
The NC-maude user manual

Marc Boyer

DTIM-ONERA

July 28, 2014

Abstract

This report presents the NC-maude tool, a sand-box to teach, play with
and experiments network calculus [3].

1 Introduction

NC-maude tool is a sand-box to teach, play with and experiments network cal-
culus [3]. It is based on the Maude rewriting tool [4].

Once loaded the NC-maude libraries in the Maude interpreter, the user can
ask to the Maude kernel to reduce some NC related expression, to compute sum
of functions, convolutions, etc.

2 Tutorial

2.1 Warning

Since NC-maude is an open tool, based on rewriting logic, there is no clear
difference between user and developer, and you can not use it without any
knowledge on its implementation.

2.2 Some first steps

A general-purpose file exists: startNC.maude. Just load it at the beginning.
Then, you can play. To begin, just a few syntax. A flow is defined by its name
and its service curve. At first step, just ask Maude to parse a flow definition with
name "R" and arrival curve γ5,3. Second, do the same with a network element of
name "S" and service curve β9,2. Then, you can now ask to compute (ie reduce)
the delay observed by this flow in this network element. The answer is 7

3 (1).
What is the output flow? It’s name is "R|S", and its arrival curve is γ5,13.

1You may get a different number of rewrites, since this number is related to internal
implementation, and this documentation and the code are not automatically synchronised.

1

R R′

S S′

Figure 1: A simple architecture

boyer-laptop% maude startNC.maude -no-advise

\||||||||||||||||||/

--- Welcome to Maude ---

/||||||||||||||||||\

Maude 2.4 built: Nov 6 2008 17:14:50

Copyright 1997-2008 SRI International

Fri Aug 21 13:29:56 2009

Maude> parse flow("R",Gamma 5 3) .

Flow: flow("R",Gamma 5 3)

Maude> parse netElem("S",Beta 9 2) .

NetworkElement: netElem("S",Beta 9 2)

Maude> red delay(flow("R" , Gamma 5 3) , netElem("S" , Beta 9 2)) .

reduce in START-NC : delay(flow("R",Gamma 5 3),netElem("S",Beta 9 2)) .

rewrites: 84

result PosRat: 7/3

Maude> red flow("R" , Gamma 5 3) | netElem("S" , Beta 9 2) .

reduce in START-NC : flow("R",Gamma 5 3) | netElem("S",Beta 9 2) .

rewrites: 68

result Flow: flow("R|S",Gamma 5 13,netElem("S",Beta 9 2))

But in fact, writing interactive network topologies is q bit boring. The
normal way to use it is to write a module defining your topology, and to
compute things about it. Here is a simple example that you can fin in file
examples/simpleExample.maude. It describes the architecture presented in
Figure 1 where a flow R goes in sequence through two servers S and S′.

load ../startNC.maude

mod SIMPLE-EX is

protecting START-NC .

ops r r’ : -> Flow .

ops s s’ : -> NetworkElement .

eq r = flow("R", Gamma 5 4) .

eq r’ = r | s .

eq s = netElem("S" , Beta 10 2) .

eq s’ = netElem("S’" , Beta 20 1).

endm

red r’ .

red r | s | s’ .

2

red delay(r , s) .

red delay(r’ , s’) .

red delay(r , s ; s’) .

red float(delay(r , s)) .

red float(delay(r’ , s’)) .

red float(delay(r , s ; s’)) .

We are going to define four objects: r, r’, r’, s, and s’, corresponding
respectively to flows R and R′ and network elements S and S′. Notice that
there are no constant in Maude, it just exist operators without parameters. You
can load this file with the Maude command load, or simply give it as a command
line parameter.

Once this is done, you can ask Maude to compute R′, the delay d(R,S) and
so one.

Notice that NC-maude works with rationals, not floating point numbers. But
you can convert from one to the other by the operator float.

2.3 Main network constructors

Here is a list of the main operators to build a network.

• flow(_ , _) : String ArrivalCurve -> Flow Build a flow from its
name and its (maximal) arrival curve.

• netElem(_ , _) : String ServiceCurve -> NetworkElementBuild
a network element from its name and its (minimal) service curve.

• netElem(_ , m: _ s: _ M: _) : String ServiceCurve ServiceCurve ServiceCurve -> NetworkElement

a network element from its name, its minimal (m:), strict (s:) and maxi-
mal (M:) service curves.

• netElem-strict(_ , _) : String ServiceCurve -> NetworkElement Build
a network element from its name and its strict service curve. Could be
seen as a shortcut for netElem(_ , m: Zero s: _ M: Delta 0).

• _ | _ : Flow NetworkElement -> Flow Computes the output flow
going through a network element .

• sharedNE(_ , _ : _) : String ServiceCurve Set{Flow} -> SharedNetworkElement

Build a shared network element from its name, its (minimal) service curve
and its inputs.

• sharedNE(_ , m: _ s:_ M: _ : _) : String ServiceCurve ServiceCurve

ServiceCurve SetFlow -> SharedNetworkElement Like sharedNE and
general netElem.

