Embedding network calculus and event stream theory in a common model

21st IEEE Int. Conf. on Emerging Technologies and Factory Automation [ETFA 2016]
Track 3 : Real-Time and (Networked) Embedded Systems [RTNES]

Marc Boyer Pierre Roux

Wednesday, September 7th, 2016

ONERA
THE FRENCH AEROSPACE LAB
Global context

Kind of systems

- real-time system

Kind of property

- worst case response time
Global context

Kind of systems
Distributed real-time system

Kind of property
worst case response time
Global context

Kind of systems: flow/component

Distributed real-time system

- Components (computation node, bus, switch, etc.)
- Event flows between components
- Event reception triggers a local workload (computation, data forwarding...)

Kind of property

worst case response time
Global context

Kind of systems: flow/component

Distributed real-time system
- Components (computation node, bus, switch, etc.)
- Event flows between components
- Event reception triggers a local workload (computation, data forwarding...)

Kind of property

Bounds on worst case response time
Global context

Kind of systems: flow/component

Distributed real-time system
- Components (computation node, bus, switch, etc.)
- Event flows between components
- Event reception triggers a local workload (computation, data forwarding...)

Kind of property

Bounds on worst case response time
- local latency
- end-to-end latency
Two flow/component models

<table>
<thead>
<tr>
<th>Event Stream/CPA</th>
<th>Network Calculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E \rightarrow C \rightarrow E')</td>
<td>(A \rightarrow C \rightarrow A')</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow model</th>
<th>(E(t)): number of events up to time (t)</th>
<th>(A(t)): amount of data up to time (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract</td>
<td>(\eta^+, \eta^-): event arrival functions</td>
<td>(\alpha): arrival curve</td>
</tr>
<tr>
<td>(\forall t, d \geq 0)</td>
<td>(E(t + d) - E(t) \leq \eta^+(d))</td>
<td>(A(t + d) - A(t) \leq \alpha(d))</td>
</tr>
<tr>
<td>Flow transformation</td>
<td>Busy window</td>
<td>Residual service</td>
</tr>
</tbody>
</table>

- Two very close models
- No best method (depends on the system)
Toward unifying model

Goals

- more accurate results
- better understanding of each theory
- modelling of new kind of components: CAN/AFDX gateway, per block memory allocation...
Goals
- more accurate results
- better understanding of each theory
- modelling of new kind of components: CAN/AFDX gateway, per block memory allocation...

Success criteria
- accurate
- easy to use
 - modelling
 - proofs
Toward unifying model

Goals
- more accurate results
- better understanding of each theory
- modelling of new kind of components: CAN/AFDX gateway, per block memory allocation...

Success criteria
- accurate
- easy to use
 - modelling
 - proofs

Guidelines
- a compositional model
- an algebraic model
Definition of the new model

<table>
<thead>
<tr>
<th>Arrival curve</th>
<th>Packet count</th>
<th>Event count</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A : \mathbb{R}^+ \rightarrow \mathbb{R}^+$</td>
<td>$P : \mathbb{R}^+ \rightarrow \mathbb{N}$</td>
<td>$E : \mathbb{R}^+ \rightarrow \mathbb{N}$</td>
</tr>
<tr>
<td>$A(t)$: amount of data up to t</td>
<td>$P(d)$: number of full packets in the d first “bits”</td>
<td>$E(t)$: number of full packets up to t</td>
</tr>
</tbody>
</table>

![Diagram](image)

1. NC/CPA common model

1. [Packet-Curves-ValueTools-2012](#)
Scenario:

- First packet: size 1, throughput 1
- Second packet: size 1, throughput 1/2
- Third packet: size 2, throughput 2
- Fourth packet: size 1, throughput 1
Scenario:

- **First packet**: size 1, throughput 1
- **Second packet**: size 1, throughput 1/2
- **Third packet**: size 2, throughput 2
- **Fourth packet**: size 1, throughput 1
Scenario:

- First packet: size 1, throughput 1
- Second packet: size 1, throughput 1/2
- Third packet: size 2, throughput 2
- Fourth packet: size 1, throughput 1
Scenario:
- First packet: size 1, throughput 1
- Second packet: size 1, throughput 1/2
- Third packet: size 2, throughput 2
- Fourth packet: size 1, throughput 1
Real behaviours are unknown at design
Performance studies based on contract
Interval Bounding Pair: renaming of arrival curves/event stream
\(\phi = (\underline{\phi}, \overline{\phi}) \) is an Interval Bounding Pair (IBP) of \(f \) iff

\[\forall t, d \geq 0 : \underline{\phi}(d) \leq f(t + d) - f(t) \leq \overline{\phi}(d) \]

