Using Constraint Networks on Timelines
to Model and Solve Planning and Scheduling Problems

Cédric Pralet and Gerard Verfaillie
ONERA, Centre de Toulouse, DCSD
2 av. Edouard Belin
31400 Toulouse, France
cedric.pralet,gerard.verfaillie@onera.fr

Abstract

In the last decades, there has been an increasing interest in
the connection between planning and constraint program-
ming. Several approaches were used, leading to different
forms of combination between the two domains. In this paper,
we present a new framework, called Constraint Network on
Timelines (CNT), to model and solve planning and schedul-
ing problems. Basically, CNTs are a kind of dynamic CSPs,
enhanced with special variables called dimension variables
representing the initially unknown number of steps in a valid
or optimal plan. We also present an algorithm and experimen-
tal results showing that the expressiveness of CNTs allows
efficient models to be developed, and can lead to significant
gains on problems taken from planning competitions.

Introduction

In the last decades, there has been an increasing interest in
the connection between planning and Constraint Program-

ming (CP). As already recognized in (Nareyaial. 2005),
this interest has led to three main kinds of combination be-
tween planning and CP.

1. CP can be used as a plug-in to solve efficiently subprob-
lems generated during planning. This plug-in approach
allows existing planners to be enhanced with CP tech-
niques but does not exploit all the capabilities of CP.

2. In approaches inspired from (Kautz & Selman 1992),
such as CPlan| (van Beek & Chen 1999) or GP-CSP
(Do & Kambhampati 2001), a CSP (Constraint Satis-
faction Problem (Dechter 2003)) or a dynamic CSP
(Mittal & Falkenhainer 1990) is built to solve the plan-
ning problem over a fixed horizdn which is incremented
if no plan is found. The size-bounded CSPs constructed
are obtained from planning graphs (Blum & Furst 1997)

or directly from STRIPS or PDDL representations
(Fikes & Nilsson 1971; McDermott 1998). They contain

variables representing the state and the actions at each

step: € [1..k], and constraints specifying the initial and
goal states, action preconditions, and action effectselOth

constraints may be added manually. This approach can be

very efficient but as all variables are duplicated at each
step, the CSPs built can become too large.

Copyright(©) 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

3. Other approaches tackle planning problems as a kind of
dynamic CSP without fixing the horizon. This includes
planners likeCPT (Vidal & Geffner 2006), which repre-
sents the planning problem by a set of temporal variables
associated with actions and action preconditions, and by
a set of temporal constraints. The associated CSP is di-
rectly obtained from PDDL descriptions. It is dynamic
in the sense that at each step of the search, variables
and constraints are active or not. (Nareyek 2001) pro-
poses another approach, which involves a CSP with a dy-
namic and constrained graphical structure. Another ex-
ample is Constraint-based Attribute and Interval Planning
(Frank & bnson 2003), whose principle is to add to a cur-
rent incomplete plan so-called intervals. The latter repre
sent that some predicate holds over a timeglot.], and
must satisfy some compatibility constraints.

In this paper, we propose a new generic constraint-based
approach to model and solve planning and scheduling prob-
lems. This approach, calledonstraint Network on Time-
lines (CNT), is included in the third category but covers all
approaches in the second one. A CNT is a kind of dynamic
CSP, in which the dynamic aspect comes from the explicit
presence oflimension variablesepresenting the possibly
unknown number of steps in the plans sought. The presen-
tation here differs from the first version of CNTs introduced
in (Verfaillie, Pralet, & Lemitre 2008). The paper is orga-
nized as follows. We first present the CNT framework and
compare it with existing approaches. The different modglin
capabilities of CNTs are illustrated on some planning prob-
lem examples taken from international planning competi-
tions (IPCs). We then present an algorithm to seek for plans
and optimal plans from CNT representations, highlighting
the special role of dimension variables. Last, we give ex-
perimental results on IPC problems, showing that using the
modeling capabilities and the expressiveness of CNTs can
lead to significant gains in computation time. In particular
some problems unsolved by existing optimal planners are
solved optimally in a few seconds.

Constraint Networks on Timelines

In the following, [a..b] denotes the set of integers between
andb, and given a variable, d(x) denotes its domain of val-
ues. In order to illustrate the CNT framework, we consider
a space application example (Pralet & Verfaillie 2008).

A satellite must download a set &f, observations down
to Earth over a time perioflSTA, END]. Over this time
period, it goes through a s¢fSE, FEL|, k € [1..Ng]|} of
N eclipse periods, and a gDy, EDy], k € [1..Np|} of
Np station visibility windows, during each of which a block
of observations can be downloaded. Downloading observa-
tion o € [1..No] takes a duratioD,. At any time, the level
of energy available on board is somewhere betwé&m.n
and ENmaz. Its evolution depends on the powgy; con-
sumed by downloads, the powEr,; consumed by the plat-
form, and the poweP,,; produced by solar panels when the
satellite is not in eclipse. The goal is to download all obser
vations while respecting energy limitations. The initelél
of energy, attimeST4, is denotedtNinit.

To model this problem, we can first define a set of “clas-
sical” variables: for each observation we introduce one
variablend,, of domaind(nd,) = [0..Np] to represent the
index k& of the download slot during which observations
downloaded (valu@ if o is not downloaded), and for each
download slot index: € [1..Np], we introduce variables
sdy, andedy,, of domaind(sdy) = d(edy) = [SDy, EDy] to
represent respectively the start and end times of the down-
load occurring during download slét To model the evolu-
tion of the energy level without fixing the number of steps
in this evolution, we need to introduce a set of varialeles
whose cardinality is unknown. This will be possible in the
CNT framework thanks to the notion of timeline.

Definition 1 (Timeline) A timelinet! is a pair t
(d(tl), h(tl)) whered(tl) is a set of values and(tl) is a

variable whose domain of valu@éh(tl)) is included inN.

d(tl) is called the domain ofl and h(tl) its dimension (di-
mension is denoteld like horizon).