• sharedNE-strict(_ , _ : _) : String ServiceCurve Set{Flow} -> SharedNetworkElement

Like sharedNE-strict and general netElem.

3

• _ ; _ : Path Path -> Path Build a path of network elements.

• shaper(_ , _) : String ShapingCurve -> Shaper Build a shaper
from its name and its shaper curve.

• greedyShaper(_ , _) : String ShapingCurve -> GreedyShaperBuild
a greedy shaper from its name and its shaper curve.

• sharedGreedyShaper(_ , _ : _) : String ShapingCurve Set{Flow} -> SharedGreedyShape

Build a shared greedy shared its name, its shaper curve and its input flows.

The main interesting bounds are

• delay(_,_) : Flow NetworkElement -> Rat Computes an upper bound
on the delay of a flow through a network element.

• buffer(_,_) : Flow NetworkElement -> RatComputes an upper bound
on the buffer size used by a flow in a network element.

• delay(_) : Path -> Rat ,
sne-delay(_) : Path -> Rat ,
g-delay(_ , _) : Flow Path -> Rat,
g-sne-delay(_ , _) : Flow Path -> Rat

Different ways to compute the delay of a flow through a path.

2.4 Ploting

Ploting is based on the gnuplot tool. To plot curves, run a gnuplot shell and
load the min-plus.gnuplot file2. In a maude shell, load the gnuplot.maude

file, and use the function gnuplot on the expression. It returns an expression.
You can copy/paste this expression into the gnuplot shell.

Here is a small example of interaction in the maude shell.

mboyer-laptop|~/NC-maude> maude -no-advise -no-banner startNC.maude

Maude> load gnuplot.maude

Maude> red gnuplot(Gamma 3 4 , Beta 5 2) .

reduce in GNUPLOT : gnuplot(Gamma 3 4,Beta 5 2) .

rewrites: 44

result String: "plot [0:] Gamma(3,4, x) title ’gamma(3,4)’ with lp ,

Beta(5,2, x) title ’beta(5,2)’ with lp"

Maude> red gnuplot((Gamma 1/4 8 /\ Gamma 2 1) ,

Beta 5 1 ,

[(Beta 5 1) - (Gamma 1/4 8 /\ Gamma 2 1)]+) .

reduce in GNUPLOT : gnuplot((Gamma 2 1 /\ Gamma 1/4 8),Beta 5 1,[Beta 5 1 - Gamma 2 1 /\ Gamma 1/4 8]+) .

rewrites: 148

result String: "plot [0:] min(Gamma(2,1, x),Gamma(1/4,8, x)) title ’gamma(2,1) ^ gamma(1/4,8)’

with lp , Beta(5,1, x) title ’beta(5,1)’ with lp , max(Beta(5,1, x) - min(Gamma(2,1, x),

Gamma(1/4,8, x)),Beta(0,0, x)) title ’[beta(5,1) - gamma(2,1) ^ gamma(1/4,8)]+’ with lp"

The results can copied/pasted into a gnuplot shell, leading to plotting like
the one of Figures 2.

2Or just run gnuplot with the command line gnuplot min-plus.gnuplot -.

4

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10

gamma(3,4)
beta(5,2)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10

gamma(2,1) gamma(1/4,8)
beta(5,1)

[beta(5,1) - gamma(2,1) gamma(1/4,8)]+

Figure 2: Example of plotting outputs

3 Others tools

They are several NC related tools, with different purposes.

The Real-Time Calculus (RTC) Toolbox [6] is a Matlab toolbox which allow
the user to manipulate a certain kind of curve, and to make Modular Perfor-
mance Analysis, a variation of Network Calculus.

Compared to RTC Toolbox, NC-maude is free (Matlab is not), open (you can
manipulate your own kind of curve), and handle the classical network calculus,
as described in [3].

The COINC software manipulates a wide class of piece-wise linear functions,
and efficiently computes the common min-plus operations. The data represen-
tations and algorithms are presented in [?].

Compared to COINC software, NC-maude handles less functions, but is
not limited to min-plus manipulation, and allow to handle topologies, to apply
specific network calculus results. In a few word, the MinPlus* files does less
things than COINC, but in a simplest way, and the NC.maude is original.

4 Why rewriting, and why Maude ?

I chose rewriting mainly because rewriting code is often very close to the math-
ematical definition of objects3 and then, you can more easily trust the code4.

But Maude in not the only rewriting tools: they are at least cafeOBJ, ELAN
and TOM.

I chose Maude for some reasons:

1. Maude was recommended to me by colleagues,

2. Maude is efficient,

3Subtyping is really set inclusion, you can define mix-fix operators to write expressions like
in mathematics, and computing is applying elementary rules, very often easy to verify one per
one.

4And in fact, the mains bugs I had during development were term not reducing. In general,
once passed the first unitary tests, I had rarely wrong results.

