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Abstract

In the last decades, there has been an increasing interest in
the connection between planning and constraint program-
ming. Several approaches were used, leading to different
forms of combination between the two domains. In this paper,
we present a new framework, called Constraint Network on
Timelines (CNT), to model and solve planning and schedul-
ing problems. Basically, CNTs are a kind of dynamic CSPs,
enhanced with special variables called dimension variables
representing the initially unknown number of steps in a valid
or optimal plan. We also present an algorithm and experimen-
tal results showing that the expressiveness of CNTs allows
efficient models to be developed, and can lead to significant
gains on problems taken from planning competitions.

Introduction
In the last decades, there has been an increasing interest in
the connection between planning and Constraint Program-
ming (CP). As already recognized in (Nareyeket al. 2005),
this interest has led to three main kinds of combination be-
tween planning and CP.

1. CP can be used as a plug-in to solve efficiently subprob-
lems generated during planning. This plug-in approach
allows existing planners to be enhanced with CP tech-
niques but does not exploit all the capabilities of CP.

2. In approaches inspired from (Kautz & Selman 1992),
such as CPlan (van Beek & Chen 1999) or GP-CSP
(Do & Kambhampati 2001), a CSP (Constraint Satis-
faction Problem (Dechter 2003)) or a dynamic CSP
(Mittal & Falkenhainer 1990) is built to solve the plan-
ning problem over a fixed horizonk, which is incremented
if no plan is found. The size-bounded CSPs constructed
are obtained from planning graphs (Blum & Furst 1997)
or directly from STRIPS or PDDL representations
(Fikes & Nilsson 1971; McDermott 1998). They contain
variables representing the state and the actions at each
stepi ∈ [1..k], and constraints specifying the initial and
goal states, action preconditions, and action effects. Other
constraints may be added manually. This approach can be
very efficient but as all variables are duplicated at each
step, the CSPs built can become too large.
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3. Other approaches tackle planning problems as a kind of
dynamic CSP without fixing the horizon. This includes
planners likeCPT (Vidal & Geffner 2006), which repre-
sents the planning problem by a set of temporal variables
associated with actions and action preconditions, and by
a set of temporal constraints. The associated CSP is di-
rectly obtained from PDDL descriptions. It is dynamic
in the sense that at each step of the search, variables
and constraints are active or not. (Nareyek 2001) pro-
poses another approach, which involves a CSP with a dy-
namic and constrained graphical structure. Another ex-
ample is Constraint-based Attribute and Interval Planning
(Frank & J́onson 2003), whose principle is to add to a cur-
rent incomplete plan so-called intervals. The latter repre-
sent that some predicate holds over a time slot[ts, te], and
must satisfy some compatibility constraints.
In this paper, we propose a new generic constraint-based

approach to model and solve planning and scheduling prob-
lems. This approach, calledConstraint Network on Time-
lines (CNT), is included in the third category but covers all
approaches in the second one. A CNT is a kind of dynamic
CSP, in which the dynamic aspect comes from the explicit
presence ofdimension variablesrepresenting the possibly
unknown number of steps in the plans sought. The presen-
tation here differs from the first version of CNTs introduced
in (Verfaillie, Pralet, & Lemâıtre 2008). The paper is orga-
nized as follows. We first present the CNT framework and
compare it with existing approaches. The different modeling
capabilities of CNTs are illustrated on some planning prob-
lem examples taken from international planning competi-
tions (IPCs). We then present an algorithm to seek for plans
and optimal plans from CNT representations, highlighting
the special role of dimension variables. Last, we give ex-
perimental results on IPC problems, showing that using the
modeling capabilities and the expressiveness of CNTs can
lead to significant gains in computation time. In particular,
some problems unsolved by existing optimal planners are
solved optimally in a few seconds.

Constraint Networks on Timelines
In the following,[a..b] denotes the set of integers betweena
andb, and given a variablex, d(x) denotes its domain of val-
ues. In order to illustrate the CNT framework, we consider
a space application example (Pralet & Verfaillie 2008).



