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Abstract

Diagnosis of intermittent faults is significantly
different from diagnosis of permanent faults,
especially when selecting one or several pre-
ferred diagnoses. In this paper, we describe a
new modeling approach for intermittent faults
based on Past Time Linear Temporal Logic
(PTLTL), and we suggest a conditional diag-
nosis selection approach based on Conditional
Preference theories. We describe how inter-
mittent faults can create diagnosis instability
and show how our approach can be used to
mitigate it. We then describe an incremental
way to compute diagnoses at each time step,
and a reduction of the incremental diagnosis
computation to a MaxSAT query. Finally we
discuss some limitations of our diagnoser and
how they can be overcome.

1 Introduction
Autonomous systems are faced with the task of auto-
matically handling unexpected situations, in particu-
lar faults. A common way to do so is, upon detec-
tion of a disruption or anomaly, to switch to a “safe
mode”, and wait for a human operator to take over
and perform the system’s diagnosis. Another approach
is to use on-line fault diagnosis and reconfiguration,
which can significantly improve the reliability and the
availability of autonomous systems. However, such an
approach poses technical challenges for discrete-event
systems with discrete dynamics, especially when faults
with intermittent or unknown dynamics must be ac-
counted for. Moreover, we aim at coupling our online
fault diagnoser with a reconfiguration and decision tool
supported by a deterministic planner [Ghallab et al.,
2004], that requires a unique assessment of the system’s
health status as input instead of the set of all possible
diagnoses.

The main contribution of this paper is the descrip-
tion of an approach for modeling discrete event systems
with intermittent faults, and for computing a unique
preferred diagnosis. We show how diagnosis selection is
considerably more difficult for intermittent faults than
it is for permanent faults. In particular, a phenomenon
known as diagnosis instability can arise, which is prob-
lematic when diagnosis is used to trigger reconfigura-
tion actions.

Our diagnosis approach is based on a behavioral
model of the autonomous system and on a description
of diagnosis conditional preferences. We provide a for-
mal definition of an incremental diagnosis computation
problem, and describe an original compilation tech-
nique for reducing this problem to a MaxSAT query.
Finally, we illustrate how our diagnoser can fail to com-
pute the preferred diagnosis, and discuss possible ways
to mitigate this problem.

2 Diagnosis Model

We first introduce a few notations.

• Let X be a set of propositional variables, then an assign-
ment a to X is a function from X to B = {true, false}.

• If x ∈ X, then x (resp. x ) denotes the specific assign-
ment to {x} that assigns value true (resp. false) to
x.

• If a and b are two assignments to two disjoint sets A
and B then ab is the assignment to A ∪ B such that
∀x ∈ A, ab(x) = a(x) and ∀x ∈ B, ab(x) = b(x).

• If a is an assignment to X and A ⊆ X, then a|A is the
restriction of a to A.

• The satisfaction relation � between assignments and
propositional formulas is defined by:
a � >, a 2 ⊥, a � x iff a(x) = true, a � ¬F iff a 2 F,
a � F1 op F2 iff (a � F1) op (a � F2) with op ∈
{∧,∨, . . .}.

• For a sequence of assignments a = (a0, . . . , ak), a[i] =
(a0 , . . . , ai), i ∈ [0 . . k] is a’s prefix until index i.

The diagnosis model is a tuple (s0 ,∆,Γ), where s0
is the system’s initial state, ∆ is the behavioral model
of the system, and Γ is the diagnosis preference model.
∆ describes the possible behaviors of the system as a
finite state machine, and provides evidence for the di-
agnosis process. The purpose of Γ is to describe what
is likely, or preferable, and provides hints for the di-
agnosis reasoning. Both parts share a common set of
boolean variables V = {v1, . . . , vn} associated with a
partial function pre : V → V. The variables represent
the system’s state, the events (e.g. fault events) im-
pacting this state, and the inputs and outputs of the
diagnoser, at the current instant and to some extent
at past instants. Events are modeled by a dedicated
boolean variable in V, true at the instant the event oc-
curs and false otherwise. For any two variables v and
v′, v′ = pre(v) means that v′ holds v’s value at the



previous time step. When possible, we refer to v′ sim-
ply as pre(v). Naturally, pre must form no cycle, i.e.
pren(v) 6= v for all v and n > 0. In the following,
VhasPre denotes the domain of pre and Vpre its image,
i.e. the set of variables associated with past instants,
and Vnow = V − Vpre. We assume a synchronous model
where time steps all last the same predefined duration.
We denote by O ⊆ Vnow the set of observable variables,
and D ⊆ Vnow the set of diagnosis variables. Without
loss of generality we assume that D ∩ O = ∅. A system
state is an assignment to V, and we denote by S the set
of all states. An observation is an assignment to the
variables of O.