Definition 2 (Variables associated with a timeline) Given
an assignmend of h(tl), a timelinetl = (d(tl), h(tl)) de-
fines a finite set of variableg (t1, A) = {tl;|i € [1..A]},
whose domain of valuesd$tl;) = d(tl). This setis empty if
h(tl) takes valu@). In order to distinguish variables defined
by a timeline from classical variables, variableslit{t, A)
are called timeline-variables, or more shorthvariables

The maximal set of t-variables which may be defined by
atimeline is{tl; | i € [1..max(d(h(tl)))]}. This set can be
infinite if d(h(¢l)) is not bounded. Among t-variables in this
set, the ones ifitl; | i € [1..min(d(h(tl)))]} aremandatory
because they exist whatever the timeline dimension is.

Definition 3 (Assignment of a set of timelines) LEtbe
a set of timelines. An assignmeatof 7' is the union of
an assignmentdy of all the dimension variables of the
timelines inT", and of an assignmem, of all t-variables
in UyerV (tl, A [h(t1)]), where A [h(tl)] denotes the as-
signment ofu(tl) in Ag.

Let us illustrate these notions on the satellite example.
We can first introduce one dimension variahlef domain
d(h) = [1..00] to represent the number of important steps
in the evolution of the level of energy. We use four time-
lines,t = ([STA, END], h), en = ([ENmin, ENmaz], h),
ec = ({0,1},h), anddl = ({0,1}, h), to represent respec-
tively the time associated with each step, the current lefvel

energy, the current eclipse status, and the current dodnloa
status. Given an assignmetof i, these timelines induce
a set of t-variableqtl; |tl € {t,en,ec,dl},i € [1..A]},
wheretl; represents the value dfat stepi. A tabular repre-
sentation of an assignment of the different timelines igigiv
below. The first column means thatiat = 0, the energy
level isen, = 300, the satellite is in eclipse¢; = 1), and
no download is performedi{; = 0). At step2, att, = 30,
the energy level has decreasec:tg = 270, and a down-
load is triggereddls = 1). The download ends at = 48
(dls = 0). Atty = 150, the satellite is not is eclipse any-
more ecy = 0). And so on until stef = 8.

1 2 3 4 5 6 7 8
t 0 30 | 48 | 150 | 235 | 248 | 272 | 350
en | 300 | 270 | 216 | 114 | 284 | 271 | 223 | 145
ec | 1 1 1 0 0 1 1 1
dl 0 1 0 0 1 1 0 0

Variables defined by timelines must usually satisfy some
constraints. We therefore introduce the notion of constrai
on timelines.

Definition 4 (Constraint) A classical CSP constraiatis
defined by a paifS(c), R(c)) whereS(c) (the scope of)

is the finite set of variables over which the constraint hplds
and R(c) (the relation associated with) is any explicit or
implicit representation of the set of allowed combinatiohs
values of the variables if(c).

Definition 5 (Constraint on timelines) A constraint on time-
lines is a triplec = (Sv (c), Sr(c), fet(c)) whereSy () is

a finite set of variablesSy(c) is a finite set of timelines,
and fct(c) is a function which associates a finite set of CSP
constraints with each assignmeatof the dimension vari-
ables of the timelines if7(¢). It is moreover assumed that
the scope of each of the CSP constraintgin(c)(A) is in-
cluded inSy (c) U {tl; | tl € Sr(c),i € [1..A[h(t])]]}.

Given a timelinet/ and a variable:, an example of con-
straint on timelines ig : Vi € [1.A(t]) — 1],tl;iy1 # = +
tl;. Implicitly, ¢ is the triple(Sy (c), St (c), fct(c)) where
Sy (e) = {z}, Sr(c) = {tl}, and fet(c) is the function
which associates, with each assignmdnof A(tl), the set
of CSP constraint§tl; 1 # x+tl; | i € [1..A—1]}. Another
example of constraint on timelines i3i € [2..h(¢])], tl; =
0. It corresponds to the triplez, {tl}, fct), wherefct asso-
ciates, with each assignmeatof i (tl), the CSP constraint
Ji € [2..A],tl; = 0. In order to impose conditions on the
final state of a timeline, constraints of the fotfy ;) = ¢
can be considered. They associate, with each assignient
of h(tl), the CSP constrainf, = g. We can also define
constraints likealldifferent({tl;|¢ € [1..h]}), which im-
plicitly associates with each assignmehof h the classical
CSP constraintlidifferent({tl; |i € [1..A]}). Such con-
straints, usually called global constraints because tlody h
on a large number of variables, are interesting because they
can be handled by dedicated powerful inference algorithms
available in constraint programming tools.

To be more concrete, the satellite problem can be modeled
by constraintgy)torcg listed below. Constraint; defines the
initial state. Constraimiz/defines the end time of a download

as its start time plus its duration. Constrajgisandc, de-
fine respectively when the satellite is in an eclipse/doadlo
statejcs; defines the evolution of the level of energy, agd
asserts that the timg; of stepi 4+ 1 is the minimum of

all important time points strictly greater than Last,c;
defines a condition on the final state @gdlefines the prob-
lem goal. Note that the domain of values associated with
timelines also enforce constraints: e.g., the domain of val
uesd(en) = [ENmin, ENmax] of timeline en imposes a
constraint on the minimum level of energy.