Handle the contract tuple \(\langle \alpha, \pi, \eta \rangle \) where \(\alpha, \pi, \eta \) are respective IBPs of \(A, P, E \)
Taking in hand the model

- Defining a new model is easy
- Model evaluation is hard
- Taking in hand the model:
 - basic properties of the model itself
 - modelling basic component
 1 packetizer
 2 aggregation
 - model accuracy (new)
Mathematical operators

- **Min/max-plus convolution**: associative, commutative, monotonous
 \[(f \ast g)(t) = \inf_{0 \leq s \leq t} f(t - s) + g(s) \quad (f \bar{\ast} g)(t) = \sup_{0 \leq s \leq t} f(t - s) + g(s)\]

- **Composition**: associative, monotonous
 \[(f \circ g)(t) = f(g(t))\]

- **Pseudo-inverses**
Intrinsic properties

- IBP properties (from NC and CPA)
Intrinsic properties

- IBP properties (from NC and CPA)
 - min/max: if $(\phi, \bar{\phi})$ and $(\phi', \bar{\phi}')$ are IBP of f, also is
 $$(\max(\phi, \phi'), \min(\bar{\phi}, \bar{\phi}'))$$
Intrinsic properties

- IBP properties (from NC and CPA)
 - min/max: if (ϕ, ϕ') and (ϕ', ϕ'') are IBP of f, also is $(\max(\phi, \phi'), \min(\phi, \phi''))$
 - Kleene star closure: if (ϕ, ϕ) is an IBP of f, also is (ϕ^*, ϕ^*)

where \cdot^*, \cdot^* are Kleene-star of min/max convolutions.
Intrinsic properties

- IBP properties (from NC and CPA)
 - min/max: if \((\phi, \overline{\phi})\) and \((\phi', \overline{\phi'})\) are IBP of \(f\), also is \((\max(\phi, \phi'), \min(\overline{\phi}, \overline{\phi'}))\)
 - Kleene star closure: if \((\phi, \overline{\phi})\) is an IBP of \(f\), also is \((\phi^*, \overline{\phi}^*)\)
 where \(\cdot^*, \overline{\cdot}^*\) are Kleene-star of min/max convolutions.

- Between IBP (contribution): from two IBPs, build the missing one
Intrinsic properties

- IBP properties (from NC and CPA)
 - min/max: if \((\phi, \phi')\) and \((\phi', \phi'')\) are IBP of \(f\), also is
 \((\max(\phi, \phi'), \min(\phi, \phi'))\)
 - Kleene star closure: if \((\phi, \phi)\) is an IBP of \(f\), also is \((\phi^*, \phi^*)\)
 where \(\cdot^*\) are Kleene-star of min/max convolutions.

- Between IBP (contribution): from two IBPs, build the missing one

<table>
<thead>
<tr>
<th>(A)</th>
<th>(P)</th>
<th>(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\alpha, \alpha))</td>
<td>((\pi, \pi))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Intrinsic properties

- **IBP properties (from NC and CPA)**
 - min/max: if \((\phi, \phi')\) and \((\phi', \phi'')\) are IBP of \(f\), also is \((\max(\phi, \phi'), \min(\phi, \phi'))\)
 - Kleene star closure: if \((\phi, \phi)\) is an IBP of \(f\), also is \((\phi^*, \phi^*)\)
 where \(.^*\), \(\cdot^*\) are Kleene-star of min/max convolutions.