The first part of the model, ∆, consists in a set of
propositional formulas over V that specifies the system’s
behavior as a finite state machine. The transition rela-
tion ∆−→ ⊆ S ×S is encoded by ∆ as follows: a state s ′

is a consistent successor to s if it satisfies all the formu-
las of ∆, and the values of Vpre variables in s ′ hold the
same value as their respective current time variables in
s. Formally:

Definition 1 (Reachable state). A state s ′ can be
reached from a state s, denoted by s ∆−→s ′ if and only if
∀δ ∈ ∆, s′ � δ and ∀v ∈ VhasPre, s(v) = s ′(pre(v)).

The system’s initial state s0 satisfies the formulas of
∆. We now define how a sequence of observations leads
to a set of diagnoses.

Definition 2 (Explanation). Let obs = (o0 , . . . , ok ) be
a sequence of observations. An explanation for obs is
a state sequence (s0 , . . . , sk ) such that ∀i ∈ [0 . . k − 1]
si ∆−→si+1 and ∀i ∈ [0 . . k] si |O = oi .

Definition 3 (Diagnosis). Let obs = (o0 , . . . , ok ) be a
sequence of observations. An assignment d to D is a di-
agnosis for obs if and only if there exists an explanation
(s0 , . . . , sk ) for obs such that sk |D = d.

Example 1. We consider a switch mechanism be-
tween two redundant actuators A1 and A2, powered
by a common power supply, as represented in Fig-
ure 1. Our system is modeled by the following variables:
hpow : power supply health status (true when nominal)
hsw : switch health status (true when nominal)
h1 : actuator A1 health status (true when nominal)
h2 : actuator A2 health status (true when nominal)
fsw : switch permanent fault event
f2 : actuator A2 temporary fault event

swin : switch command (true to activate actuator A1)
swpos : switch position (true when actuator A1 is active)

a1 : actuator A1 active (true when operating)
a2 : actuator A2 active (true when operating)

The above variables correspond to set Vnow. The set of
diagnosis variables is D = {hpow, hsw, h1, h2}, and the
set of observable variables is O = {swin, a1, a2}.

The transition relation is defined as1:

∆1 =


a1 ↔ (hpow ∧ swpos ∧ h1),
a2 ↔ (hpow ∧ ¬swpos ∧ h2)
hsw ↔ (pre(hsw) ∧ ¬fsw),

h2 ↔ (¬f2 ∧ ¬pre(f2) ∧ ¬pre(pre(f2))),
swpos ↔ ite(hsw, swin, pre(swpos)),


(1)
(2)
(3)
(4)
(5)

1ite is the boolean if-then-else operator defined by
ite(a, b, c)↔

(
(a ∧ b) ∨ (¬a ∧ c)

)
.
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Figure 1: A system with two redundant actuators. The
switch is subject to a permanent fault. The first actua-
tor and the power supply are subject to random inter-
mittent faults. The second actuator will temporarily
be off during 2 time steps following a fault.

Each actuator is active if and only if the power supply
is healthy, the switch is in the appropriate position, and
it is healthy (1)(2). The switch is healthy if and only
if it was healthy at previous time step and if there is
no permanent fault event (3). The second actuator is
healthy is there has not been any fault in the last three
time steps (4). Finally, if the switch is healthy, then its
position is the one from the command, else its position
is the one it was stuck in (5).

We know the switch is subject to a permanent fault,
so there is a relation between hsw, its past and fsw. Ac-
tuator 2 goes offline during 3 timesteps after a fault
occurrence, which means h2 is influenced by f2’s re-
cent values. However we have no model for the faults
in the power supply and actuator A1, so h1 and hpow
are independent from past variables, so as to represent
random intermittent failures. We could introduce fault
events f1, fpow, and even “repair events” r1, rpow, but
this would not help modeling the system’s behaviour.
Moreover, in this example we are interested in the cur-
rent health statuses of the components more than their
history, so such variables have no use in the model.

With such a behavioral model of the system, Vpre is
the set {pre(hsw), pre(f2), pre(pre(f2)), pre(swpos)}.
V = Vnow ∪ Vpre contains 14 variables. Finally, we as-
sume that the initial state is:

s0 =

 hpow hsw h1 h2 fsw f2
swin swpos a1 a2

pre(hsw ) pre(f2 ) pre(pre(f2 )) pre(swpos).

Let us consider the observation sequence obs1 =
(swina1a2 , swina1a2 ). The first observation is simply
s0 |O. At time step 1 the possible diagnoses are hpowh1 ,

hpowh1 and hpowh1 , with any value for hsw and h2.

The second part of the model, Γ, consists in a Con-
ditional Preference theory acting on the variables of
V. It defines a partial ordering on S , that, by lexico-
graphical extension, lets one compare state sequences.
It supports the selection of one explanation (s0 , . . . , sk )
for any observation (o0 , . . . , ok ).

We describe thereafter the specification languages for
both parts of the model. The specification language
for ∆, described in Section 2.1, is able to model inter-
mittent faults, while the language for Γ, described in



Section 2.2 is suitable for defining conditional diagno-
sis preferences. In Section 2.3 we describe the problem
of diagnosis stability that naturally arises when mon-
itoring intermittent faults, and demonstrate how our
approach can address this problem.