A satellite must download a set ofNO observations down
to Earth over a time period[STA,END ]. Over this time
period, it goes through a set{[SEk,EEk], k ∈ [1..NE ]} of
NE eclipse periods, and a set{[SDk,EDk], k ∈ [1..ND]} of
ND station visibility windows, during each of which a block
of observations can be downloaded. Downloading observa-
tion o ∈ [1..NO] takes a durationDo. At any time, the level
of energy available on board is somewhere betweenENmin
andENmax . Its evolution depends on the powerPdl con-
sumed by downloads, the powerPsat consumed by the plat-
form, and the powerPsol produced by solar panels when the
satellite is not in eclipse. The goal is to download all obser-
vations while respecting energy limitations. The initial level
of energy, at timeSTA, is denotedENinit .

To model this problem, we can first define a set of “clas-
sical” variables: for each observationo, we introduce one
variablendo of domaind(ndo) = [0..ND] to represent the
indexk of the download slot during which observationo is
downloaded (value0 if o is not downloaded), and for each
download slot indexk ∈ [1..ND], we introduce variables
sdk andedk, of domaind(sdk) = d(edk) = [SDk,EDk] to
represent respectively the start and end times of the down-
load occurring during download slotk. To model the evolu-
tion of the energy level without fixing the number of steps
in this evolution, we need to introduce a set of variableseni

whose cardinality is unknown. This will be possible in the
CNT framework thanks to the notion of timeline.

Definition 1 (Timeline) A timelinetl is a pair tl =
(d(tl), h(tl)) whered(tl) is a set of values andh(tl) is a
variable whose domain of valuesd(h(tl)) is included inN.
d(tl) is called the domain oftl andh(tl) its dimension (di-
mension is denotedh like horizon).

Definition 2 (Variables associated with a timeline) Given
an assignmentA of h(tl), a timelinetl = (d(tl), h(tl)) de-
fines a finite set of variablesV (tl, A) = {tli | i ∈ [1..A]},
whose domain of values isd(tli) = d(tl). This set is empty if
h(tl) takes value0. In order to distinguish variables defined
by a timeline from classical variables, variables inV (tl, A)
are called timeline-variables, or more shortlyt-variables.

The maximal set of t-variables which may be defined by
a timeline is{tli | i ∈ [1..max(d(h(tl)))]}. This set can be
infinite if d(h(tl)) is not bounded. Among t-variables in this
set, the ones in{tli | i ∈ [1..min(d(h(tl)))]} aremandatory,
because they exist whatever the timeline dimension is.

Definition 3 (Assignment of a set of timelines) LetT be
a set of timelines. An assignmentA of T is the union of
an assignmentAH of all the dimension variables of the
timelines inT , and of an assignmentAV of all t-variables
in ∪tl∈T V (tl, AH [h(tl)]), whereAH [h(tl)] denotes the as-
signment ofh(tl) in AH .

Let us illustrate these notions on the satellite example.
We can first introduce one dimension variableh of domain
d(h) = [1..∞] to represent the number of important steps
in the evolution of the level of energy. We use four time-
lines,t = ([STA,END ], h), en = ([ENmin,ENmax ], h),
ec = ({0, 1}, h), anddl = ({0, 1}, h), to represent respec-
tively the time associated with each step, the current levelof

energy, the current eclipse status, and the current download
status. Given an assignmentA of h, these timelines induce
a set of t-variables{tli | tl ∈ {t, en, ec, dl}, i ∈ [1..A]},
wheretli represents the value oftl at stepi. A tabular repre-
sentation of an assignment of the different timelines is given
below. The first column means that att1 = 0, the energy
level isen1 = 300, the satellite is in eclipse (ec1 = 1), and
no download is performed (dl1 = 0). At step2, at t2 = 30,
the energy level has decreased toen2 = 270, and a down-
load is triggered (dl2 = 1). The download ends att3 = 48
(dl3 = 0). At t4 = 150, the satellite is not is eclipse any-
more (ec4 = 0). And so on until steph = 8.