(ty = STA) A (eny = ENinit) (c1)
Vk € [1..Npl,ed, = sdi + 3 oc 1 no) | ndy=k Do (c2)
Vi € [1..h],
(eci = 1) — (Hk S [1..NE], SEk <t < EEk) (63)
(dli = 1) > (ﬂk S [1..ND],Sdk <t < edk) (04)
Vie[l.h—1],
en;+1 = min(ENmaz,en; + (tiy1 —t;) - P) (c5)
with P = (1 — ec;) - Psor — dl; - Pay — Psat
tig1 = min{t ceTpUTpU {END} |t > ti} (c6)
with Tp = Uke[luND],sdk<edk{Sdk’ edk}
andTg = Uke[luNE]{SEkv EE}
tn = END (c7)
Yo € [1..No],nd, # 0 (cs)

All notions defined previously are assembled in the notion
of constraint network on timeling€NT).

Definition 6 (Constraint network on timelines) A constraint
network on timelinesnt is a tuplecnt = (V,Cy, T, Cr),
whereV is a finite set of variablesC'y is a finite set of
constraints whose scopes are included’inT’ is a finite set
of timelines whose dimensions are included/inand C

is a finite set of constraints on timelinéSy, St, fct) such
thatSy c VandSy C T.

The satellite download problem can be modeled by the
CNT (V,Cv,T,Cr), whereV = {nd,|o € [1..No|} U
(Uke[l..ND]{Sdlwedk}) U {h}, CV = {CQ,CS}, T =
{t,en,ec,dl}, andCr = {c1,c3,c4,¢5,c6,c7}. The fol-
lowing figure gives a partial illustration of this CNT.

v T

)t |t | 3]ty ls‘lﬁ

en

eny | eny |eng|eny | ens | eng

ec|eci |ecy |ecs|ecy|ecs|ecs

di | dly | dly | dl3|dly

dls ‘ dls

o e Cy cy € Cr

Among the various problems which can be formulated on
CNTs, a useful one is to seek for a consistent assignment:

Definition 7 (Consistent assignment of a CNT) A consistent
assignment (a solution) of a constraint network on timedine
ent = (V,Cy,T,Cr) is an assignment of the variables in
V" and of the timelines ifi’ such that all CSP constraints in
Cy and all CSP constraints induced by the constraints on
timelines inCr and the assignment &f are satisfied.

It is important to note that the CNT framework is not in-
cluded in the second kind of approach mentioned in the in-
troduction. Indeed, we do not consider the planning problem
over a fixed horizon, since dimension variables are actual
variables on which constraints can be enforced and prop-
agated. For example, consider a CNT containing one di-
mension variablé of domaind(h) = [1..0c], one timeline
x = ({0..2},h), and three constraints; = 0, z, = 2,
andVvi € [1.h — 1], z;4+1 — x; < 1. Constraint propaga-
tion techniques can remove valligrom the domain ofh,
since ifh = 1, thenx;,, = 2 andz; = 0 are not compati-
ble. Asd(h) becomes2..cc], constraintcs — z; < 1 must
be satisfied. Asc; = 0, constraint propagation can infer
d(x2) = {0,1}, which in turn allows valué to be removed
from d(h). Therefore, constraints can be propagated in any
direction and dimension variables will not necessarily e a
signed first. Another useful feature of CNTs is the explicit
presence of classical variables (outside timelines), whic
can model static features such as the choice of a download
slot for a given observation. Last, CNTs can be easily ex-
tended to soft CNTs by replacing constraints by soft con-
straints, in order to model problems involving preferences
such as the minimization efird{o € [1..No] | nd, = 0} if
downloading all observations is not possible.

Comparison with Existing Modeling
Frameworks and Extensions

The CNT framework is a kind of dynamic CSP, except that
in CNTs, the number of potential variables may be un-
bounded, if the domain of a dimension variable is infinite.
The interest of this “infinite” feature is that it makes it pos
sible to model and solve, in a CSP-like way, planning prob-
lems over an initially unknown and unbounded horizon, or
validation problems over an unbounded future. In dynamic
CSPs, the number of potential variables and constraints is fi
nite: variables are divided into a set of mandatory varigble
and a set of optional ones, and constraints are divided into a
set of classical constraints and a set of activation coinss;a
which define when optional variables become active. Con-
straints are active only if their variables are active ton. |
CNTs, we do not explicitly define activation constraints:
constraints are active depending on the domain of values of
dimension variables. Another contribution of CNTSs is that
they explicitly identify the special role played by dimen-
sion variables in planning and scheduling problems. They
allow global constraints which hold on a variable number of
variables, such aglidifferent(x;,i € [1..h]), to be defined,
whereas in dynamic CSPs, the scope of each constraint must
be fixed before the resolution.

Compared to approaches completely integrating planning
into constraint programming (third class given in the intro
duction), CNTs are built directly over variables and con-
straints, and not over more general entities such as in-
tervals or structural constraints. This allows CNTs to
be very generic, since any kind of constraint can be de-
fined to model particular features of a real-world prob-
lem, such as global constraints or constraints involving
both variables and t-variables. The generic aspect of

CNTs also holds since they were proved to cover many
frameworks used to model discrete event dynamic systems fﬁj T
(Verfaillie, Pralet, & Lemétre 2008), such as automata, syn- i ‘ :
chronized products of automata, timed automata, STRIPS ‘
planning, Petri nets, resource-constrained project sdhed th +—— 1 _
ing, or temporal constraint networks. — ! R i
However, defining models directly over variables and con- ' ? : x !
straints can be harder and less intuitive than with PDDL. In val(tl, z) = tls
fact, higher level entities may be needed by modelers. These Figure 1: Semantics of a piecewise constant timeline and
higher level entities can be easily added to the naturally ex jllustration of intermediate variablesil(tl,).
tensible CNT framework, as shown below. The simultane-
ous presence of basic and high level entities in CNTs is not
contradictory: it exactly fits the CSP approach, where basic
and global constraints coexist.

