bins of size C

– Question: find an optimal packing of the objects in the bins

– NP-hard problem

• Correspondence
– objects = tasks

– The size of the boxes depends on the policy
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Heuristic for partitioning

1. Tasks are ordered according to a given parameter
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Ordering policies

1. Increasing in Execution time (IE): sorts the tasks in ascending order of 

their execution times

2. Decreasing in Execution time (DE): sorts the tasks in descending order 

of their execution times

3. Increasing in Period (IP): sorts the tasks in ascending order of their 

periods

4. Decreasing in Period (DP): sorts the tasks in descending order of their 

periods

5. Increasing in Utilization factor (IU): sorts the tasks in ascending order of 

their utilization factors

6. Decreasing in Utilization factor (DU): sorts the tasks in descending order 

of their utilization factors

Example: {τ1=(T1=4, C1=1, D1=4,r1=0), τ2=(8,2,8,0), τ3=(20,10,20,0)}. Sort the task 

set for all the policies.
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Heuristic for partitioning

1. Tasks are ordered according to a given parameter
2. Sequential assignment
3. The current task is assigned to the first processor according 

to a policy (e.g. : Best Fit, First Fit, Next Fit, . ..)
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Allocation algorithm

1. First fit: place the item in the first bin that can accommodate it

• Example with IP and RM

2. Best fit: place the item in a bin that can accommodate it and with the 
smallest available size

3. Next fit: place the item in the next bin that can accommodate it (it starts 
from the previous bin which have been used)

4. Worst fit: place the item in a bin that can accommodate it and with the 
largest available size

Exercise: apply for all the algorithms on the example

t

2 4

P2
t

6 8 10 12 14 16

P1

P1 P2

ττττ1=(4,1,4,0)

ττττ2=(8,2,8,0)

ττττ3=(20,10,20,0)
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Heuristic for partitioning

1. Tasks are ordered according to a given parameter
2. Sequential assignment
3. The current task is assigned to the first processor according 

to a policy (e.g. : Best Fit, First Fit, Next Fit, . ..)
4. An assignment is valid if the maximal size is not  exceeded
5. If no processor is available, add a new processor
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Exercises

T

ττττ1

ττττ2

ττττ3

r i Ci Ti

0

0

0

3

2

6

7

4

14

ττττ4 0 7 20

Number of processors = 2

Apply the following heuristics:

1. FFDU-EDF

2. WFDE-LLF
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Outline – III.3 – multiprocessor scheduling

1. Generalities 

2. Partitioned scheduling

3. Global scheduling

1. Policies

2. Schedulability tests

3. PFair

4. LLREF
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Multiprocessor scheduling policies

• Any monoprocessor scheduling policy can be extended on a 

multiprocessor platform.

– Generally addition of the letter g in the name for global. (gRM, gEDF, 

gLLF…)

– Optimality is not preserved. gLLF and gEDF are incomparable. None of them 

is optimal.

• New scheduling policies:

– PFair

– LLREF
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Example of global DM scheduling

T

ττττ1

ττττ2

ττττ3

r i Ci Di Ti

0

0

0

1

2

3

4

8

16

4

8

16

t

2 4

P2
t

6 8 10 12 14 16

P1
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gEDF and gLLF

T

ττττ1

ττττ2

ττττ3

Ci Ti

2

2

2

3

3

3

This task set is gLLF schedulable but not gEDF

Prove it.

T
ττττ1

ττττ2

ττττ3

r i Ci Di Ti

0

0

0

1

1

3

5

5

6

10

10

10

ττττ4 1 3 9 10

ττττ5 4 5 9 10

ττττ6 4 5 9 10

This task set is gEDF schedulable but not gLLF

Prove it.