1 2 3 4 5 6 7 8
t 0 30 48 150 235 248 272 350

en 300 270 216 114 284 271 223 145
ec 1 1 1 0 0 1 1 1
dl 0 1 0 0 1 1 0 0

Variables defined by timelines must usually satisfy some
constraints. We therefore introduce the notion of constraint
on timelines.

Definition 4 (Constraint) A classical CSP constraintc is
defined by a pair(S(c), R(c)) whereS(c) (the scope ofc)
is the finite set of variables over which the constraint holds,
andR(c) (the relation associated withc) is any explicit or
implicit representation of the set of allowed combinationsof
values of the variables inS(c).

Definition 5 (Constraint on timelines) A constraint on time-
lines is a triplec = (SV (c), ST (c), fct(c)) whereSV (c) is
a finite set of variables,ST (c) is a finite set of timelines,
and fct(c) is a function which associates a finite set of CSP
constraints with each assignmentA of the dimension vari-
ables of the timelines inST (c). It is moreover assumed that
the scope of each of the CSP constraints infct(c)(A) is in-
cluded inSV (c) ∪ {tli | tl ∈ ST (c), i ∈ [1..A[h(tl)]]}.

Given a timelinetl and a variablex, an example of con-
straint on timelines isc : ∀i ∈ [1..h(tl) − 1], tli+1 6= x +
tli. Implicitly, c is the triple(SV (c), ST (c), fct(c)) where
SV (c) = {x}, ST (c) = {tl}, and fct(c) is the function
which associates, with each assignmentA of h(tl), the set
of CSP constraints{tli+1 6= x+tli | i ∈ [1..A−1]}. Another
example of constraint on timelines is:∃i ∈ [2..h(tl)], tli =
0. It corresponds to the triple(∅, {tl}, fct), wherefct asso-
ciates, with each assignmentA of h(tl), the CSP constraint
∃i ∈ [2..A], tli = 0. In order to impose conditions on the
final state of a timeline, constraints of the formtlh(tl) = g
can be considered. They associate, with each assignmentA
of h(tl), the CSP constrainttlA = g. We can also define
constraints likealldifferent({tli | i ∈ [1..h]}), which im-
plicitly associates with each assignmentA of h the classical
CSP constraintalldifferent({tli | i ∈ [1..A]}). Such con-
straints, usually called global constraints because they hold
on a large number of variables, are interesting because they
can be handled by dedicated powerful inference algorithms
available in constraint programming tools.

To be more concrete, the satellite problem can be modeled
by constraintsc1 to c8 listed below. Constraintc1 defines the
initial state. Constraintc2 defines the end time of a download



as its start time plus its duration. Constraintsc3 andc4 de-
fine respectively when the satellite is in an eclipse/download
state,c5 defines the evolution of the level of energy, andc6

asserts that the timeti+1 of stepi + 1 is the minimum of
all important time points strictly greater thanti. Last, c7

defines a condition on the final state andc8 defines the prob-
lem goal. Note that the domain of values associated with
timelines also enforce constraints: e.g., the domain of val-
uesd(en) = [ENmin,ENmax ] of timeline en imposes a
constraint on the minimum level of energy.

(t1 = STA) ∧ (en1 = ENinit) (c1)

∀k ∈ [1..ND], edk = sdk +
∑

o∈[1..NO] |ndo=k Do (c2)

∀i ∈ [1..h],

(eci = 1) ↔ (∃k ∈ [1..NE ],SEk ≤ ti < EEk) (c3)

(dli = 1) ↔ (∃k ∈ [1..ND], sdk ≤ ti < edk) (c4)

∀i ∈ [1..h − 1],

eni+1 = min(ENmax , eni + (ti+1 − ti) · P )
with P = (1 − eci) · Psol − dli · Pdl − Psat

(c5)

ti+1 = min{t ∈ TD ∪ TE ∪ {END} | t > ti}
with TD = ∪k∈[1..ND],sdk<edk

{sdk, edk}
andTE = ∪k∈[1..NE ]{SEk,EEk}

(c6)

th = END (c7)

∀o ∈ [1..NO], ndo 6= 0 (c8)

All notions defined previously are assembled in the notion
of constraint network on timelines(CNT).