5

3. Maude comes with an interpreter, what exempt me for writing a parser,

4. Maude allows to define a sort in some module/file and to add new terms and
subsorts in other one, a feature really important to develop and decompose
a little large code (a few KLOC),

The drawbacks I have to face to are:

1. there is not let mechanism, to allow to locally define values and/or oper-
ators, and this is a drawback when code size increases;

2. rewriting is a very low level system, without any “modern” aspects like
encapsulation (public interface/private implementation),

3. rewriting must be confluent, then, priorities between rules have no sense.
Nevertheless, from efficiency point of view, it could have...

5 Naming convention

Most logical modules M are decomposed into two maude modules, one M-SORT,
defining the sorts, the operators, and M-IMPL containing the equations.

6 Error handling

The noblest part of programming is designing algorithm, but the most common
(and usefull) is error handling.

In imperative langages, error handling can be done with assert-like instuc-
tions. But there is no instruction in maude, just typed expression, that get
reduced, or not. And when there is a bug, in general, the expression does not
get reduced.

Let us give an example: division by 0.

Maude> red 2 / 4 .

reduce in CONVERSION : 2/4 .

result PosRat: 1/2

Maude> red 2 / 0 .

reduce in CONVERSION : 2 / 0 .

result [Rat,FindResult]: 2 / 0

But, as in classical programming imperative langage, I find some bugs on
some simples tests, all seems to be right, and when trying to reduce a real
example, I get a 24-lines long term, and I try, with my tired eyes, to find which
sub-term should have been reduced, and have not been.

So, my solution is to write code to detect pathological cases. And my solution
is to have some dumy error functions. Such a function is an expression of the
associated type, but including an error message. In the (minimal) following
example, the division by 0 reduces into a “message” error-Nat "Division by

6

0". Without the rule div-by-0, and expression 1 / 0 just does not reduce.
But now, it reduces into error-Rat "Division by 0".

fmod RAT-ERROR is

protecting RAT .

protecting STRING .

op error-Rat _ : String -> Rat .

eq [div-by-0] : n::Rat / 0 = error-Rat "Division by 0" .

endfm

This kind of mechanism is a way to encode exception in pure functional
language, as presented in [5, § 14]. Of course, we could add a few more code
to have more information on the context, like error-Rat "Division of 6 by

0".
A simple grep on expression error in the source file will show you real

examples off this pattern.

7 Floating point version

NC-maude was designed to use infinite precision rationals (i.e. the sort Rat

of Maude, since the first objective of NC-maude is truth and result confidence.
Nevertheless, for performances reasons, we also tried to have a floating point
version.

As the rational version is the main objective of the project, the floating point
version is generated from the rational version, using scripts (sed mainly). The
rational version have been modified as less as possible to allow this generation.
The main difference is the introduction of a comparison operator = =, which is
reduced into internal equality operator == in the rational version, and into a
relative comparison in the floating point version, defined by x = = x′ ⇐⇒
|x− x′| ≤ ǫmax{|x|, |x′|} for rationals, and specific definitions for functions.

There also are some specific comments, ----FloatOnly to add some code in
the floating point version, and couples ---NoFloatTest/---EndNoFloatTest
to avoid some unitary tests in the floating pint version.

To generate the floating point version, use the script makeReal.sh. It gen-
erates a sub-directory Maude-Float with the floating point version.

8 Encapsulation and late-binding in Maude

Rewriting is a very powerfull but low-level programming langage. There is no
“modern” feature like encapsulation, late-binding, popular in object-oriented
languages.

There is, of course, some “Object-BasedModel”: the module CONFIGURATION
in the prelude of Maude), with sorts Object, Oid, Cid) considering object-
oriented programming as a set of objects exchanging messages in an undeter-
ministic concurrent way (see [2, Chapter 8]).

7

Its is not the scope of this paper to say what is real object-oriented model.
It focuses on two features absent of the Maude object model: encapsulation and
late binding.

The first question is: did we need such features? My personal experience,
after about 4.5K lines of Maude is that they are.

8.1 Encapsulation

First, encapsulation is an important feature since the representation of some
object can change during the project life. A common example is the two dimen-
tionnal point. A first implantation could be to have simply an x and y value. In
C langage, a thing like struct Point { float x,y; }. In Maude, a construc-
tor point(_,_): Float Float -> Point. But when project grows, the need
of being able to manipulate polar coordinates could arise. In class based object
oriented langages (like the populars C++ and Java), it is often done with an ab-
stract interface, just defining the public methods of the class, and some private
internal representation (with some implements or extends keyword). In Maude,
we can do the same. The interface is the type Point and a set of methods like
getX(_) : Point -> Float, setX(_,_): Point Float -> Point. (Tanks to
the very free syntax of Maude, even some popular postfix notation _.x : Point -> Float can
be used.) Then, an implementation of such a Point class can be done as follow.

fmod POINT is

protecting FLOAT .

protecting STRING .

protecting CONVERSION .

sort Point .

op point(_ , _) : Float Float -> Point [ctor] .

ops _.x _.y : Point -> Float .

op print(_) : Point -> String .

vars i j : Float .

eq [pt-x] : point(i , j).x = i .

eq [pt-y] : point(i , j).y = j .

var pt : Point .

eq [pt-print] :

print(pt) = "(x:" + string((pt).x)

+ ",y:" + string((pt).y) + ")" .

endmf

Then, if the need of mixed representation cartesian and polar of point is
needed, the canonical representation is no more unique, some new construc-
tor op polPoint(_,_) : Float Float -> Point can be added, some meth-

8

ods have to be changed, but the one based on the interface (like the print, are
unchanged.