2.1 Intermittent faults

Diagnosis of intermittent faults has been addressed in
[De Kleer, 2009] by using multiple system executions
to produce a single, constant diagnosis. For embed-
ded systems, diagnosis should be produced online and
vary across time. In [Contant et al., 2004], intermittent
faults are modelled by fault events and associated reset
events. The fault is considered present after its fault
event and before its reset event, and absent otherwise.
As illustrated in Example 1, as we are not concerned
by the occurrence of fault events, but by the current
health status of the components.

An important aspect of intermittent fault modeling
is the distinction between the occurrence of a fault, the
presence of its effects, and the likeliness of it happening
again. Which of these properties should be monitored
by diagnosis is application dependent, this is why we
only speak of a set D of diagnosed variables, and we do
not make any assumption on how they are related to
the system’s behavior.

Defining faults as behavioral patterns has been de-
veloped in [Jéron et al., 2006] and more particularly
in [Jiang and Kumar, 2004] using LTL specifications.
These approaches are expressive enough for our needs.
We adopt a very similar approach using Past Time Lin-
ear Temporal Logic (PTLTL). The main difference be-
tween LTL and PTLTL is that LTL formulas are evalu-
ated from the initial state in the system’s history, while
PTLTL formulas are evaluated from the current (last)
state, and can be evaluated incrementally in a more
efficient way than LTL [Emerson, 1990].

PTLTL formulas and their semantics extend those
of propositional calculus as recalled below, where t =
(s0 , . . . , sk ) denotes a state sequence, F a PTLTL for-
mula, and vi a variable of V. The Y , O, S and On oper-
ators stand respectively for “yesterday”, “once”, “since”
and “once in last n”.
t � >
t � ¬F iff t 2 F

t � vi iff sk (vi) = true, i.e. iff vi is true in t’s last state
t � F1 op F2 iff (t � F1) op (t � F2) with op ∈ {∧,∨,→, . . .}
t � Y (F) iff k = 0 or t[k − 1] � F

t � O(F) iff ∃i ∈ [0 . . k], t[i] � F

t � On(F) iff ∃i ∈ [k−n + 1 . . k], t[i] � F

t � F1 SF2 iff ∃i ∈ [0 . . k], t[i] � F2 ∧ ∀j ∈ [i+1 . . k], t[j] � F1
[Havelund and Rosu, 2002] proves that any PTLTL

formula defined over set of variables Vnow can be equiv-
alently compiled into a set of formulas over Vnow ∪ Vpre.
This allows us to use PTLTL as a specification language
for modeling both the system’s dynamics and the prop-
erties that need to be monitored.

Example 2. In our system, instead of Equation (3),
the effect of permanent fault event fsw can be modeled
directly as hsw ↔ ¬O(fsw) (the switch is healthy if and
only if no fault occurred at the present time or in the
past). Moreover, instead of Equation (4), the temporary
effect of fault event f2 can be modeled by h2 ↔ ¬O3(f2)

(actuator A2 is healthy if and only if no fault event
occurred during the last three time steps). As a result,
in PTLTL, the transition relation of our system can be
written:

∆2 =


a1 ↔ (hpow ∧ swpos ∧ h1),
a2 ↔ (hpow ∧ ¬swpos ∧ h2),

hsw ↔ ¬O(fsw),
h2 ↔ ¬O3(f2),

swpos ↔ ite(hsw, swin, Y (swpos))


In comparison to ∆1, all variables of Vpre have been re-
placed by instances of the PTLTL operators Y , O and
O3 applied to variables of Vnow. This PTLTL sentence
can be compiled into a propositional formula roughly
equivalent to that of Example 1. Note that in ∆2, ran-
dom intermittent faults such as hpow and h1 are still not
associated with any fault event, and are still not con-
strained by their past values.

PTLTL can also model reset events: in a system
where a fault event f over a component were associ-
ated with a reset event r, the health status h of the
component can be modeled by ¬h ↔ ¬rSf (the sys-
tem is not healthy if there has been no reset since the
last fault event).

2.2 Conditional diagnosis preferences

Selecting preferred diagnoses is usually addressed by
specifying an ordering on the possible diagnoses. For
example diagnoses can be partially ordered by cardinal-
ity [Reiter, 1987]. Diagnoses of the same cardinality can
be distinguished by totally ordering faults, and defining
a lexicographical order on diagnoses based on the fault
ordering [Felfernig and Schubert, 2010]: if two faults f1
and f2 are ordered f1 < f2, then the lexicographical
diagnosis ordering is (f1 f2 ) < (f1 f2 ) < (f1 f2 ) < (f1 f2 ).
Assuming that diagnoses are ordered, [Grastien et al.,
2009] extends the notion of preferred diagnosis to that
of preferred sequence of states in a natural way.