Definition 6 (Constraint network on timelines) A constraint
network on timelinescnt is a tuplecnt = (V,CV , T, CT ),
whereV is a finite set of variables,CV is a finite set of
constraints whose scopes are included inV , T is a finite set
of timelines whose dimensions are included inV , andCT

is a finite set of constraints on timelines(SV , ST , fct) such
thatSV ⊂ V andST ⊂ T .

The satellite download problem can be modeled by the
CNT (V,CV , T, CT ), whereV = {ndo | o ∈ [1..NO]} ∪
(∪k∈[1..ND]{sdk, edk}) ∪ {h}, CV = {c2, c8}, T =
{t, en, ec, dl}, andCT = {c1, c3, c4, c5, c6, c7}. The fol-
lowing figure gives a partial illustration of this CNT.

t

en

ec

dl

t1

c4

c2

t2 t3 t4 t5 t6

en6en5en4en3en2en1

ec1 ec2 ec3 ec4 ec5 ec6

dl6dl5dl4dl3dl2dl1

h nd1 sd1

ed1nd2

nd3 sd2

ed2nd4

c4 ∈ CTc2 ∈ CV

TV

Among the various problems which can be formulated on
CNTs, a useful one is to seek for a consistent assignment:

Definition 7 (Consistent assignment of a CNT) A consistent
assignment (a solution) of a constraint network on timelines
cnt = (V,CV , T, CT ) is an assignment of the variables in
V and of the timelines inT such that all CSP constraints in
CV and all CSP constraints induced by the constraints on
timelines inCT and the assignment ofV are satisfied.

It is important to note that the CNT framework is not in-
cluded in the second kind of approach mentioned in the in-
troduction. Indeed, we do not consider the planning problem
over a fixed horizon, since dimension variables are actual
variables on which constraints can be enforced and prop-
agated. For example, consider a CNT containing one di-
mension variableh of domaind(h) = [1..∞], one timeline
x = ({0..2}, h), and three constraintsx1 = 0, xh = 2,
and∀i ∈ [1..h − 1], xi+1 − xi ≤ 1. Constraint propaga-
tion techniques can remove value1 from the domain ofh,
since ifh = 1, thenxh = 2 andx1 = 0 are not compati-
ble. Asd(h) becomes[2..∞], constraintx2 − x1 ≤ 1 must
be satisfied. Asx1 = 0, constraint propagation can infer
d(x2) = {0, 1}, which in turn allows value2 to be removed
from d(h). Therefore, constraints can be propagated in any
direction and dimension variables will not necessarily be as-
signed first. Another useful feature of CNTs is the explicit
presence of classical variables (outside timelines), which
can model static features such as the choice of a download
slot for a given observation. Last, CNTs can be easily ex-
tended to soft CNTs by replacing constraints by soft con-
straints, in order to model problems involving preferences
such as the minimization ofcard{o ∈ [1..NO] |ndo = 0} if
downloading all observations is not possible.

Comparison with Existing Modeling
Frameworks and Extensions

The CNT framework is a kind of dynamic CSP, except that
in CNTs, the number of potential variables may be un-
bounded, if the domain of a dimension variable is infinite.
The interest of this “infinite” feature is that it makes it pos-
sible to model and solve, in a CSP-like way, planning prob-
lems over an initially unknown and unbounded horizon, or
validation problems over an unbounded future. In dynamic
CSPs, the number of potential variables and constraints is fi-
nite: variables are divided into a set of mandatory variables
and a set of optional ones, and constraints are divided into a
set of classical constraints and a set of activation constraints,
which define when optional variables become active. Con-
straints are active only if their variables are active too. In
CNTs, we do not explicitly define activation constraints:
constraints are active depending on the domain of values of
dimension variables. Another contribution of CNTs is that
they explicitly identify the special role played by dimen-
sion variables in planning and scheduling problems. They
allow global constraints which hold on a variable number of
variables, such asalldifferent(xi, i ∈ [1..h]), to be defined,
whereas in dynamic CSPs, the scope of each constraint must
be fixed before the resolution.