You may thing this never happen. My experience with NC-maude is different.
In one version, I have added a source to each flow, to be able to group flows
going from a common server. And some revisions after, I decide to remove it.
The same, I have to add minimal frame size to flows. When I had to make these
changes, I would have to update all equations involving the server sort, and I
only have to update the one not using the interface methods.

8.2 Dynamic binding

The second important feature from the object-oriented world is the “dynamic
binding” (also known as “late binding” or “open recursion” [5]) as is related to
sub-typing (also known as “inheritance” in OOP).

Sub-typing is integrated in Maude. A sub-type is just a sub-sort. Dynamic
binding is the feature that allow a same method to have different implementa-
tions for a type and a sub-type, and to select the more specific one.

Did we need it? Yes for NC-maude. We could have different rules to compute
some upper bound on a system, and the more information we have (ie the more
precise sub-type we manipulate), the more precise results we get.

To come back to our Point example, we could have a NamedPoint, which is
a Point with a name, and we want the method print to print the coordinates
and the name.

Such a subsort could be encoded as follow.

fmod NAMED-POINT is

protecting POINT .

sort NamedPoint .

subsort NamedPoint < Point .

op namedPoint(_ , _ , _) : Float Float String -> NamedPoint [ctor] .

op super(_) : NamedPoint -> Point .

op _.name : NamedPoint -> String .

vars i j : Float .

var n : String .

var npt : NamedPoint .

eq [npt-super] : super(namedPoint(i , j , n)) = point(i , j) .

eq [npt-x] : (npt).x = super(npt).x .

eq [npt-y] : (npt).y = super(npt).y .

eq [npt-name] : namedPoint(i , j , n).name = n .

eq [npt-print] : print(npt) = "[" + (npt).name + "]" + print(super(npt)) .

endfm

9

The use of the operator super allows to quickly write the methods _.x and
_.y. Nevertheless, if any setX method exists, its overloading it not so simple.

With this implementation, we are able to manipulate a NamedPoint in equa-
tions written for Point, but your theory is no more confluent (equations pt-name
and npt-name can be applied to a NamedPoint, with different results.

Let us first have a look on what works: the use of a NamedPoint in place
of a Point. Let us consider a simple module which uses Point: the module
DISTANCE which compute the distance between two point and also print it.

fmod DISTANCE is

protecting POINT .

op distance(_ , _) : Point Point -> Float .

op printDist(_ , _) : Point Point -> String .

vars pt pt’ : Point .

eq [dist] :

distance(pt , pt’) =

sqrt((((pt).x - (pt’).x) ^ 2.0)

+ (((pt).y - (pt’).y) ^ 2.0)) .

eq npt = namedPoint(2.0 , 2.0 , "npt") .

eq npt = namedPoint(2.0 , 2.0 , "npt") .

eq [print-dist] :

printDist(pt , pt’) =

"The distance from " +

print(pt) + " to " +

print(pt’) + " is " +

string(distance(pt , pt’)) .

endfm

Then, we can compute the distance between a Point and a NamedPoint,
even if the DISTANCE module does not know anything about the NamedPoint

sort. Let us consider the constants p1,p2 and npt defined in the test module
TEST-PT.

Then, you can ask Maude to reduce the term distance(p1,npt) and also
between p1 and p2, with p2 defined as a Point and being a NamedPoint.

fmod TEST-PT is

protecting NAMED-POINT .

protecting DISTANCE .

ops p1 p2 : -> Point .

op npt : -> NamedPoint .

eq p1 = point(1.0 , 1.0) .

10

eq npt = namedPoint(2.0 , 2.0 , "npt") .

eq p2 = namedPoint(0.0 , 0.0 , "p2") .

endfm

Now, let us turn to the dynamic binding. When printing the distance be-
tween a Point and a NamedPoint, the “method” print is called, that is to
say, the term print(npt) have to be reduced. And two equations could apply,
pt-print and npt-print, with different results. Our theory is not confluent,
and the Maude tool will chose one or the other (depending on some internal
implementation choice).

Now, we would like to have dynamic binding, ie to force the equation
npt-print to be used.

The first idea could be to forbid the applying of the equation when the
argument is a NamedPoint, and write the rewrite the pt-print equation as
follow:

ceq [pt-late-print] :

print(pt) = "(x:" + string((pt).x)

+ ",y:" + string((pt).y) + ")"

if not(pt :: NamedPoint) .

