Integrating end-system frame scheduling for more accurate AFDX timing analysis

M. Boyer1, L. Santinelli1, N. Navet2, J. Migge3, M. Fumey 4

1ONERA – The French aerospace Lab, 2University of Luxembourg, 3RealTime at Work, 4Thales Avionics

Congress on Embedded Real-Time Software and Systems (ERTS2 2014)
Outline

Context: bounding AFDX communication delay

Opening the end-system box

Gain evaluation on a case study

Conclusion
Outline

Context: bounding AFDX communication delay

Opening the end-system box

Gain evaluation on a case study

Conclusion
Real-Time distributed systems:
- AFDX \approx Ethernet technology for avionics
- \approx hundred of computers
- \approx 5–10 switches
- \approx thousands of data flows
What is the worst-case network traversal time?

- Needed to ensure correct real-time behavior
- Used to dimension the system:
 - if unsatisfied, change the system
- Worst case based on AFDX behaviour
 - Input flows (VL: virtual link) are constrained
 - Maximal frame size
 - Known static routing
 - Minimal time interval between two frames (BAG: Bandwidth Allocation Gap)
 - Network behaviour is known
 - Full duplex: direct access
 - Queue policy: FIFO, Static Priority
WCTT bounds

WCTT bound

How to upper bound the WCTT?

- The exact WCTT is unknown
- Several methods exist:
 - network calculus: used for A380, A350 [5, 4]
 - event model (Symtavision) [7, 12]
 - holistic scheduling (MAST) [6]
 - trajectorial-based approaches [1, 9, 8]
 - ad-hoc methods
- Accuracy of results:
 - NC pessimism ($|WCTT_{bound} - realWCTT| \leq 20\%$ on “typical” configurations
 ⇒ not so much to gain
Outline

Context: bounding AFDX communication delay

Opening the end-system box

Gain evaluation on a case study

Conclusion
What is the AFDX end-system?

- **End-System role**
 - multiplex access to the output
 - guarantee BAG respect
Why BAG guarantee is not trivial

Even if all VL are synchronous

- multiplexing introduced jitter
- jitter must be bounded
- the standard gives requirement on jitter ($\leq 500\mu s$)
Opening the black-box

More knowledge on the system
⇒ more accurate model
⇒ more accurate bounds
A periodic End-System

Assuming periodic output flows [11, 10]:

- VL i can send frames at $t_k^i = \phi_i + k \times BAG_i$
- \approx local TDMA
- adequate choice of offset ϕ_i
- must synchronise applications and End-System or pay BAG as End-System Delay
- gain: decrease network delay up to 51%

![Diagram showing periodic output flows and offsets](image-url)
Removing end-system

Assuming no End-System [2, 3]:

- consider task scheduling (static priority)
- theoretical model
- AER: Acquisition - Execution - Restitution model (frame send at end of execution)
- no respect of jitter bound
- (local) gain: linear with number of tasks
The Thales End-System

- An implementation of the standard
- Exact behaviour is confidential
 - respect the $500\mu s$ jitter
 - some flows can be “prioritised”
 \Rightarrow end-system delay $\leq 1ms$
- The behaviour is a scheduler
 \Rightarrow use the “same” techniques as [2, 3]
Outline

Context: bounding AFDX communication delay

Opening the end-system box

Gain evaluation on a case study

Conclusion
A realistic AFDX network

<table>
<thead>
<tr>
<th>Entities</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>End Systems</td>
<td>104</td>
</tr>
<tr>
<td>Switches</td>
<td>8</td>
</tr>
<tr>
<td>Virtual Links</td>
<td>974</td>
</tr>
<tr>
<td>Latency constraints</td>
<td>6501</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VL destinations</th>
<th>BAG</th>
<th>Maximal Packet Size</th>
<th>Traversed Switches</th>
<th>Latency Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimum</td>
<td>1.0</td>
<td>2 ms</td>
<td>100 bytes</td>
<td>1</td>
</tr>
<tr>
<td>average</td>
<td>6.6</td>
<td>60 ms</td>
<td>380 bytes</td>
<td>1.3</td>
</tr>
<tr>
<td>maximum</td>
<td>84.0</td>
<td>128 ms</td>
<td>1500 bytes</td>
<td>4</td>
</tr>
</tbody>
</table>
Experiment

- Purely periodic

 Configure ES to have purely periodic behaviour

- All VLs in local high-priority class

 - minimise ES delay for all VL

 - no more respect of 1 ms local delay

 - create bursts

- VLs with $\text{BAG} \leq 8\text{ms}$ in local high-priority class

 - select some VLs

 - allow to “shape” the output
Experiment

- Purely periodic
 Configure ES to have purely periodic behaviour
- All VLs in local high-priority class
 - minimise ES delay for all VL
 - no more respect of 1 ms local delay
 - create bursts
- VLs with $\text{BAG} \leq 8\text{ms}$ in local high-priority class
 - select some VLs
 - allow to “shape” the output

<table>
<thead>
<tr>
<th>End-systems configuration</th>
<th>Average gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purely periodic</td>
<td>42%</td>
</tr>
<tr>
<td>All VLs in local high-priority class</td>
<td>26%</td>
</tr>
<tr>
<td>VLs with $\text{BAG} \leq 8\text{ms}$ in local high-priority class</td>
<td>38%</td>
</tr>
</tbody>
</table>
Plotting delais

Plotting, for each VL:
- WCTT bound with black-box End-systems
- WCTT bound with Thales End-System
- sorted by Thales-WCTT
Outline

Context: bounding AFDX communication delay

Opening the end-system box

Gain evaluation on a case study

Conclusion
Conclusion

- More information gives better bounds but often related to specific cases
- contribution:
 dramatic increase of bound accuracy

Marc Boyer and David Doose. Collaboration entre méthode d’ordonnancement et calcul réseau.
In Actes des 2èmes Journées du GdR Génie de la programmation et du logiciel (GdR GPL 2010), Pau, France, 10-12 mars 2010.
Marc Boyer and David Doose.
Combining network calculus and scheduling theory to improve delay bound.

Marc Boyer, Nicolas Navet, and Marc Fumey.
Experimental assessment of timing verification techniques for afdx.

Jérôme Grieu.
Analyse et évaluation de techniques de commutation Ethernet pour l’interconnexion des systèmes avioniques.
Response time analysis in AFDX networks with sub-virtual links and prioritized switches.
In Proc of the XV Jornadas de Tiempo Real, Santander, Spain, January-February 2012.

System level performance analysis - the symta/s approach.
Optimism due to serialization in the trajectory approach for switched ethernet networks.

Optimistic problems in the trajectory approach in fifo context.

Worst case delay analysis of real-time switched Ethernet networks with flow local synchronisation.

Xiaoting Li, Jean-Luc Scharbarg, and Christian Fraboul. Improving end-to-end delay upper bounds on an AFDX network by integrating offsets in worst-case analysis.

Jonas Rox and Rolf Ernst. Formal timing analysis of full duplex switched based ethernet network architectures.