- **Between IBP (contribution):** from two IBPs, build the missing one

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th>(P)</th>
<th>(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>((\alpha, \bar{\alpha}))</td>
<td>((\bar{\pi}, \bar{\bar{\pi}}))</td>
<td>((\bar{\pi} \circ \bar{\alpha}, \bar{\bar{\pi}} \circ \bar{\alpha}))</td>
</tr>
</tbody>
</table>
Intrinsic properties

- **IBP properties (from NC and CPA)**
 - min/max: if \((\phi, \overline{\phi})\) and \((\phi', \overline{\phi}')\) are IBP of \(f\), also is \((\max(\phi, \phi'), \min(\overline{\phi}, \overline{\phi}'))\)
 - Kleene star closure: if \((\phi, \overline{\phi})\) is an IBP of \(f\), also is \((\phi^*, \overline{\phi}^*)\)
 where \(\cdot^*, \cdot^\ast\) are Kleene-star of min/max convolutions.
 - Between IBP (contribution): from two IBPs, build the missing one

<table>
<thead>
<tr>
<th>(A)</th>
<th>(P)</th>
<th>(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\alpha, \overline{\alpha}))</td>
<td>((\pi, \overline{\pi}))</td>
<td>((\pi \circ \alpha, \overline{\pi} \circ \overline{\alpha}))</td>
</tr>
<tr>
<td>((\pi, \overline{\pi}))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>((\eta, \overline{\eta}))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Intrinsic properties

- IBP properties (from NC and CPA)
 - min/max: if \((φ, \bar{φ})\) and \((φ', \bar{φ}')\) are IBP of \(f\), also is \((\max(φ, φ'), \min(\bar{φ}, \bar{φ}'))\)
 - Kleene star closure: if \((φ, \bar{φ})\) is an IBP of \(f\), also is \((\bar{φ}^*, \bar{φ}^*)\)
 where \(\cdot^*, \cdot^*\) are Kleene-star of min/max convolutions.
- Between IBP (contribution): from two IBPs, build the missing one

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th>(P)</th>
<th>(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>((α, \bar{α}))</td>
<td>((π, \bar{π}))</td>
<td>((π \circ α, \bar{π} \circ \bar{α}))</td>
</tr>
<tr>
<td></td>
<td>((π^{-1} \circ η, π^{-1} \circ \bar{η}))</td>
<td>((π, \bar{π}))</td>
<td>((η, \bar{η}))</td>
</tr>
</tbody>
</table>
Intrinsic properties

- IBP properties (from NC and CPA)
 - min/max: if \((\phi, \bar{\phi})\) and \((\phi', \bar{\phi}')\) are IBP of \(f\), also is
 \((\max(\phi, \phi'), \min(\phi, \phi'))\)
 - Kleene star closure: if \((\phi, \bar{\phi})\) is an IBP of \(f\), also is \((\phi^*, \bar{\phi}^*)\)
 where \(\cdot^*, \cdot^\ast\) are Kleene-star of min/max convolutions.

- Between IBP (contribution): from two IBPs, build the missing one

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>((\alpha, \overline{\alpha}))</td>
<td>((\pi, \overline{\pi}))</td>
<td>((\pi \circ \alpha, \overline{\pi} \circ \overline{\alpha}))</td>
</tr>
<tr>
<td>((\pi^{-1} \circ \eta, \pi^{-1} \circ \overline{\eta}))</td>
<td>((\pi, \overline{\pi}))</td>
<td>((\eta, \overline{\eta}))</td>
</tr>
<tr>
<td>((\alpha, \overline{\alpha}))</td>
<td></td>
<td>((\eta, \overline{\eta}))</td>
</tr>
</tbody>
</table>
Intrinsic properties

- IBP properties (from NC and CPA)
 - min/max: if \((\phi, \overline{\phi})\) and \((\phi', \overline{\phi'})\) are IBP of \(f\), also is
 \((\max(\phi, \phi'), \min(\overline{\phi}, \overline{\phi'}))\)
 - Kleene star closure: if \((\phi, \overline{\phi})\) is an IBP of \(f\), also is \((\phi^*, \overline{\phi^*})\)
 where \(\cdot^*, \cdot^{\overline{\cdot}}\) are Kleene-star of min/max convolutions.