But it would imply to know, when writing the POINT module, all its sub-sorts.
Another trick could be to use the owise attribute, to allow to use this equation
only if no other (ie more specific) matches. But this would only works with a
two level hierarchy5.

Our solution is to introduce an “intermediary” sort, SubPoint, and to ask
sort/class that want to “inherit” from Point (and to benefit of the dynamic
binding) to be a sub-sort of this sort, and to rewrite pt-late-print with the
test pt :: SubPoint .

The sorts definitions in module POINT becomes

sorts Point SubPoint .

subsort SubPoint < Point .

The correct implantation of the dynamic binding on method print is:

ceq [pt-late-print] :

print(pt) = "(x:" + string((pt).x)

+ ",y:" + string((pt).y) + ")"

if not(pt :: SubPoint) .

We can now ask to print the distance from p1 to p2 and gets the result

result String: "The distance from (x:1.0,y:1.0) to [p2](x:0.0,y:0.0)

is 1.4142135623730951"

5It works when adding a third sort/class ColoredPoint, but not when adding a forth
sort/class NamedColoredPoint.

11

9 Modules and files

File RatInf.maude

RAT-INF Definition of the rational numbers union infinites. Natural
overloading of +, -, min, max.

File RealFct.maude

REAL-FCT Define the sort RealFct, the set of functions from R to R

and some “classical” operators on function, addition (+), minus (-),
multiplication (*), composition (comp) and comparisons (<=,>=) and
application ([]).

Because there is no real numbers in computers, rationals (Q, the
maude sort Rat) are used.

RAT-MIN and REAL-FCT-MIN Introduction of notations /\ and
\/ for min and max.

File MinPlus.maude The core of the (min,+) diod

G-FCT Definition of the G set (G sort), the set of non-negative wide-sens
increasing functions: subsort G < RealFct . Natural overloading
of +, /\, \/, comp.

F-FCT Definition of the F set (F sort), the set of G functions nul on
] −∞, 0[. Natural overloading of +, /\, \/, comp. Definition of the
pseudo-inverse operator ·−1 (^-1), the Zero function and the [·]+

([]+) operator.

ERROR Help for error detection.

BASIC-MIN-PLUS-FCT Definition of some well known functions: δd
(Delta), λr (Lambda), βR,T (Beta), γr,b (Gamma), vT,τ (StairCase).
Some properties on the defined operators are also given (pseudo-
inverse, composition, min, max, etc.).

MIN-PLUS-CONV-DECONV Introductions of the convolution (⊗,
conv) and deconvolution (⊘, deconv) operators, and some known
results on well known functions.

MIN-PLUS-GOOD-FCT Introduction of the “good functions” (GoodFct)
and “sub-additive functions” (SubAdditive) sorts. Definition of the
sub-additive closure operator (f , subAddClos), and the sort of func-
tions whose sub-additive closure is computable by our code (SubAddClosComputable).
Some operators are overloaded in these new sort, and the membership
of Gamma to GoodFct is added.

DEVIATIONS Introduction of the Vertical and Horizontal Deviations
between the graphs of two curves f and g of sort F.

12

MIN-PLUS-FCT Enable some simplifications on “SubAddClosComputable
functions” especially thanks to the normal form.

File MinPlus-Gamma.maude

MIN-GAMMA-FCT-SORTS Definition of the “gamma-min functions”
(sort GammaMin < SubAddClosComputable) and the “gamma-min
in normal form functions” (sort GammaMin-NormalForm < GammaMin).It
stands for respectively, functions which are the minimum of gamma
functions and these same fonctions put in normal form. We also de-
fine the operator NormalForm which put a “gamma-min function” in
normal form.

This module contains very few equations: it defines sorts and opera-
tors, whose (efficient) implementation must be done in other modules.
In fact, the implementations are done in MinPlus-DoubleGamma.maude,
MinPlus-GammaMin.maude and MinPlus-GammaCPL.maude. You can
load either one or the other. See section 10 for details.

File MinPlus-DoubleGamma.maude

MIN-GAMMA-FCT-IMPL-SIMPLE A basic implementation of MIN-
GAMMA-FCT gathering the rules with the minimum of two gamma
functions which compute the deconvolution and normal form.

MIN-GAMMA-FCT Wrapper used to have a common interface. See
10 for details.

File MinPlus-GammaMin-NF.maude
An internal module, used by other modules to compute normal form of
minimum of Gamma functions.

File MinPlus-GammaMin.maude

MIN-GAMMA-FCT-IMPL-GENERAL A more general implemen-
tation of MIN-GAMMA-FCT using sequential and recursive code to
compute deconvolution and normal form of minimum of gamma func-
tions (

∧

i γri,bi). As maude is not made for this, it is quit boring and
not easy to understand.

MIN-GAMMA-FCT Wrapper used to have a common interface. See
10 for details.

File MinPlus-GammaCPL.maude
TBD

13

MIN-GAMMA-FCT-IMPL-SIMPLE An efficient implementation to
compute deconvolution and normal form of minimum of gamma func-
tions (

∧

i γri,bi). It maintains the normal form of [1]. See 10 for
details.