Other Modeling Examples

Before defining algorithms, let us show the modeling capa-
Time reference of a timeline Some timelines can be of Pilities of CNTs on some problems from International Plan-
typetime. Timelines of type time must have a domain of val- Ning Competitions (IPCs). For each problem, different mod-
ues included irR and must satisfyi € [1..h(tl) — 1], tl; < els can be _deflned. As in CSPs, finding a good model may
tl;+1. With a timelinet/ can be associated at most one time- not b(.a.str@ghtforward. The models we present makg some
line of type time, called théme referencef ¢1. If the time simplifications compared to the actual IPC formulatidins;
reference oftl is ¢, thentl; represents the value of at the experiments, we do not make such simplifications

time ¢;. Moreover, we assume thaftl) = h(¢) and that
(ti =t;) — (tl; = tl;), meaning that a timeline cannottake pomain Blocksworld (IPC2) In order to model a

two different values at the same instant. BlocksWorld problem withN blocks, we use one dimen-
Also, it is sometimes useful to add variabtésrepresent- sion variablé: of domaind(h) = [0..2N] (2N can be shown

ing the |n|t|al State of atlmellne In this case, the timelin to be an upper bound on the Opt|ma| makespan), and three

said to be arnitialized timeline timelines, move = ([1..N], %), from = ([0..N],h), and

to = ([0..N], k), to represent respectively the block moved
Timeline evolution types An evolution type can be asso- at stepi, the block from which it is taken((if the block is

ciated with each timeling whose time reference is not null. taken from the table), and the block on which it is put 6n (
The evolution of a timeline ipiecewise constaiiftthe time- if the block is put on the table). For every blogkwe use
line represents system features that do not change betweerfimelinestop, = ([0..N],) andontable, = ({0,1},4) to

two steps. In this case, if the time referenceio ¢, then represent the state éfat each step. The constraints intro-
tl; represents the value taken by timelitidrom time¢; to duced define the initial and goal states, preconditions en de

time ¢;,1, ime t;; excluded. The evolution of a timeline cisions, effects of actions, and conditions of changesuf
can also bepiecewise lineaif the timeline represents fea- ~ andontable. But unlike with approaches like CPlan, the

tures that evolve linearly between two stepsdiscreteif horizonh is not fixed initially. The expression of constraints
the timeline represents features that have no value betweenis compact thanks to the variable-based decomposition of
two steps. actions into timelinesnove from, andto. This differs from

the action-based view of STRIPS or PDDL. We also use a
CSP constraint known asgobal cardinality constrainto
impose that each block can be moved at most twice (any plan
in which a block is moved more than twice is not optimal).
Last, we use constraints forcing some necessary moves to be
done, and constraints breaking symmetric solutions.

Important intermediate variables Given a timelinetl
whose time reference tsand given a variable whose do-
main is included inR, we can define intermediate variable
val(tl, z) to represent the value of timelinéat timez. If

tl has a piecewise constant evolution, thed(t/, z) = tl;
with j = max(j € [1..h(t])] |t; < z) if this quantity exists,
val(tl,) undefined otherwise. This definition is illustrated Domain Satellite (IPC3) A set of Ng satellites must take
by Figure 1. Similarly, we can define intermediate variable a set ofN; images. Each imagen has a directiorD (im).

valb(tl, x) to represent the value of timelirté just before With each satellites are associated a set of observation in-
timex (x excluded). Ift/ has a piecewise constant evolution, struments/N ;, an instrumentf NI, calibrated initially, and
thenvalb(tl,) = tl; with j = max(j € [1..h(t])] | t; < z) an initial pointing directionDII . It is possible to compute

if this quantity existspalb(tl,) undefined otherwise. For a predicateSUPPORTS (im,in) which holds if imagem
timelines whose evolution is piecewise linear or discrete, can be performed with instrumefnt. The duration needed
val(tl, =) andvalb(tl,) are defined differently. to take a picture in a directiod’ with instrumentn’, start-

All these variables can be handled automatically in an ef- ing from a directiondi with instrumentin calibrated, is de-
ficient way, with dedicated global constraints on timelines noted DU (di, in,di’,in’). It takes into account the neces-
hidden to the modeler, so that (s)he can directly use quanti- sity to calibratein’ if in’ # in. We denote byD Umin the
tiesval(tl, x) or valb(tl, x) to express constraints. minimum value of functiolD U ().

To model this problem, we use one dimension varidhle
of domain[0..N;] per satellites. h, represents the num-
ber of images taken by. Timelinesims = ([1..N;], hs),
ing (INg, hy), dis ({DI(im),im € [1..N/]} U
{DII}, hs), andts = ([0..Tmax], hs) represent respec-
tively images taken by, associated instruments, associated
directions, and the times when images are finished. Time-
lines ing, dirs, ts are initialized, so that variables:, o,
dirs o, ts0 can be used. A variable denoteehd repre-
sents the total duration needed to take all pictures. Differ
ent constraints are defined. Constraiggsandic;, ensure

that each image is taken exactly once, which prunes subop-

timal solutions. Constrairt;; defines the initial state. Con-
straintcz| imposes feasibility constraints on the decisions.
Constraints:; 3 andcy4 describe the evolution of directions
and times. Constraimis is redundant but crucial for the
algorithmic efficiency. Constrairtg) definestend as the
makespan, which must be minimized.

> seqt..ng) s = NI (co)
alldifferent({ims,; | s € [1..Ng],i € [1..hs]}) (c10)
Vs € [1..Ng],

(dZ’S’U = DIIS) N (ins’o = INIS) A\ (ts’o = 0) (011)
Vs € [1..Ng],Vi € [1..h],

SUPPORTS (ims i, ins.;) (c12)

dis; = DI(ims ;) (c13)

toi=tsi—1+DU(disi—1,insi—1,dis;,ins;) (C14)
tend >ty ; + (hs — i) - DUmin (c15)
tend = maxge(1. Ng) ts,h, (c16)

Domain Trucks (IPC5) The modeling of this domain
shows how useful intermediate variables!(¢/,z) and
valb(tl, z) are. Domain Trucks involves a set of packages
P and a set of truckg'. Each truckr € T, initially located

at a locationlLI -, has a limited capacity and can load/unload
packages, and drive between locations. Each pagkag®
must be transfered from an initial locatidi,, to a goal lo-
cationLG),. Actions have durations and the goal is to mini-
mize the makespan. In the sequel, we omit quantification on
7 andp in the expression of constraints.