Another way to select diagnoses is to use exoneration
assumptions to eliminate diagnoses that involve false
negative tests [Cordier et al., 2004]. Yet another way
is to explicitly account for diagnosis probability [Ricks
and Mengshoel, 2010; Abreu and Cardoso, 2013; Zabi
et al., 2013].

Work based on an unconditional diagnosis ordering is
not satisfactory from our point of view because the di-
agnosis ordering does not take the current observations
into account. The nominal mode is usually uncondi-
tionally preferred, and can only be eliminated by evi-
dence that the system is faulty: even if we have strong
suspicions about a fault, as long as the nominal mode
is possible, it is selected as the preferred diagnosis. Our
ambition is to use diagnosis preferences to express hints,
i.e. to make the diagnosis ordering situational. There
are many reasons for one to prefer a different diagnosis
in some particular situation, including diagnosis likeli-
hood, but also external factors such as the impact of
modeling errors in the diagnosis model, the cost and
safety of associated reconfigurations, the robustness of
control algorithms with respect to some faults, or the
presence of other diagnosers that detect some faults
better than this one. All these aspects are not part
of a behavioral model, and none of the aforementioned



approaches can handle them. The purpose of the sec-
ond part of our model Γ is to provide the tools for the
designers to specify their own conditional diagnosis or-
dering.

Example 3. In our example, we do not know the
exact dynamics behind hpow and h1. However, we
know that it is very unlikely that both actuators fail
during a single autonomous run. Thus, when one
actuator fails, we suspect a fault in this actuator, but
once both actuators have shown failure symptoms, we
suspect the power source. And as usual, we consider a
component to be nominal when we do not use it. This
means that for the observation sequence of Example 1
obs1 = (swina1a2 , swina1a2 ), the preferred diagnosis is
d1 = hpowhswh1h2 . However, if it was preceded by an
sequence where actuator A2 has failed such as obs2 =
(swina1a2 , swina1a2 , swina1a2 , swina1a2 , swina1a2 )
then at time step 4 the preferred diagnosis would be
d2 = hpowhswh1h2 .

An cardinality-based diagnosis ordering cannot im-
plement such a diagnosis strategy, as the diagnoses d1

and d2 have the same cardinality. Moreover, a lexico-
graphic ordering is unsuitable as well: if we use a vari-
able ordering such that h1 < hpow, then d2 can never be
preferred. Conversely if we have hpow < h1, then d1 will
be discarded regardless of the previous observations.

Our approach to conditional diagnosis is to express
preferences not just about the diagnoses, but about the
explanations behind the diagnoses. We do so by defining
a partial order on the set of all states S , and extend it
lexicographically to the set of all explanations S∗.

Specifying an ordering on S and maintaining this
specification can be complex and error prone, but spe-
cific languages known as Conditional Preference theo-
ries (CP-theories [Wilson, 2011]), that generalize CP-
nets [Boutilier et al., 2004], provide a compact and intu-
itive representation of conditional preferences over vari-
able assignments. We define a diagnosis CP-theory2 as
a set Γ of diagnosis conditional preferences.

Definition 4. A conditional preference on a variable
vi ∈ V is a statement of the form Φ : vi ≺ vi where Φ is
a propositional formula over a set of variables Uvi ⊆ V.

Φ : vi ≺ vi is interpreted as follows: let t be an
assignment to V − (Uvi ∪ {vi}) and u an assignment
to Uvi , then assignment tuvi is preferred to assignment
tuvi if and only if u � Φ. Informally, it means that vi
is preferred to vi if and only if Φ holds, other variables
(those in t) being fixed.

The graph associated with the set Γ of diagnosis pref-
erences uses the variables of V as nodes, and for each
preference Φ : vi ≺ vi in Γ, there is a directed arc from
each variable in the scope of Φ to vi. Additionally,
when a variable v is parent of v′ in the graph, it means
that the preference over v preempts the preference over
v′.

Definition 5. A diagnosis CP-theory is a set of con-
ditional preferences whose associated graph is acyclic
and with at most one preference per variable in V. For

2We adapt [Wilson, 2011]’s definition to use boolean vari-
ables, reuse the model’s variable sets, and force empty sets
of irrespective variables.

hpow

oy1 oy2

h1 h2

y1 y2 hsw

Figure 2: Graph induced by the preference set Γ1 of
Example 4. oy1 and oy2 are variables generated by
the PTLTL compilation to represent respectively the
PTLTL formulas O(y1 ) and O(y2 ).

a diagnosis CP-theory Γ, PΓ denotes the set of variables
subject to conditional preferences, also called the set of
variables targeted by Γ.

A state s satisfies a preference Φ : vi ≺ vi if and
only if s � Φ ↔ vi. Note that Φ : vi ≺ vi is strictly
equivalent to ¬Φ : vi ≺ vi . Following [Wilson, 2011],
any diagnosis CP-theory Γ is consistent, i.e. it defines a
partial order ≺Γ on S . This order is defined as follows:
s ≺Γ s ′ if and only if there is a preference γ that is sat-
isfied by s and violated by s ′, and for all preferences γ′

that preempt γ, s and s ′ both satisfy or violate γ′. This
partial order matches the topological order induced by
the associated graph.