Compared to approaches completely integrating planning
into constraint programming (third class given in the intro-
duction), CNTs are built directly over variables and con-
straints, and not over more general entities such as in-
tervals or structural constraints. This allows CNTs to
be very generic, since any kind of constraint can be de-
fined to model particular features of a real-world prob-
lem, such as global constraints or constraints involving
both variables and t-variables. The generic aspect of



CNTs also holds since they were proved to cover many
frameworks used to model discrete event dynamic systems
(Verfaillie, Pralet, & Lemâıtre 2008), such as automata, syn-
chronized products of automata, timed automata, STRIPS
planning, Petri nets, resource-constrained project schedul-
ing, or temporal constraint networks.

However, defining models directly over variables and con-
straints can be harder and less intuitive than with PDDL. In
fact, higher level entities may be needed by modelers. These
higher level entities can be easily added to the naturally ex-
tensible CNT framework, as shown below. The simultane-
ous presence of basic and high level entities in CNTs is not
contradictory: it exactly fits the CSP approach, where basic
and global constraints coexist.

Time reference of a timeline Some timelines can be of
typetime. Timelines of type time must have a domain of val-
ues included inR and must satisfy∀i ∈ [1..h(tl)− 1], tli ≤
tli+1. With a timelinetl can be associated at most one time-
line of type time, called thetime referenceof tl. If the time
reference oftl is t, then tli represents the value oftl at
time ti. Moreover, we assume thath(tl) = h(t) and that
(ti = tj) → (tli = tlj), meaning that a timeline cannot take
two different values at the same instant.

Also, it is sometimes useful to add variablestl0 represent-
ing the initial state of a timeline. In this case, the timeline is
said to be aninitialized timeline.

Timeline evolution types An evolution type can be asso-
ciated with each timelinetl whose time reference is not null.
The evolution of a timeline ispiecewise constantif the time-
line represents system features that do not change between
two steps. In this case, if the time reference oftl is t, then
tli represents the value taken by timelinetl from time ti to
time ti+1, time ti+1 excluded. The evolution of a timeline
can also bepiecewise linearif the timeline represents fea-
tures that evolve linearly between two steps, ordiscreteif
the timeline represents features that have no value between
two steps.

Important intermediate variables Given a timelinetl
whose time reference ist and given a variablex whose do-
main is included inR, we can define intermediate variable
val(tl, x) to represent the value of timelinetl at timex. If
tl has a piecewise constant evolution, thenval(tl, x) = tlj
with j = max(j ∈ [1..h(tl)] | tj ≤ x) if this quantity exists,
val(tl, x) undefined otherwise. This definition is illustrated
by Figure 1. Similarly, we can define intermediate variable
valb(tl, x) to represent the value of timelinetl just before
timex (x excluded). Iftl has a piecewise constant evolution,
thenvalb(tl, x) = tlj with j = max(j ∈ [1..h(tl)] | tj < x)
if this quantity exists,valb(tl, x) undefined otherwise. For
timelines whose evolution is piecewise linear or discrete,
val(tl, x) andvalb(tl, x) are defined differently.

All these variables can be handled automatically in an ef-
ficient way, with dedicated global constraints on timelines
hidden to the modeler, so that (s)he can directly use quanti-
tiesval(tl, x) or valb(tl, x) to express constraints.

ti(tl)

tl4

tl3

t1 t2 t3 t4
x

val(tl, x) = tl3

tl1

tl2

tl

Figure 1: Semantics of a piecewise constant timeline and
illustration of intermediate variablesval(tl, x).

Other Modeling Examples
Before defining algorithms, let us show the modeling capa-
bilities of CNTs on some problems from International Plan-
ning Competitions (IPCs). For each problem, different mod-
els can be defined. As in CSPs, finding a good model may
not be straightforward. The models we present make some
simplifications compared to the actual IPC formulations;in
the experiments, we do not make such simplifications.