MIN-GAMMA-FCT Wrapper used to have a common interface. See
10 for details.

File NetworkUnits.maude

NET Definition of units used in Network such as time units, size units
and rate units. There is also conversion operators.

File NC.maude

NC-SIMPLE Definition of the flow sort (Flow) with arrival curve sort
(subsorts F < ArrivalCurve), NetworkElement sort (NetworkElement)
with ServiceCurve sort (subsorts F < ServiceCurve). We also de-
fine the two classical operators in network. First delay (delay) which
takes in parameter a flow and a network element and return the max-
imum delay for the flow to pass through the element. Then buffer
(buffer) which takes the same parameters as delay and return the
minimal size of the buffer not to loose PDU.

NC-SHARED It defines what is a shared network element (subsort
SharedNetworkElement < NetworkElement). Instead of having only
one fow in input, it has a list of flows. The operator sne-delay
(sne-delay) is the intrasec delay of a shared network element. It
takes in input a shared network element.

NC-PATH Definition of a path (subsorts NeListNetworkElement <

Path) which is a non empty list of Network element. We have over-
loaded delay as well.

NC-SHAPER Definition of greedy shaping (subsorts GreedyShaper

< NetworkElement) with Shaping Curve functions (subsorts F <

ShapingCurve).

NC-GROUPS (under development) This module is under develop-
ment and unstable. It is designed to test some efficient policies of
grouping.

File startNC.maude Entry point of the project: load the necessary files for
common usage.

Files makeReal.sh rat2float.sed These files transform the Maude code us-
ing rational numbers in a Maude code using Float.

14

10 Choosing a
∧

i γi implementation

10.1 Three implementations

There are three implantation to handle
∧

i γi functions. The first one, MinPlus-DoubleGamma.maude
only accepts terms of size two, but is easy to understand. It can be read (as ex-
ercise) but not be used. The second one MinPlus-GammaMin.maude is produces
results easy to read, handle any size, but is not very efficient. The third one,
MinPlus-GammaCPL.maude, is efficient, but could be a little bit suprising at first
use.

A little example First, we can to compute the sum (γ2,1∧γ1,3)+(γ2,1∧γ1,2).
Using MinPlus-GammaMin.maude, the input and output are very close to the

mathematical notations. It should produce something like that 6

% maude -no-banner MinPlus-GammaMin.maude

Maude> red (Gamma 1 2 /\ Gamma 2 1) + (Gamma 1 3 /\ Gamma 2 1) .

...

result GammaMin: Gamma 2 5 /\ Gamma 3 3 /\ Gamma 4 2

The reader should notice that the order Gamma 2 5 /\ Gamma 3 3 /\ Gamma 4 2

is an internal choice of Maude implementation. The operator _ /\ _ is declared
associative and commutative.

On the opposite, the implementation in MinPlus-GammaCPL.maude keep such
terms as a sorted list of Gamma terms. With this implementation, you have to
build the sorted list with the mkCpl operator. You should not directly enter
a cpl:: term, since the argument must have some properties7, otherwise, the
module should produce wrong results.

% maude -no-banner MinPlus-GammaCPL.maude

Maude> red (mkCpl(Gamma 1 2 /\ Gamma 2 1))

+ (mkCpl(Gamma 1 3 /\ Gamma 2 1)) .

...

result CPL: cpl:: Gamma 4 2 : Gamma 3 3 : Gamma 2 5

10.2 What is the efficiency problem?

The efficiency problem of MinPlus-DoubleGamma.maude comes from the differ-
ence between mathematics and computer science. The implementation of

∧

i γi
in MinPlus-GammaMin.maude is mathematically-written.

To efficiently handle such kind of curves, it must be ordered and without
any useless term. But, the operator ∧ is declared has commutative. So, it is
hard to keep is sorted. But even the issue of useless term is hard. How to keep
trace that there is no useless term in such a term?

6The dots are some warnings, performances results, etc., The -no-banner option is just
there to avoid the welcome message of Maude.

7To be on the normal form of [1].

15

In the implementation of MinPlus-GammaMin.maude, terms are put under
normal form only when is it really necessary (to compute deconvolution by
example).

10.3 How to chose one or the other?

You have to load either the MinPlus-DoubleGamma.maude file and to include
the MIN-GAMMA-FCT-IMPL-SIMPLEmodule, or the MinPlus-GammaMin.maudefile
and to include the MIN-GAMMA-FCT-IMPL-SIMPLE module.

Warning: to handle the full min-plus code, you have in you module to include
MIN-PLUS-FCT and one implementation.

11 Membership, overloading, sort and kind level...

When loading NC-maude, the Maude interpreter will complains with messages
like:

Warning: membership axioms are not guaranteed to work correctly for associative symbol _+_

declarations that are not at the kind level.