For each truck-, we use one dimension variabie rep-
resenting the number of actions performedyand a set
of timelines{t,, a,,p,l-,n,} of dimensionh.. For each
i € [1..h;], a,; represents the action made byat stepi
(load, unload, or drive), ; is the package concerned by the
action (if any) . ; is the start time of the action, angd; and
n.,; are the location of and the number of packagesrirat
the end of the action. Timeline is the time reference af.
andp... For each package we use one dimension variable
h,, and two timelineqt,, I, } of dimensiom,,. For each step
J € [1..hy], I, ; represents the location pfat timet,, ;. We
consider that the locatioly ; can also be a truck. Timeline
t, is the time reference df,. All timelines have a discrete
evolution except frond,, whose evolution is considered to
be piecewise constant. Timelings (., t,,(, are initialized.

Constraintsci7] tojca7 are imposed over these timelines.
For examplejcz; defines the evolution of the number of

packages in a truck. If a package is loaded by a truck, it
must be at the same location as the truck just before the start
of the loading¢zz). If a package is unloaded by a truck, it is
at the same location as the truck at the end of the unloading
(c23). If a package is in a truck, then it has just been loaded
and will be unloaded at the next step4 in this constraint,
DU denotes the duration of an unloading). In fact, from the
start of the loading to just before the end of the unloading,
the package is considered to be in the trugk. defines the
makespan, ands; asserts both that a package must be at its
goal location at the end and that when it is at its goal loca-
tion, then its associated timeline is over.

(tro=tpo=0)A(lr0=LI;)A(lpo=LI,) (c17)
tri > tri—1 + duration(ar g, lri—1,lr;) (c18)
(pri = 0) « (ar; = drive) (c19)
(Ir;i # lri—1) < (ar; = drive) (c20)
Nri=nri—1+ f(ar) (c21)

with f(load) = 1, f(unload) = =1, f(drive) =0
(04—77; = load) — ((’U(llb(lpti, t’r7i) = 7—’1‘,1) (622)
Awal(ly, ,, tri) =T))
(ar; = unload) — ((valb(l, ,,tr; +DU)=7) (c23)
/\(val(lpm, tri + DU) = l-,—’i))

)

(lp; =7)— ((val(ar,tp ;) = load) (c24)
A(val(p, . bng) = p)
ANwal(ar, t, j4+1 — DU) = unload)
Aal(ar, tp,j+1 — DU) = p))
(pj €T) < (lpjr1 ¢T) (c25)
tend = maxpe(1. Np] tp,h, (c26)
(Ipj = LGp) < (j = hyp) (c27)

Other constraints are added to get a more efficient model.
For examplegas)prevents a package from being at the same
place at two different steps, amgh)is a transition constraint
pruning suboptimal choices from the search space.

alldifferent(l,, ; | j € [0..h,)) (c28)
(ar; = load) — (ar 41 # unload) (c29)

A Dynamic Depth-First Tree Search Using
Constraint Propagation for CNTs

The algorithm presented is a standard depth-first treefsearc
using constraint propagation, enhanced with an extension
phase that inserts new variables and constraints whenever
the minimum value in the domain of a dimension variable is
modified. This extension phase is combined with constraint
propagation, which can generate value removals, which can
in turn trigger a new extension phase, and so on until a fixed
point is reached. The interest of constraint propagation is
to simplify the current problem by pruning inconsistent-val
ues or tuples of values. The algorithm, caltBehDFS takes

as input a CNT(V, Cy, T, Cr). Itis directly defined in an
optimization context, that is we assume that there exists an
objective variable denotech; whose value must be mini-
mized. If the algorithm terminates, it returns an optimal an
consistent CNT assignment if there exists one, and null oth-
erwise. The main steps of the algorithm are detailed below.

(R1) propagatéV, Cy/) transforms the CSRV,Cy) into an

(R2) extendV,Cy,T,Cp, Ay)

Function dynPropagate During search, a current CSP
(V,Cy) is maintained (' is the set of variables ar@y, the

Algorithm 1: dynDFS, a dynamic depth-first tree search
using constraint programming.

set of constraints). The iterative extension and propagati 1
phases are performed by functidynPropagateWhile con- 5
straints need to be propagated and while the current CSP is ,
not known to be inconsistent (lihe 30), constraints are prop ,
agated with functiopropagateg(line'32). The CSP obtained 5
after constraint propagation may then be extended by gallin 6
extendV, Cy, T, Cr, Ay) (line[33). In this call, Ay corre- 7
sponds to the previous minimal assignment of the dimension s
variables. Functionpropagateand extendare assumed to
satisfy requirements R1 and R2 respectively: 10
11

equivalent CSRV', C,)* by enforcing at leagtackward 2

checking(Dechter 2003); this means that(i’, C{,), all
constraints whose scope is fully assigned are satisfied,;
returns a pair (V',Cy,)
such that CNTs(V,Cy,T,Cr) and (V',C{,,T,Cr)
are equivalent, and such that, for every constraint
(Sv, ST, fct) € Cr for which there is a unique possible
assignment for the dimension variables of timelines in
Sr, Cy, containsfct(A).