Example 4. A possible way to implement the diagnosis
strategy detailed in Example 3 is to introduce two new
variables y1 and y2 (y stands for symptom) that are
true when an actuator is expected to work and is not
working, to enrich ∆2 in consequence, and to use the
set of diagnosis preferences Γ1 described below.

∆3 = ∆2 ∪
{

y1 ↔ (swpos ∧ ¬a1),
y2 ↔ (¬swpos ∧ ¬a2)

}

Γ1 =


O(y1) ∧O(y2) : hpow ≺ hpow ,

y1 ∧ hpow : h1 ≺ h1 ,
y2 ∧ hpow : h2 ≺ h2 ,

> : hsw ≺ hsw


(1)
(2)
(3)
(4)

Informally, preference (1) means that once symptom y1
and y2 have each been present, we prefer to blame the
power supply. Preferences (2) and (3) mean that when
symptom yi is present and the power supply is nominal,
we blame actuator Ai. Preference (4) means that we
always expect the switch to be nominal. The variable
graph induced by Γ1 is represented in Figure 2, and
indicates that preference (1) preempts preferences (2)-
(3) and must be evaluated prior to them. Preference (4)
can be evaluated any time.

For observation sequence obs1 (Example 1), we have
by definition s0 2 O(y1) and s0 2 O(y2). At time
step 1, since pre(swpos) takes value true initially, the
observation swina1a2 entails y1y2 . We first consider
preference (1): its condition is false, thus we select
hpow . Then, we consider preference (2): its condition

is true, and we select h1 . Preference (3) leads to h2 ,
and preference (4) to hsw . The preferred diagnosis is
hpowh1h2hsw . We leave it up to the reader to check
that obs2 (Example 3) leads to the preferred diagnosis
hpowh1h2hsw .

Note that once O(y1)∧O(y2) is true, we always prefer
hpow to hpow , even when the symptoms y1 and y2 are
absent at the current time step. This does not mean



that hpow must hold once the symptoms have been ob-
served. In fact, ∆3 excludes the assignments containing
hpowy1y2 , so hpow can only be part of a diagnosis when
a symptom is present. This illustrates that Γ is only
used to order the diagnoses accepted by ∆, but only ∆
defines what is and what is not a diagnosis. In Exam-
ple 4, the condition for preference (1) could be written
O(y1)∧O(y2)∧(y1∨y2) with equivalent results. ∆ pro-
vides diagnosis with evidence, while Γ provides diagno-
sis with clues. Together, they implement the diagnosis
reasoning described in Example 3.

We now define how ≺Γ can be used as a lexicograph-
ical base to order all the explanations in S∗, and define
the preferred diagnosis for an observation sequence.

Definition 6. Let t0 ..k = (t0 , . . . , tk ) and u0 ..k =
(u0 , . . . , uk ) be two state sequences such that t0 = u0 =
s0 , and let Γ be a diagnosis CP-theory entailing a par-
tial order ≺Γ on S. We define the partial ordering ≺S∗

on S∗ as the lexicographical order induced by ≺Γ, i.e.
t0 ..k ≺S∗ u0 ..k if and only if there exists i ∈ [0 . . k] such
that tj = uj for j ∈ [0 . . i[, and either i = k or ti ≺Γ ui .

Definition 7. Let obs = (o0 , . . . , ok ) be a sequence of
observations, and let E ⊆ Sk be the set of all expla-
nations for obs. An explanation e ∈ E is a preferred
explanation if and only if there is no explanation e′ ∈ E
such that e′ ≺S∗ e. A diagnosis dk is a preferred di-
agnosis for obs at time step k if and only if there ex-
ists a preferred explanation e = (s0 . . . sk) such that
sk|D = dk.

Let us emphasize that in the previous definition, a
preferred explanation must satisfy the constraints de-
scribed in ∆. In terms of CP-theories, this means that
we manipulate kinds of constrained Conditional Pref-
erence networks [Boutilier et al., 2004; Prestwich et al.,
2004]. Note also that if ≺Γ is a total order, it makes
≺S∗ a total order as well. This guarantees that the
preferred explanation and diagnosis are unique at each
time step and for any observation.

Note that the notion of preferred explanation based
on CP-theories generalizes the ordering by cardinality
strategy of [Reiter, 1987]. In fact, for a set of faults
{f1, . . . fn}, the preferences > : fi ≺ fi guarantee that
the set of diagnosed faults is minimal for set inclusion.
The total ordering of faults in [Felfernig and Schubert,
2010] can be reproduced by adding the same preferences
> : fi ≺ fi and explicitly extending the partial order ≺Γ

to a total order <Γ that represents the fault priority.
Rejecting false negatives ([Cordier et al., 2004]) can be
implemented with one preference per test.