Domain BlocksWorld (IPC2) In order to model a
BlocksWorld problem withN blocks, we use one dimen-
sion variableh of domaind(h) = [0..2N ] (2N can be shown
to be an upper bound on the optimal makespan), and three
timelines, move = ([1..N ], h), from = ([0..N ], h), and
to = ([0..N ], h), to represent respectively the block moved
at stepi, the block from which it is taken (0 if the block is
taken from the table), and the block on which it is put on (0
if the block is put on the table). For every blockb, we use
timelinestopb = ([0..N ], h) andontableb = ({0, 1}, h) to
represent the state ofb at each step. The constraints intro-
duced define the initial and goal states, preconditions on de-
cisions, effects of actions, and conditions of changes oftopb

and ontableb. But unlike with approaches like CPlan, the
horizonh is not fixed initially. The expression of constraints
is compact thanks to the variable-based decomposition of
actions into timelinesmove, from, andto. This differs from
the action-based view of STRIPS or PDDL. We also use a
CSP constraint known as aglobal cardinality constraintto
impose that each block can be moved at most twice (any plan
in which a block is moved more than twice is not optimal).
Last, we use constraints forcing some necessary moves to be
done, and constraints breaking symmetric solutions.

Domain Satellite (IPC3) A set ofNS satellites must take
a set ofNI images. Each imageim has a directionDI (im).
With each satellites are associated a set of observation in-
strumentsIN s, an instrumentINI s calibrated initially, and
an initial pointing directionDII s. It is possible to compute
a predicateSUPPORTS (im, in) which holds if imageim
can be performed with instrumentin. The duration needed
to take a picture in a directiondi′ with instrumentin′, start-
ing from a directiondi with instrumentin calibrated, is de-
notedDU (di, in, di′, in′). It takes into account the neces-
sity to calibratein′ if in′ 6= in. We denote byDUmin the
minimum value of functionDU ( ).



To model this problem, we use one dimension variablehs

of domain [0..NI ] per satellites. hs represents the num-
ber of images taken bys. Timelinesims = ([1..NI ], hs),
ins = (IN s, hs), dis = ({DI (im), im ∈ [1..NI ]} ∪
{DII s}, hs), and ts = ([0..Tmax ], hs) represent respec-
tively images taken bys, associated instruments, associated
directions, and the times when images are finished. Time-
lines ins, dirs, ts are initialized, so that variablesins,0,
dirs,0, ts,0 can be used. A variable denotedtend repre-
sents the total duration needed to take all pictures. Differ-
ent constraints are defined. Constraintsc9 and c10 ensure
that each image is taken exactly once, which prunes subop-
timal solutions. Constraintc11 defines the initial state. Con-
straintc12 imposes feasibility constraints on the decisions.
Constraintsc13 andc14 describe the evolution of directions
and times. Constraintc15 is redundant but crucial for the
algorithmic efficiency. Constraintc16 definestend as the
makespan, which must be minimized.

∑
s∈[1..NS ] hs = NI (c9)

alldifferent({ims,i | s ∈ [1..NS ], i ∈ [1..hs]}) (c10)

∀s ∈ [1..NS ],

(dis,0 = DII s) ∧ (ins,0 = INI s) ∧ (ts,0 = 0) (c11)

∀s ∈ [1..NS ],∀i ∈ [1..hs],

SUPPORTS (ims,i, ins,i) (c12)

dis,i = DI (ims,i) (c13)

ts,i = ts,i−1 + DU (dis,i−1, ins,i−1, dis,i, ins,i) (c14)

tend ≥ ts,i + (hs − i) · DUmin (c15)

tend = maxs∈[1..NS ] ts,hs
(c16)

Domain Trucks (IPC5) The modeling of this domain
shows how useful intermediate variablesval(tl, x) and
valb(tl, x) are. Domain Trucks involves a set of packages
P and a set of trucksT . Each truckτ ∈ T , initially located
at a locationLI τ , has a limited capacity and can load/unload
packages, and drive between locations. Each packagep ∈ P
must be transfered from an initial locationLI p to a goal lo-
cationLGp. Actions have durations and the goal is to mini-
mize the makespan. In the sequel, we omit quantification on
τ andp in the expression of constraints.