[Kal00]
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Comparison between 9 classes

3: full migration (1,3)-scheduling (2,3) (3,3)

2: task level migration (1,2) (2,2) (3,2)

1: no migration (1,1) (2,1) (3,1)

1: fixed task priority 2: fixed job priority 3: fully dynamic

• (3,3) dominates all other classes

• (1,*) are incomparable (cf below, [Leung82])

• (*,1) are incomparable with (*,2)

[Carpenter et al. 2004]
T

ττττ1

ττττ2

ττττ3

r i Ci Di Ti

0

0

0

2

4

6

3

6

12

3

6

12

This system is schedulable for a global scheduling on 2 

processors with priorities τ1> τ2 > τ3 and there exists no 

way to partition this set of tasks.

T

ττττ1

ττττ2

ττττ3

r i Ci Di Ti

0

0

0

1

2

2

2

4

3

2

4

3

ττττ4 0 2 6 6

Prio

1

2

3

4

This system is schedulable for the partition

τ1and τ2 on a processor, and τ3and τ4 on an other; and the 

policy RM. But there is no solution for a global static 

priority policy.

P1

P2
1 2 3 4 5 6 7 8 9 11 1310 12
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Outline – III.3 – multiprocessor scheduling

1. Generalities 

2. Partitioned scheduling

3. Global scheduling

1. Policies

2. Schedulability tests

3. PFair

4. LLREF
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Not applicable

• Simulation is generally not sufficient

T

ττττ1

ττττ2

ττττ3

r i Ci Ti

0

0

0

5

2

2

5

5

5

2 4
P2

P1

5

2 4
P2

P1

5

OK

KO

gRM

• Critical instant: synchronous release is the worst-case scenario for 

periodic tasksets on uniprocessor platform. Not true for 

multiprocessor

T
ττττ1

ττττ2

ττττ3

Di Ci Ti
2

2

6

2

2

4

8

10

8

2 12

P2

1

2

P1
3

6

gDM
ττττ4 7 4 8

4

8 16

R4
1=6 R4

1=8
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Contre-intuitive observations (1)

The processor demand decreases but the task set become unschedulable

32

1

T

ττττ1

ττττ2

ττττ3

r i Ci Di Ti

0

0

0

1

1

5

1

1

6

2

3

6

3
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Contre-intuitive observations (2)

T
ττττ1

ττττ2

ττττ3

r i Ci Di Ti

0

0

0

4

2

2

4

2

6

100

100

100

ττττ4 0 4 8 100

ττττ5 5 2 2 100

ττττ6 5 1 1 100

ττττ7 6 1 2 100

T
ττττ1

ττττ2

ττττ3

r i Ci Di Ti

0

0

0

4

2

2

4

2

6

100

100

100

ττττ4 0 4 8 100

ττττ5 6 2 2 100

ττττ6 6 1 1 100

ττττ7 6 1 2 100

2

P2

5

2

P1
1

6 8

6

5
73

3

4 4

2

P2

5

2

P1
1

6 8

6

5
7

3

4

4 has a higher priority3 and 4 have each their turn the priority

The policy must be clairvoyant
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Schedulability test

• The feasibility interval is not known

– Unique result: [0,lcm(T)] for fixed priority policy and synchronous task set

• Existing necessary and sufficient schedulability tests all have 

exponential time complexity

• Existing sufficient tests are pessimistic
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Utilisation bounds

Theorem

1. For (3,3), synchronous task set with implicit deadline, Umax=m

2. For (x,y) with x,y ≠≠≠≠ 3, Umax≤≤≤≤(m+1)/2

Proof:

1. Cf PFair or LLREF

2. Consider a task set

t1 = (1+ε, 2)

t2 = (1+ε, 2)

…

tm+1 = (1+ε, 2)

1. If y <3, at least two tasks are assigned 

to the same processor

2. If x <3, the job with the lowest priority 

is executed after (1+e)

∑
=

→ +→++=+=
m

i

mmU
1

0 2/)1(2/)1)(1(2/)1( εεε

P1

P2

Pm

…

time

deadline miss!