Preferences can also express optimism or pessimism
about the presence of faults in the diagnosis. More pre-
cisely, for a fault fi, the preference > : fi ≺ fi encodes
that without any proof for fi , fi will be preferred, which
can represent some form of optimism with respect to
fi. This kind of behavior can be used for non-critical
faults. On the opposite, the preference > : fi ≺ fi ex-
presses that without proof for fi , fi will be diagnosed.
This indicates some pessimism with respect to fi and
can be used for more critical faults.

2.3 Diagnosis stability

Diagnosis of intermittent faults raises the problem of di-
agnosis stability that, to our knowledge, has not been

s0 s1 s2 s3 s4 s5

hpow 1 1 1 1 1 1
hsw 1 1 1 1 1 1
h1 1 0 0 0 0 0
h2 1 1 1 1 1 1

swin 1 0 1 0 1 0
swpos 1 0 1 0 1 0
a1 1 0 0 0 0 0
a2 0 1 0 1 0 1

pref. hpowh1 hpowh1 hpowh1 hpowh1 hpowh1 hpowh1

diag. hswh2 hswh2 hswh2 hswh2 hswh2 hswh2

Figure 3: An execution scenario based on Example 4’s
model, in which actuator A1 becomes faulty at time
step 1 and stays so. It displays unstable diagnosis: even
though the system’s actual health status is constant
after time step 1, the diagnosis perpetually alternates
between two values.

treated as such in the literature. When diagnosis is
used to trigger reconfiguration actions, it is important
to avoid spurious diagnoses. In the case of permanent
faults, the strategy that consists in selecting minimal
diagnoses is guaranteed to be stable, as faults are only
added when we have evidence of their occurrence, and
the diagnosis can only grow over time. However, in
the case of intermittent faults, a naive diagnosis selec-
tion approach, such as the one presented in Example 4,
can lead to scenarios in which the preferred diagnosis
alternates between two or more values, while the sys-
tem’s health status is actually constant, as illustrated
in Figure 3.

A formal definition of diagnosis instability is beyond
the scope of this paper. Still, it is possible to use CP-
theory to induce stability mechanisms even with inter-
mittent faults, by using the diagnosed variables’ past
values. For example, let vi model an intermittent fault,
the preference Y (vi) : vi ≺ vi states that we always pre-
fer the previous value for vi. Then, its diagnosis value
will not change unless we have evidence of it. Many
other stability strategies are possible according to the
system’s behavior, fault criticality, and available recon-
figuration actions.

Example 5. The diagnosis preference set Γ1 of Exam-
ple 4 can be stabilized as follows to avoid the situation
described in Figure 3:

Γ2 =


O(y1) ∧O(y2) : hpow ≺ hpow ,

¬Y (h1) ∨ (y1 ∧ hpow) : h1 ≺ h1 ,
¬Y (h2) ∨ (y2 ∧ hpow) : h2 ≺ h2 ,

> : hsw ≺ hsw


The diagnosis value for h1, once set to h1 , stays so as
long as it is consistent with hpow and ∆, as we prefer
to keep its past value. The same goes for h2. Such a
mechanism is unnecessary for hsw and hpow, because fsw
is a permanent fault, and because hpow’s effects cannot
be masked, so its diagnosis cannot be unstable. Note
that ¬Y (h1) is false at the first time step, while Y (¬h1)
would be true.

3 Diagnoser synthesis
We now describe a way to compute the preferred di-
agnosis incrementally at each time step. On-line in-



cremental diagnosis has been addressed under three
different forms: classical diagnoser approaches, knowl-
edge representation approaches, and sliding windows.
Classical diagnoser approaches [Sampath et al., 1995;
Contant et al., 2004] consist in precompiling the diag-
noser as an explicit finite state automaton. These ap-
proaches suffer from well known scalability problems as
the diagnoser states grow exponentially with the system
faults. Approaches based on knowledge representation
techniques such as OBDDs [Torta and Torasso, 2007;
Darwiche and Marquis, 2002] offer complete freedom
in their definition of faults, and support the encoding
of conditional preferences as hard constraints, but also
suffer from well known scalability problems. SAT-based
sliding windows approaches [Grastien et al., 2009] scale
well, and we adopt a similar MaxSAT approach.

3.1 Incremental evaluation

Our diagnoser is invoked at each time step, and pro-
duces a diagnosis based on the current observation and
on some information computed at the previous time
step, named a transmitted assignment. As we require
a unique diagnosis, the first step in the diagnoser syn-
thesis is to arbitrarily extend the partial order ≺Γ to a
total order <Γ, so that there exists only one preferred
explanation at any time.