For each truckτ , we use one dimension variablehτ rep-
resenting the number of actions performed byτ , and a set
of timelines{tτ , aτ , pτ , lτ , nτ} of dimensionhτ . For each
i ∈ [1..hτ ], aτ,i represents the action made byτ at stepi
(load, unload, or drive),pτ,i is the package concerned by the
action (if any),tτ,i is the start time of the action, andlτ,i and
nτ,i are the location ofτ and the number of packages inτ at
the end of the action. Timelinetτ is the time reference ofaτ

andpτ . For each packagep, we use one dimension variable
hp and two timelines{tp, lp} of dimensionhp. For each step
j ∈ [1..hp], lp,j represents the location ofp at timetp,j . We
consider that the locationlp,j can also be a truck. Timeline
tp is the time reference oflp. All timelines have a discrete
evolution except fromlp, whose evolution is considered to
be piecewise constant. Timelinestτ , lτ , tp, lp are initialized.

Constraintsc17 to c27 are imposed over these timelines.
For example,c21 defines the evolution of the number of

packages in a truck. If a package is loaded by a truck, it
must be at the same location as the truck just before the start
of the loading (c22). If a package is unloaded by a truck, it is
at the same location as the truck at the end of the unloading
(c23). If a package is in a truck, then it has just been loaded
and will be unloaded at the next step (c24; in this constraint,
DU denotes the duration of an unloading). In fact, from the
start of the loading to just before the end of the unloading,
the package is considered to be in the truck.c26 defines the
makespan, andc27 asserts both that a package must be at its
goal location at the end and that when it is at its goal loca-
tion, then its associated timeline is over.

(tτ,0 = tp,0 = 0) ∧ (lτ,0 = LI τ ) ∧ (lp,0 = LI p) (c17)

tτ,i ≥ tτ,i−1 + duration(aτ,i, lτ,i−1, lτ,i) (c18)

(pτ,i = 0) ↔ (aτ,i = drive) (c19)

(lτ,i 6= lτ,i−1) ↔ (aτ,i = drive) (c20)

nτ,i = nτ,i−1 + f(aτ,i)
with f(load) = 1, f(unload) = −1, f(drive) = 0

(c21)

(aτ,i = load) → ((valb(lpτ,i
, tτ,i) = lτ,i−1)

∧(val(lpτ,i
, tτ,i) = τ))

(c22)

(aτ,i = unload) → ((valb(lpτ,i
, tτ,i + DU) = τ)

∧(val(lpτ,i
, tτ,i + DU) = lτ,i))

(c23)

(lp,j = τ) → ((val(aτ , tp,j) = load)
∧(val(pτ , tp,j) = p)
∧(val(aτ , tp,j+1 − DU) = unload)
∧(val(aτ , tp,j+1 − DU) = p))

(c24)

(lp,j ∈ T ) ↔ (lp,j+1 /∈ T ) (c25)

tend = maxp∈[1..NP ] tp,hp
(c26)

(lp,j = LGp) ↔ (j = hp) (c27)

Other constraints are added to get a more efficient model.
For example,c28 prevents a package from being at the same
place at two different steps, andc29 is a transition constraint
pruning suboptimal choices from the search space.

alldifferent(lp,j | j ∈ [0..hp]) (c28)

(aτ,i = load) → (aτ,i+1 6= unload) (c29)

A Dynamic Depth-First Tree Search Using
Constraint Propagation for CNTs

The algorithm presented is a standard depth-first tree search
using constraint propagation, enhanced with an extension
phase that inserts new variables and constraints whenever
the minimum value in the domain of a dimension variable is
modified. This extension phase is combined with constraint
propagation, which can generate value removals, which can
in turn trigger a new extension phase, and so on until a fixed
point is reached. The interest of constraint propagation is
to simplify the current problem by pruning inconsistent val-
ues or tuples of values. The algorithm, calleddynDFS, takes
as input a CNT(V,CV , T, CT ). It is directly defined in an
optimization context, that is we assume that there exists an
objective variable denotedobj whose value must be mini-
mized. If the algorithm terminates, it returns an optimal and
consistent CNT assignment if there exists one, and null oth-
erwise. The main steps of the algorithm are detailed below.