What does it mean? This problem is presented in [2, § 14.2.8]. Let il-
lustrate it with a little example: the sum operator and two sorts, the gen-
eral functions (F : R × R → R), and the wide-sense increasing functions
(I = {f ∈ F x ≤ y =⇒ f(x) ≤ f(y)}). The sum is associative and commu-
tative on F , and it is stable on I. It can have two declarations. The first one
could be

fmod F-I is

sorts F I .

subsort I < F .

op _ + _ : F F -> F [assoc comm] .

op _ + _ : I I -> I [ditto] .

endfm

But this will produce a warning. The reason is that, as presented in [2, § 14.2.8],
membership equations are not, for performance reasons, applied to all subterms.
This implies that the computed sort is not the minimal sort (but still a valid
sort, or kind).

The solution is to use kind level declaration, associated with membership
equations.

fmod F-I is

sorts F I .

subsort I < F .

op _ + _ : F F ~> F [assoc comm] .

mb f:F + f’:F : F .

mb f:I + f’:I : I .

endfm

16

Nevertheless, kind level declaration and membership equation can lead to big
computation times (seems to be exponential). The problem is illustrated in a
simple example in file perf-AssocComMB.maude. Then, since the effect is not
false result, but only not as true as possible (the least sort is not computed,
but a valid sort or kind is still produced), we chose to keep overloading (and
warning).

12 On strategies, lazy evaluation, performances

and readability

To be able to manage topologies, each flow encodes its source, and each shared
network element encode its input. The source of a flow fl | ne1 | ne2 is
fl | ne1. But such expression will be reduced to its normal form, which could
be very large, if for example, ne1 is a shared element, with a large input set.
Moreover, such large term can be costly to compute.

At first glance, for computing efficiency and for readability reason, a lazy
strategy on topology encoding could be a good idea.

Moreover, such encoding will forbid to encode any cycle, since a loop in the
topology will produce a computation loop. Even if loop handling is not a short
term objective, it could be in one future...

The basic idea is to use the strategy possibilities of Maude, i.e. the strat

attribute, to avoid to evaluate the topology information on flow and shared
network elements.

Nevertheless, lazy evaluation means that the normal form is no more the
same. And it means that the build-in equality operator will consider different
some terms which are equals, up to eager evaluation.

The solution adopted in NC-maude consist in writing a dedicated equality
operator, =nf=, which compare a normal form defined by the user.

For example, two flows could be considered equals if they have the same
name, the same arrival curve, and the same source. But since the source could
be a shared network element, the “same” notion must be implemented by a
=nf= test...

13 Directories

Maude-Float Contains all the Maude files transformed from Rational numbers
to Float.

TestsUnitaires Contains a groupe of unit tests on the code using rational
numbers and the general implementation of MIN-GAMMA-FCT.

TestsUnitairesDoubleGamma Contains a groupe of unit tests on the code
using rational numbers and the simple implementation of MIN-GAMMA-
FCT.

17

doc Contains the documentation on the project.

References

[1] Marc Boyer and Christian Fraboul. Tightening end to end delay upper bound
for AFDX network with rate latency FCFS servers using network calculus.
In Proc. of the 7th IEEE Int. Workshop on Factory Communication Systems
Communication in Automation (WFCS 2008), pages 11–20. IEEE industrial
Electrony Society, May 21-23 2008.

[2] Manuel Clavel, Francisco Durán, Steve Eke, Patrick Linkoln, Mart́ı-Oliet
Narciso, Jos Meseguer, and Corolyn Talcott. Maude Manual, october 2008.

[3] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus, volume 2050 of
LNCS. Springer Verlag, 2001. http://lrcwww.epfl.ch/PS files/NetCal.htm.

[4] The Maude system home page. http://maude.cs.uiuc.edu/.

[5] Benjamin C. Pierce. Types ad Programming Languages. MIT Press, 2002.

[6] Ernesto Wandeler and Lothar Thiele. Real-Time Calculus (RTC) Toolbox.
http://www.mpa.ethz.ch/Rtctoolbox, 2006.

18

A Map of specific class of functions

In this section, we are going to sum up some results on specific class of functions,
presented in [3] This is particularly usefully for NC-maude since is make a intense
use of sort and sub-sorts and related properties.

We are going to consider five specific sets of functions.

G is the set of wide-sense increasing functions from R to R ∪ {∞}

F is the subset of G nul (strictly) before 0

F0 is the subset of G up to 0 (included)

Fsa is the subset of F of sub-additive functions

Fssh is the subset of F of star-shaped functions, i.e. such that f(t)
t is wide-sense

decreasing

Good the set of good functions is the set of sub-additive functions nul at 0 [3,
Definition 1.2.4, Corolary 3.1.1]

Conc is the subset of concave function in F

F
def
= {f ∈ G x < 0 =⇒ f(x) = 0} (1)

F0
def
= {f ∈ F f(0) = 0} (2)

Fsa
def
= {f ∈ F ∀x, y ∈ R, f(x+ y) ≤ f(x) + f(y)} (3)

Fssh
def
=

{

f ∈ F ∀0 < x < y,
f(x)

x
≥

f(y)

y

}

(4)

Good
def
= F0 ∩ Fsa (5)

Conc
def
= {f ∈ F ∀x, y ∈ R, ∀u ∈ [0, 1], f(ux+ (1− u)y) ≥ uf(x) + (1 − u)f(y)}

(6)

The main relations between these sets are presented in Figure 3.
Let us start with F0 and Fsa. By definition, their intersection is the set of

good functions Good.