To satisfy requirement (R1propagatecan be any stan- 23
dard constraint propagation scheme, such as forward check-24
ing, arc consistency, or path consistency (Dechter 2003). ,.
Requirement (R2) can be fulfilled in different ways. The
laziest version ofextendconsists in generating constraints
only when all dimension variables are assigned. The ap- 2/
proach we use in the experiments is still lazy, but more in-
cremental: wherextendV,Cy,T,Cr, Ay) is called, it is
possible to compard 7, the previous minimum assignment 3,
of the dimension variables, andl;;, the current minimum 32
assignment of the dimension variables, and to add the set ofs3
t-variables{tl; | tl € T,i € [Ag[h(tl)] + 1..A%;[h(t])]] to 34
V. The way constraints are addedip depends onthetype 35
of constraint considered. For example,

e for a constraint such agi € [1..h(t])],¢; # x, func-

29
30

36

dynDFSV, Cv, T, Cr)

begin
A — {(h(t]),0)|tl € T}
(Vv, Cv) — eztend(V, Cv, T7 CT, AH)
(V,Cv) « dynPropagate(V,Cv, T, Cr)
if Vo € V,d(z) # @ then
| return recDynDFS(V,Cv,T,Cr)

else return null
end

recDynDF]V, Cyv, T, Cr)
begin
if Vo € V, card(d(x)) = 1 then
| return {(z,a) |z € V,a € d(z)}
else
Chooser € V s.t. cardd(z)) > 1
Choose a partitiof D1, D2} of d(x)
(A, opt) — (null,4+00)
foreachk € {1,2} do
(V',Cy) « (V,Cv U {obj < opt})
d’(m) — Dk
(V',CY) < dynPropagate(V',Cy,, T, Cr)
if Vo € V', d'(z) # @ then
A" — recDynDFS(V',Cy,, T, Cr)
if A"+ nullthen (A,opt) « (A’, A’[obj])

L return A
end

dynPropagatéV, Cv, T, Cr)

8 begin

b «— true

while b A (Vz € V, d(z) # @) do
A — {(h(tl), min(d(h(t])))) | tl € T}
(V,Cv) « propagate(V, Cv)
(V',Cy) < extend(V,Cv,T,Cr, An)
if (V',Cy) # (V,Cyv) then
| (b,V,Cv) « (true,V',CY)

return (V,Cv)
end

tion extendcan add the set of constrainfsl; # z|i €
[Ag[h(t])] + 1..A%[h(t])]] to Cy;

e a constraint likealldifferent(¢/; |« € [1..h(tl)]) can gen- if it exists, andnull otherwise. If there is a unique possi-
erate constraintlldifferent(tl; [i < [1..A%[h(tl)]]) if ble assignment o¥/, this assignment is returned (lifles 12-

Ap[h(tl)] # Ay [h(t])]. [13). Otherwise, the algorithm chooses a variable V' not

In fact, constraints can be added as soon as they must nec-2ssigned yet and builds a partition of the domainzpfc-
essarily be satisfied. The design of specialized schemes for cording to some heuristics (lines 15-16). The two search
function extendfor a constraint on timelinegSy, Sy, fct) subspaces defined by this partition are then successively
can be highly dependent det and is not discussed here. explored (lines 18 to 24). For each of theracDynDFS

first propagates constraints usidgnPropagateline/21). If

no inconsistency is revealed (line/28¢DynDFSis recur-
sively called (line 23), If a solutionl’ # null is returned, it

is recorded as well as the best value known for the objective.

Functions dynDFS and recDynDFS Given a CNT
(V,Cy, T, Cr), the systematic depth-first tree search is per-
formed by callingdynDFSV, Cy, T, Cr). After an initial
extension/propagation step (lines 4 and 5), functipgnDFS
calls functionrecDynDFSif the initial problem has not been
proved to be inconsistent, and retumsl otherwise.

If it terminatesrecDynDFSV, Cy, T, C) returns an op-
timal consistent assignmeurt of the CNT(V, Cy, T, Cr)

Discussion and properties Algorithm dynDFS is a
generic algorithm which covers several existing approsche
Indeed, approaches reasoning over a sequence of size-
bounded CSPs simply correspond to variable/value choice
heuristics (lines 15 and 16) where all dimension variables

That is, they define the same set of consistent assignments. ~ are assigned first, with their minimal valuedynDFScan

also adopt a strategy where horizons are dynamically incre-

implemented via constraini§Thenh > i,¢;), which ac-

mented during search, when constraint propagation prunestivate constraint; only when guardh > i holds. Other

the minimum value in the domain of dimension variables.
As a result,dynDFSallows several approaches to be com-
pared inside a common framework.

Formal properties oflynDFSare given below. This al-
gorithm is correct but does not necessarily terminate,esinc
it might get trapped in infinite branches of the search space
when the domain of some variable is infinite.

Proposition 1 (Correctness) If functions propagate and ex-
tend satisfy (R1) and (R2), thelynDFSis correct: if it ter-
minates, its result is an optimal consistent assignmeihieif t
CNT considered admits a solution and null otherwise.

Proposition 2 (Termination) If all domains of values are fi-
nite, then dynDFS terminates. If all non-dimension vari-
ables have a finite domain and if the problem admits at
least one solution, then there exist choice heuristicedihs

more efficient implementations of functi@xtendcould be
developed. Several parameter settings were tested for the
choice of the variable to consider at each step: (1) consider
dimension variables first; (2) consider non-dimension-vari
ables first; (3) consider dimension and non-dimension vari-
ables in any order. The results presented for BlocksWorld
and Satellite are obtained with option (3). As a secondary
criterion, we use the standard CSP heuristics that chooses
a variable of minimum domain size. The results presented
for Trucks correspond to option (2), and by considering first
variables having a minimum domain size for non-dimension
variables, and variables having a minimum minimal value
for dimension variables.

We ran our experiments on an AMD Opteron processor,
2.4 GHz, with 1GB RAM, under Linux, with a time limit of
half an hour per problem. We compamryhDFSCNT) with

and 16) such that dynDFS finds a consistent assignment in a the optimal planners awarded at the last planning competi-

finite time. In general, dynDFS does not terminate.