We consider a subset of variables T ⊆ VhasPre that rep-
resent variables that will be transmitted at each time
step. The precise content of T is discussed in Section
4, as it significantly impacts the diagnoser’s behaviour.
For now we assume that at time step k, the diagnoser
receives as input an observation ok , an assignment tk−1

of T, and computes a selected state sk as follows:

Definition 8. Let obs = (o0, . . . , ok) be a sequence of
observations and let T ⊆ VhasPre. The diagnoser’s pro-
cedure computes sk , dk and tk as follows:

• at time step 0, s0 is the selected state for obs[0],
d0 = s0 |D is the selected diagnosis, t0 = s0 |T is the
transmitted assignment;

• at time step j ∈ [1..k], sj ∈ S is the selected state
for obs if and only if (1) sj|O = oj, (2) there exists
α such that α|T = tj−1 and α ∆−→sj , and (3) for
all s′ ∈ S satisfying conditions 1 and 2 we have
sj <Γ s′. dj = sj|D is the selected diagnosis and
tj = sj |T is the transmitted assignment.

Note that based on the previous definition, state se-
quence (s0, . . . , sk) is not necessarily an explanation for
(o0, . . . , ok) (in the sense of Definition 2), because not
all variables are transmitted from one step to another.
This is discussed in Section 4.1.

3.2 MaxSAT encoding
[Prestwich et al., 2005] describes an algorithm for com-
puting all optimal outcomes in a constrained CP-net.
This algorithm handles theories with non-boolean vari-
ables and cyclic preferences but suffers from computa-
tional issues. We adopt here a MaxSAT based approach
particularly suited to our acyclic boolean preferences.

Our first step is to sort the preferences of Γ with a
total order /Γ such that if preference γ1 targets vari-
able v1 and γ2 targets v2, and (v1, v2) is an edge in Γ’s
graph, (i.e. γ1 preempts γ2), then γ1 /Γ γ2. We then

reduce the preferred state selection to an optimization
problem under constraints in which a state s is a solu-
tion if it satisfies constraints induced by observations,
transmitted variables and transition formula ∆, and is
optimal if it maximizes the satisfaction of preferences in
the order defined by /Γ. More precisely, conditions (1)
and (2) of definition 8 are constraints that a selected
state s has to satisfy. Condition (3) is encoded into a
objective function that takes the form of a lexicographic
order.

There are several ways to address lexicographic
boolean optimization [Marques-Silva et al., 2011] with
boolean satisfaction techniques. We present here a Wei-
ghted Partial MaxSAT approach that consists in find-
ing an assignment that minimizes the total weights of
unsatisfied soft clauses while satisfying hard clauses.
The main idea is to encode ∆ as hard clauses, and Γ
as soft clauses associated with weights that implement
a lexicographical order. More formally:

• for each variable oi of O, if ok(oi) = true then oi
is a hard clause, otherwise ¬oi is a hard clause;

• for each variable ti of T, if tk−1(ti) = true then
pre(ti) is a hard clause, otherwise ¬pre(ti) is a
hard clause;

• formula ∆ is transformed into hard clauses using
a Tseitin’s based transformation [Tseitin, 1968];

• if γi is the ith preference in Γ ordered by /Γ, and
is written Φi : vγi ≺ vγi , we create a boolean vari-
able ρi representing the satisfaction of γi. For
each clause c obtained in the transformation of
Φ ↔ vi into clauses, c ∨ ρi is added as a hard
clause and ¬ρi is a soft clause with the associated
weight wi = 2‖Γ‖−i.

The model returned by a MaxSAT solver on the set of
hard and soft clauses above encodes the selected state
at the current time step.

4 Deadlocks
Our approach suffers from limitations similar to that of
[Grastien et al., 2009], namely that due to its incremen-
tal and non exhaustive implementation, the diagnoser
can choose a wrong explanation in the execution path,
and return non preferred diagnoses, or no diagnosis at
all (deadlock).

Definition 9 (Deadlock). Let obs = (o0, . . . ok) be a
sequence of observations. The procedure deadlocks at
step k if and only if it can select a state for obs[k − 1]
(or k = 0) but there exists no selected state for obs[k].

Example 6. We consider the following sets of vari-
ables: V = {a, x, pre(x)}}, O = {a}, D = {x} and
T = VhasPre = {x}. ∆ = {¬a→ ¬pre(x)} means that a
can only be observed when x held at the precedent time
step, while the observation a can occur in any state.
Γ = {> : x ≺ x} represents the preference for diagnosis
x over x . We suppose that s0 = axpre(x ).

Let’s consider the sequence of observations obs =
{a, a, a}. The procedure selects s1 = axpre(x ) for
obs[1] and thus cannot select a state for obs[2]. More
precisely, s1 is the selected state at time step 1, the
transmitted assignment is t1 = x . Thus, a selected state
s2 must verify (1) s2 � ¬a, (2) there exists s′1 such that



s′1 � a (observations), s′1 � x (transmitted variables),
s′1(x) = s2(pre(x)) (consistency for variables of VhasPre)
and s2 � ¬a → ¬pre(x) (consistency with ∆). Such a
state does not exist.