- Between IBP (contribution): from two IBPs, build the missing one

<table>
<thead>
<tr>
<th>(A)</th>
<th>(P)</th>
<th>(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\alpha, \overline{\alpha}))</td>
<td>((\pi, \overline{\pi}))</td>
<td>((\pi \circ \alpha, \overline{\pi} \circ \overline{\alpha}))</td>
</tr>
<tr>
<td>((\pi^{-1} \circ \eta, \pi^{-1} \circ \overline{\eta}))</td>
<td>((\pi, \overline{\pi}))</td>
<td>((\eta, \overline{\eta}))</td>
</tr>
<tr>
<td>((\alpha, \overline{\alpha}))</td>
<td>((\eta_l \circ \overline{\alpha}^{-1}, \overline{\eta}_r \circ \alpha^{-1}))</td>
<td>((\eta, \overline{\eta}))</td>
</tr>
</tbody>
</table>
Packetizer:

- store bits, up to end-of-packet
- instantaneous packet output
- model: E, P unchanged

\[A', E', P' := P^{-1} \circ P \circ A \]
\[E' := E \]
\[P' := P \]
Packetizer:

- store bits, up to end-of-packet
- instantaneous packet output
- model: E, P unchanged

\[A', E', P' \]

\[A' := P^{-1} \circ P \circ A \]
\[E' := E \]
\[P' := P \]

\[\alpha' := \pi^{-1} \circ \eta \]
\[\bar{\alpha}' := \pi^{-1} \circ \bar{\eta} \]
Aggregation:

- mix of flows
- “sum” of flows is a flow
- no delay

\[
A := A_1 + A_2 \\
E := E_1 + E_2 \\
P(A_1 + A_2) := P(A_1) + P(A_2)
\]

\[
\alpha := \alpha_1 + \alpha_2 \\
\bar{\alpha} := \bar{\alpha}_1 + \bar{\alpha}_2 \\
\eta := \eta_1 + \eta_2 \\
\bar{\eta} := \bar{\eta}_1 + \bar{\eta}_2 \\
\pi := |\pi_1 \ast \pi_2| \\
\bar{\pi} := |\bar{\pi}_1 \ast \bar{\pi}_2|
\]
Case study

Two data flows, F_1, F_2, from S to C

Using a link of throughput 1

<table>
<thead>
<tr>
<th>Flow</th>
<th>Packet size</th>
<th>Burst</th>
<th>Throughput</th>
<th>$\bar{\alpha}_i$</th>
<th>$\bar{\pi}_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_1</td>
<td>$1/2$</td>
<td>1</td>
<td>$1/4$</td>
<td>$x/4 + 1$</td>
<td>$[2x]$</td>
</tr>
<tr>
<td>F_2</td>
<td>1</td>
<td>1</td>
<td>$1/4$</td>
<td>$x/4 + 1$</td>
<td>$[x]$</td>
</tr>
</tbody>
</table>

Goal: evaluation of the packet throughput
- $F = F_1 + F_2$
- what is $\bar{\eta}$?
- challenge: modelling the link shaping
Packet throughput: no shaping

No shaping:

\[\eta_1 = \bar{\eta}_1 \circ \bar{\alpha}_1 = \left\lfloor \frac{x}{2} \right\rfloor + 2 \]
\[\eta_2 = \bar{\eta}_2 \circ \bar{\alpha}_2 = \left\lfloor \frac{x}{4} \right\rfloor + 1 \]
\[\bar{\eta} \leq \bar{\eta}_1 + \bar{\eta}_2 \]
Packet throughput: with shaping

Link throughput: $\lambda(t) = t$
- Shaping reduces data throughput
 - for each flow, $\overline{\alpha}_i^s = \lambda \wedge \overline{\alpha}_i$
 - for the aggregate flow: $\overline{\alpha}_{1+2}^s = \lambda \wedge (\overline{\alpha}_1 + \overline{\alpha}_2)$
- Impact on packet throughput
 - per flow: $\overline{\eta}_i^s = \overline{\pi}_i \circ \overline{\alpha}_i^s$
 - aggregate flow:
 - $\overline{\eta}_{1+2}^s = [\overline{\pi}_1 * \overline{\pi}_2] \circ \overline{\alpha}_{1+2}^s$
 - both $\overline{\eta}_1^s + \overline{\eta}_2^s$ and $\overline{\eta}_{1+2}^s$ are packet throughput bounds
Numerical results

- The shaping only affects the start of the curve.
- The simple method has better long-term throughput.
- The new method is locally better.
Conclusion

- A new model, unifying NC and Event-Stream/CPA
- Taking the model in hand
 - algebraic results
 - some accuracy gains
- Next steps
 - composition implementation
 - aggregation improvement
 - realistic case study
Toward unifying model

Figure: http://xkcd.com/927/

Situation: There are 14 competing standards.

14?! Ridiculous! We need to develop one universal standard that covers everyone’s use cases. Yeah!

Situation: There are 15 competing standards.