Proposition 3 (Complexity class of CNTs) Deciding
whether there exists a CNT assignment with an objective
value lesser than a given threshaddis (a) NP-complete
for CNTs where all domains of values are finite, (b) semi-
decidable for CNTs such that all non-dimension variables
have a finite domain, and (c) undecidable in general.

Sketch of the proofs: for Prop. 1, the idea is to
prove that if it terminates, dynPropagdié Cy,T,Cr)
returns a couple(V’, Cy{,) such that(V,Cy,T,Cr) and
(V',C{,,T,Cr) are equivalent, and that if it terminates,
recDynDFSV, Cy, T, Cr) returns an optimal consistent
assignment ofV, Cy, T, Cr) if there exists one and null
otherwise. For Propl 2, if all domains of non-dimension
variables are finite, it suffices to use an assignment heuris-
tics that iteratively increments the maximum value that
can be assigned to a dimension variable. For Prop. 3,
checking the consistency of a CNT assignment is poly-
nomial and any finite CSP can be expressed as a CNT,
hence the NP-completeness result; if all non-dimension var
ables have a finite domain, then Prop. 2 implies the semi-
decidability result; for undecidability in general, it was
shown in|(Verfaillie, Pralet, & Leniére 2008) that the halt-

ing problem can be expressed as the problem of finding a
consistent assignment of a CNT.

Experiments

To measure the practical interest of CNTs, we performed
experiments on domains BlocksWorld (IPC2), Satellite
(propositionaland simpletimeversions, IPC3), and Trucks
(propositionalandtemporalversions, IPC5). The first task
was to build CNT representations manually as described pre-
viously. For these domains, the value of dimension vargble
can be bounded while preserving optimality, hedgaDFS
terminates. The goal is to minimize the makespan.

The ideas of CNT andlynDFSare implemented over
Choco (Laburthe 2000), a constraint programming library.
The constraint propagation algorithm used is GAC (Gener-
alized Arc Consistency (Dechter 2003)). Functextendis

tion: MaxPlan, SatPlan, and CBTMaxPlan and SatPlan
can handle propositional domains. CPT can handle both
propositional and temporal domains. Table 1 shows that in
generaldynDFSCNT) performs better than MaxPlan, Sat-
Plan, and CPT. On small-size instancgyDFCNT) can

be slower since, as it contains more information, the ikitia
ization can be longer. On harder instanamDFJCNT)
provides significant gains. Instances of BlocksWorld are
easy fordynDFSCNT) thanks to symmetry breaking con-
straints and to constraints forcing necessary moves to be
done. Instances of Satellite, propositional or tempona, a
solved in a few seconds witthynDFCNT), whereas with
MaxPlan, SatPlan, and CPT, which work on models contain-
ing less information, they are solved only in several misute
or unsolved at all. Trucks appears to be more challenging,
in the sense that the CNT representation speeds search, but
does not modify the intrinsic complexity of the problem. For
unsolved instances, as shown in FiguredgnDFSCNT)

is able to quickly produce solutions whose quality is bet-
ter than the quality of the solution produced by SGPlan, a
heuristic-based planner awarded in IPC5. In fact, for do-
main Trucks,dynDFYCNT) is quite anytime: the optimal
solution is reached quite quickly, and the rest of the time is
dedicated to prove optimality,

Conclusion

In this paper, we presented Constraint Networks on Time-
lines (CNTs), a generic constraint-based framework for
modeling and solving planning and scheduling problems.
This framework is compact and has a clear semantics based
on variables and constraints. A generic dynamic depth-first
tree search algorithm using constraint propagation has bee
developed and tested on several instances taken from plan-
ning competitions. Experimental results have shown the
practical interest of the approach, both compared to exjsti

2For MaxPlan, see http://www.cse.wustl.edahen/maxplan/.
For SatPlan, see http://www.cs.rochester.edtatitz/satplan. For
CPT, see http://lwww.cril.univ-artois.frividal/#cpt. For CPT, we
use CPT1 because CPT2 is not publicly available.

CPU time (sec.) Makespar] 4000 T T T T T T T 12000 T T T T T T T T
MaxPlan SatPlan CPT dynDFS(CNT) sgp?ggl()u':s?rgglgg R 11000 sgp?g;‘?;?ég',\:lg e A
bw-large-a 0.51 0.38 0.14 1.08 (12) 3500 |- 1 10000 i
bw-large-b 4.64 2.36 0.96 2.60 (18) -
bw-large-c 171.19 38.99 56.17 6.94 (28) g 3000 4{ 9000 h
bw-large-d - 455.65 - 15.14 (36) 8 8000 - B
bw-ipc10 0.47 0.24 0.03 0.79 (20) é 2500 k 4 7000 b i
bw-ipc20 - 5.42 407.20 1.48 (32)
bw-ipc30 . 44.28 ; 2.55 (36) 2000 _ll\] eo00 - 1
bw-ipc40 - 183.91 151.33 4.92 (58) 5000 L
bw-ipc50 - - - 8.39 (86) 1500 P 4000 L L T T T T T T T

satellite05-prop 0.56 0.43 0.58 0.52) 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

satellite06-prop 0.32 0.47 0.16 0.54 (8) CPU time (sec.) CPU time (sec.)

satellite07-prop 0.46 0.62 0.40 0.58 (6)

satellite08-prop 25.45 40.73 19.24 1.53 8)

satelite09-prop 176 277 | 161 089 ®) Figure 2: Evolution of the makespan given myn-

satellite10-prop 54.28 | 1658 | 40.83 0.98 ®) DFS(CNT) and comparison with the makespan given by an

satellite11-prop 7.87 12.28 4.40 0.88 (8) h s - .