[Park 2007]
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Outline – III.3 – multiprocessor scheduling

1. Generalities 

2. Partitioned scheduling

3. Global scheduling

1. Policies

2. Schedulability tests

3. PFair

4. LLREF
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PFair (Proportionate Fair) [Baruah et al 1996]

Basic Ideas:

–PFair tries to track the ideal scheduling

–For task (C,T), the ideal scheduling is WT(t)=t*C/T

Example: ττττ = (2,5)

The tracking is formalised using the function

–lag(t) = WT(t) – sched(t)

–A schedule is PFair if

Exercise: draw lag(t) for ττττ = (3,8)

0 1 2 3 4 5 6

2

3

1

0

WT(t)

Sched(t)

]1,1[)( −∈tlag

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Allocation 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Allocation 2
[Park 2007]
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PFair scheduling

Ideas:

–Processor time is allocated in multiples of some basic quantum.

–Break tasks into subtasks of length 1.

–Assign deadlines and release times to subtasks.

• deadline and release time of subtask i are

Example: ττττ = (8,11). We have d1 = [1/(8/11)]=2 and r1=0.






=
U

i
di 




 −=
U

i
ri

1

quantum 0

0 1 2
time

window of the 
first subtask

window of the 
second subtask

T= 11

window of the 
8-th subtask

[Park 2007]
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PFair scheduling

Example of PFair scheduling for ττττ = (8,11). 

Exercise: Find a PFair scheduling for (4,9)

time

…
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PFair scheduling algorithm

A PFair scheduling algorithm

– is an algorithm that generates a PFair schedule for given tasks

– role: determining priorities of subtasks

– existing algorithms: PF, PD, PD2

PD2 is the most efficient (O(m log n)) 

Subtask τ1
k gets higher priority than subtask τ2

k’ if one of the following rules is satisfied:

1- d(τ1
k) < d(τ2

k’)

2- d(τ1
k) = d(τ2

k’) and b(τ1
k) > b(τ2

k’)

with b(τ1
k) =d(τ1

k) - r(τ1
k+1) 

(number of slots by which τi’s window overlaps τi+1’s window)

3- d(τ1
k) = d(τ2

k’) and b(τ1
k) = b(τ2

k’) = 1 and D(τ1
k) >= D(τ2

k’)

with

τ1
τ2

τ1
k

τ2
k’

τ1
k

τ2
k’

τ1
k+1

τ2
k’+1

( ) ( ){ }3)(1)(0)()(min)( =∧−=∨=∧== ++++ pkpkpkpkk WdtbdttD τττττ
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Exercise

ττττi C T

ττττ1 2 3

ττττ2 4 6

ττττ3 6 12

Apply PD2 Pfair for 2 processors
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PFair results

- Optimal for synchronous periodic task set with implicit deadline

- Schedulable if U ≤≤≤≤ m where m is the number of processors

T

ττττ1

ττττ2

ττττ3

r i Ci Ti

0

0

0

2

2

2

3

3

3

Platform is composed of 2 processors

U=??

Is the task set schedulable with:

• A partitionned strategy?

• gEDF?

• gLLF

• PFair?
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Outline – III.3 – multiprocessor scheduling
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2. Partitioned scheduling

3. Global scheduling

1. Policies

2. Schedulability tests

3. PFair

4. LLREF
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LLREF (Least Local Remaining Execution First)[Cho et al 2006]

Tasks are splitted not at time quantum, but at scheduling events (at release 

instants)

Two parameters

1. Local remaining execution time

2. Local laxity

where

Priority

1. Highest priorities for the tasks with Lτ=0 

2. τ1 has a higher priority than τ2 if  lt1 > lt2

Quantum

1. If τ1,.., τΜ have the highest priority at time t, they keep the CPUs until t’=min{lτ}

Example: (3,8),(10,20),(2,6) on 2 processors. Compute the lag

tT

ttND
tCtl

−
−×=

τ
ττ

)(
)()(

)()()( tltNDtL ττ −=

{ }τkTttttND =≥= ''min)(
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