Now, let us introduce the star-shaped functions (Fssh). From [3, Theo-
rem 3.1.9], any star-shaped function nul at 0 is sub-additive. In fact, any star-
shaped function is sub-additive, even f not nul at 0.

That is to say, Fssh ⊂ Fsa. It obviously come (F0 ∩ Fssh) ⊂ Good.

Lemma 1 (Star-shaped non negative functions are sub-additive). Any star-
shaped function is sub-additive.

Fssh ⊂ Fsa (7)

19

Proof. Let be t, s two positive reals. Assume without loss of generality that
t ≥ s. We of course have t + s ≥ t ≥ s. From t + s ≥ t, and start-shaped

property, it comes f(t+s)
s+t ≤ f(s)

t , equivalent to f(t + s) ≤ f(t) + s
t f(t). And

from t ≥ s and start-shaped property, we have f(t)
t ≤ s

s ⇐⇒ t
sf(t) ≤ f(s). It

follows f(t+ s) ≤ f(t) + f(s).
Now, if t ≥ 0 and s = 0: f(t+ s) = f(t) ≤ f(t) + f(0).

The last set of interest is Conc, the set of concave functions. From [3,
Theorem 3.1.4], it comes Conc ⊂ Fssh. But we also have Conc ⊂ Fsa. This
result also is not in [3], but obvious to proof.

Lemma 2 (Positive increasing concave functions are sub-additive). Any posi-
tive, wide-sense increasing concave function is sub-additive.

Conc ⊂ Fsa (8)

Proof. The property holds for any positive, wide-sense increasing concave, nul
at 0 (a concave function is star-shaped, and any star-shaped function nul at 0
is sub-additive [3, Theorem 3.1.9]).

Consequently, let us consider f ∈ F (positive, wide-sense increasing), con-
cave, with f(0) 6= 0. Let be g(x) = f(x)− f(0). We have g ∈ F0, g concave. It
implies g is sub-additive. Now, the sub-additivity of f can be proved:

f(x+ y) = g(x+ y) + f(0)

≤ g(x) + g(y) + f(0) g is sub-additive

≤ g(x) + g(y) + 2f(0) because f(0) ≥ 0 = f(x) + f(y)

This gives the overall picture of Figure 3.
This map can be refined, showing the non emptiness of areas (1) up to (7).

(1) a good function, not star-shaped: the ceil function, ⌈x⌉.

Proof. The ceil function is the “next integer”, i.e. the only integer function
such that ⌈x⌉ − 1 < x ≤ ⌈x⌉.

It is null at 0 (obvious).

It is sub-additive: x ≤ ⌈x⌉ and y ≤ ⌈x⌉, then x + y ≤ ⌈x⌉+ ⌈y⌉. It is wide
sense increasing: ⌈x+ y⌉ ≤ ⌈⌈x⌉+ ⌈y⌉⌉ = ⌈x⌉+ ⌈y⌉.

It is not star shaped: just (gnu)plot it, or consider ⌈2/3⌉
2/3 = 3

2 = 1.5 and
⌈3/2⌉
3/2 = 4

3 ≈ 1.333.

(2) a sub-additive function, not nul at 0 neither star-shaped: the ceil function,
⌈x⌉+ 1.

20

(3) a star-shaped function (then sub-additive), not nul at 0 neither concave:
βR,T +K, with 0 < RT < K.

Proof. This example comes from [3, § 3.1.7, Fig. 3.5]. It is clearly not
concave (with x = 0, y = 2T, f(x) = K, f(2T) = K+RT, u = 1

2 , f(ux+(1−
u)y) = f(T) = K,uf(x)+(1−u)f(y) = uK+(1−u)(K+RT) = K+uRT),
not nul at 0. It is sub-additive (from [3, § 3.1.7]).

It is star-shaped f(t)
t is decreasing on [0, T] and constant on [T,∞[.

(4) a star-shaped function, sub-additive, nul at 0, but not concave: βR,T +K,
with 0 < RT .

Proof. Just take the sub-additive closure of the counter example of the two
examples [3, § 3.1.8, Fig. 3.6]. Notice that a sub-additive closure is always
nul at 0 (f = δ0 ∧ . . .).

(5) a concave function, sub-additive, not nul at 0: f(x) = ax+ b, a > 0, b > 0.

(6) concave functions, sub-additive and nul at 0: γr,b = (ar+ b)∧ δ0,
∧

i γri,bi ...

21

(3)

(5)

(1) (2)

(4)

(6)

F0

Good Fsa

Fssh

Conc

Figure 3: Map of some interersting subsets of F

22