satellite12-prop 536.40 | 317.72 - 8.85 4) euristic-based planner (SGPlan, which uses FF), on prob-

satellite13-prop 644.82 308.38 - 10.04 (13) _ _ 1

Soteliteia pron oz | 3083 : oo ® lems trucks05-temporal (left) and trucks06-temporalig

trucksO1-prop 0.71 0.53 11.65 1.29 (11)

trucks02-prop 4.49 2.46 - 4.37 (14)

trucks03-prop 30.95 60.74 - 22.66 (16)

trucks04-prop 1163.32 409.21 - 15.61 (18) Refel’ences

trucks05-prop - - - 45.97 (19)

trucks06-prop - - - 463.41 (22) H

trucks07-prop 20074 | 64251 i 178032 (18) [Blum & Furst 1997] Blum, A a_n_d_Furst, M 1997. F_astPIannlng
satellite05-simpletime 121 051 (36) through Plan Graph Analysigrtificial Intelligence90:281-300.

i -simpleti
iiiiulig?ilmﬁ,’.iﬂﬂi 8:52 8_;‘i 2‘;&3 [Dechter 2003] Dechter, R. 20080nstraint Processingviorgan
satellite08-simpletime 1329.60 0.97 (46) Kaufmann.
satellite09-simpletime 3.63 0.87 (34) i)
satellite10-simpletime 875.18 4.50 (43) [Do & Kambhampati 2001] Do, M., and Kambhampati, S. 2001.
el s amrietme 26.82 e s Planning as Constraint Satisfaction: Solving the Planning-Graph

trucksO1-temporal 738 (843.2) by Compiling it into CSP Artificial Intelligencel32(2):151-182.

trucks02-temporal - 6.35 (1711.4) . ; . ; .

trucks03-temporal . 14.60 (1202.6) [Fikes & Nilsson 1971] Flkes,_R.,_and Nilsson, N. 1971_. ST_RIPS.

trucks04-temporal - - 0 a New Approach to the Application of Theorem Provinfytifi-

gﬂz‘gggimggg - - 8 cial Intelligence2(3-4):189-208.

[Frank & Jonson 2003] Frank, J., andbdson, A. 2003.

Table 1: Comparison betweeilynDFSCNT) and some op- Constraint-Based Attribute and Interval Plannin@.onstraints
timal planners, on propositional and temporal domains. 8(4):339-364.

[Kautz & Selman 1992] Kautz, H., and Selman, B. 1992. Plan-
ning as Satisfiability. IfProc. of ECAI-92359-363.

[Laburthe 2000] Laburthe, F., and the OCRE project team. 2000.
CHOCO: Implementing a CP Kernel. Rroc. of CP-00

[McDermott 1998] McDermott, D. 1998. PDDL, the Planning
Domain Definition Language. Technical report.

optimal planners in terms of time to get the optimal solution

and to prove optimality, and compared to heuristic planners
in terms of solution quality. In particular, some problems

unsolved by existing optimal planners are solved in a few))))
seconds with CNTs. In the end, the basic constraint-based [Mittal & Falkenhainer 1990] Mittal, S., and Falkenhainer, B.

semantics allows various kinds of information to be cagture iﬂ)l'- 9(?32’22?2"3 Constraint Satisfaction Problems. Proc. of

in CNTSs, such as constraints modeling scheduling aspects as '

well as planning aspects, temporal constraints, congsrain [Nareyeketal.2005] Nareyek, A.; Freuder, E. C.; Fourer, R,

on both dimension and timeline variables, or constraints on S'unchiglia, E.; Goldman, R. P.; Kautz, H., Rintanen, J.; and

. . s Tate, A. 2005. Constraints and Al planninggEEE Intelligent
binary or n-ary variables. The key factor explaining the al- System&0(2):62-72.

gorithmic success of CNTs is that they allow efficient mod- _—
els containing information such as global constraints;-con [Nsa:)rﬁzslngOM] Nareyek, A. 2001 Constraint-Based Agents
straints between states, constraints between actionspeym Lo .
try breaking constraints, constraints pruning suboptiseal [Pralet & Verfaillie 2008] Pralet, C., and Verfaillie, G. ~2008.
utons,or redundant consiraits, o be developed Explol D7 \POR QUReTien e B Deinlosts 2y 6 A
ing the information available avoids the planner from bein

g P 9 [van Beek & Chen 1999] van Beek, P., and Chen, X. 1999. CPlan:

blind, while preserving qptlmallty. A Constraint Programming Approach to Planning. Rroc. of
In the future, we believe that the performance of algo- AAAI-99 585-590.

rithms on CNTs could be improved significantly, since con- . ~ -

. . . . L [Verfaillie, Pralet, & Lemdtre 2008] Verfaillie, G.; Pralet, C.; and
S"a'r?t programming technlque_s_ Such as |nteII|gent_back- Lemditre, M. 2008. Constraint-based Modeling of Discrete Event
t_ra(_:klng,_ structural decomposition, |mproved hegrlstlcs Dynamic Systems. To appear in JIM (Journal of Intelligent Man-
limited discrepancy search, soft constraint propagaton; ufacturing).
straint preprocessing, or randomlzat_lon anq restart, have [Vidal & Geffner 2006] Vidal, V., and Geffner, H. 2006. Branch-
not been used yet. It would also be interesting to develop "jng and pruning: An Optimal Temporal POCL Planner Based on

approximate algorithms and to compare their performance constraint Programmingartificial Intelligence170:298-335.
with heuristic-based planners. Last, the approach shauld b

extended in order to be able to handle uncertainty.

	Introduction
	Constraint Networks on Timelines
	Comparison with Existing Modeling Frameworks and Extensions
	Other Modeling Examples
	A Dynamic Depth-First Tree Search Using Constraint Propagation for CNTs
	Experiments
	Conclusion