A deadlock can occur for two reasons: the observa-
tion at time step k is inconsistent with the model, or
at some point in the past, the diagnoser has selected a
state that is not the true system state, and that cannot
explain the ulterior observations, as illustrated in Ex-
ample 6. Possible means of mitigation are backtracking,
increasing the diagnoser’s memory, and resetting the
diagnoser’s state. A comparison of these techniques is
beyond the scope of this paper, we discuss here how the
content of the T set impacts the diagnoser’s deadlock
behaviour.

4.1 Handling deadlocks

First, let us assume that T = VhasPre. In this case,
the diagnoser keeps all the information from the previ-
ous state, and is certain to return a preferred diagnosis
as of Definition 7. The drawback is that the diagnoser
cannot correct a wrong branching choice made at a pre-
vious time step, and it is likely to deadlock.

Proposition 1. Assuming T = VhasPre, let obs =
(o0, . . . , ok) be a sequence of observations. If there ex-
ists a sequence of states (s0, . . . , sk) such that for all
i ∈ [0 . . k], si is a selected state for obs[i], then this
sequence is a preferred explanation for obs.

Sketch of proof (by induction). The proposition is
obvious for k = 0. If we suppose that this property is
true for k − 1, then transmitted variables at time step
k come from the state sk−1 of a preferred explanation
(s0, . . . , sk−1). From Definition 8, the selected state sk,
if it exists, is maximal for <Γ and is consistent with
the selected state sk−1. That makes (s0, . . . , sk−1, sk)
a preferred explanation. �

In Example 6, T = VhasPre ensures stability and con-
sistency of diagnoses but is very deadlock prone.

Second, we consider the other extreme case where
T = ∅. In this case, the diagnoser is allowed to modify
the assignments to the variables made at previous time
steps and can correct a wrong branching choice. If the
procedure deadlocks with T = ∅, this means that there
is some inconsistency in the model of the system: there
exists no diagnosis consistent with the observations and
the model.

Proposition 2. Assuming T = ∅, let obs be a sequence
of observations. If the procedure deadlocks for obs then
there exists no diagnosis for obs.

Sketch of proof The existence of a diagnosis means
that there exists an explanation, thus a preferred ex-
planation (α0, . . . , αk). This explanation is such that
αk|O = ok, αk−1|O = ok−1, αk−1 ∆−→αk and αk is maxi-
mal for ≺Γ. This means that αk should be selected by
the procedure. �

However, assuming T = ∅ can also let the diagnoser
introduce spurious explanations. This is illustrated in
the following example.

Example 7. We reuse the system model from example
6, and assume now that T = ∅. s1 = axpre(x ) is se-

lected for obs[1] and s2 = axpre(x ) is selected for obs[2].
Note that (s0, s1, s2) is not an explanation as s1 and s2

are not consistent successors by ∆ but (s0, s
′
1, s2),where

s′1 = axpre(x ), is an explanation.
We now suppose that a is observed at time step 1.

This observation is not consistent with the model of the
system and the initial state s0. However, the procedure
does not deadlock and selects state s1 = axpre(x ). A
spurious diagnosis has been produced.

A possible compromise is to use T = VhasPre until we
have a deadlock, and temporarily set T = ∅ only upon
deadlock, which produces an approach similar to the
state reset described in [Grastien et al., 2009]. Another
option is to introduce “model correctness” variables in
∆ that trigger the transition relation constraints, in a
modeling style similar to [Reiter, 1987]. This makes
it possible to express conditional preferences on these
additional variables.

4.2 Predicting deadlocks
Rather than handling deadlocks online, another ap-
proach is to anticipate their existence, and prevent
them by modifying the diagnosis model. A wide
range of checks is relevant to the deadlock problem:
check that the diagnoser accepts all the observation se-
quences generated by ∆, the finite trackability check
from [Grastien et al., 2009], correctness checks that en-
sure the diagnoser is wrong during a bounded window.
A non trivial task is to differentiate deadlocks due to
the diagnoser choosing a wrong branch, from those due
to an observation sequence inconsistent with ∆. All
these checks are closely related to the diagnosis stabil-
ity check and are beyond the scope of this paper, and
left for future work. Approaches such as the twin plant
[Zaytoon and Lafortune, 2013] may apply.

5 Conclusion
Modeling intermittent faults is considerably more com-
plicated than permanent faults, and requires the use of
customized observers. The diagnosis task is also made
difficult due to phenomena such as instability that are
not documented in the literature. We presented a mod-
eling approach that introduces conditional diagnosis
preferences for selecting a unique diagnosis among a
set of candidates, as opposed to pure evidence based
reasoning.

This work requires some effort before reaching ma-
turity: formal definitions for stability, conditions for
bounded diagnosability, comparison of compilation
techniques and incremental evaluation approaches are
currently being studied. However, we release funda-
mental assumptions about the diagnosis process that
we have found to be crippling in previous studies, and
we are confident that this approach will open a new
range of application domains.

This work can be extended in several directions:
the preference specification language can be enriched,
other encodings for lexicographic optimization criteria
could be used [Marques-Silva et al., 2011], and group
MaxSAT encodings [Heras et al., 2012] are also appli-
cable to our approach.
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