Function dynPropagate During search, a current CSP
(V,CV ) is maintained (V is the set of variables andCV the
set of constraints). The iterative extension and propagation
phases are performed by functiondynPropagate. While con-
straints need to be propagated and while the current CSP is
not known to be inconsistent (line 30), constraints are prop-
agated with functionpropagate(line 32). The CSP obtained
after constraint propagation may then be extended by calling
extend(V,CV , T, CT , AH) (line 33). In this call,AH corre-
sponds to the previous minimal assignment of the dimension
variables. Functionspropagateandextendare assumed to
satisfy requirements R1 and R2 respectively:

(R1) propagate(V,CV ) transforms the CSP(V,CV ) into an
equivalent CSP(V ′, C ′

V )1 by enforcing at leastbackward
checking(Dechter 2003); this means that in(V ′, C ′

V ), all
constraints whose scope is fully assigned are satisfied;

(R2) extend(V,CV , T, CT , AH) returns a pair (V ′, C ′
V )

such that CNTs(V,CV , T, CT ) and (V ′, C ′
V , T, CT )

are equivalent,1 and such that, for every constraint
(SV , ST , fct) ∈ CT for which there is a unique possible
assignmentA for the dimension variables of timelines in
ST , C ′

V containsfct(A).

To satisfy requirement (R1),propagatecan be any stan-
dard constraint propagation scheme, such as forward check-
ing, arc consistency, or path consistency (Dechter 2003).
Requirement (R2) can be fulfilled in different ways. The
laziest version ofextendconsists in generating constraints
only when all dimension variables are assigned. The ap-
proach we use in the experiments is still lazy, but more in-
cremental: whenextend(V,CV , T, CT , AH) is called, it is
possible to compareAH , the previous minimum assignment
of the dimension variables, andA′

H , the current minimum
assignment of the dimension variables, and to add the set of
t-variables{tli | tl ∈ T, i ∈ [AH [h(tl)] + 1..A′

H [h(tl)]] to
V . The way constraints are added toCV depends on the type
of constraint considered. For example,

• for a constraint such as∀i ∈ [1..h(tl)], tli 6= x, func-
tion extendcan add the set of constraints{tli 6= x | i ∈
[AH [h(tl)] + 1..A′

H [h(tl)]] to CV ;

• a constraint likealldifferent(tli | i ∈ [1..h(tl)]) can gen-
erate constraintalldifferent(tli | i ∈ [1..A′

H [h(tl)]]) if
AH [h(tl)] 6= A′

H [h(tl)].

In fact, constraints can be added as soon as they must nec-
essarily be satisfied. The design of specialized schemes for
function extendfor a constraint on timelines(SV , ST , fct)
can be highly dependent onfct and is not discussed here.

Functions dynDFS and recDynDFS Given a CNT
(V,CV , T, CT ), the systematic depth-first tree search is per-
formed by callingdynDFS(V,CV , T, CT ). After an initial
extension/propagation step (lines 4 and 5), functiondynDFS
calls functionrecDynDFSif the initial problem has not been
proved to be inconsistent, and returnsnull otherwise.

If it terminates,recDynDFS(V,CV , T, CT ) returns an op-
timal consistent assignmentA of the CNT (V,CV , T, CT )

1That is, they define the same set of consistent assignments.

Algorithm 1 : dynDFS, a dynamic depth-first tree search
using constraint programming.

1 dynDFS(V, CV , T, CT )
2 begin
3 AH ← {(h(tl), 0) | tl ∈ T}
4 (V, CV )← extend(V, CV , T, CT , AH)
5 (V, CV )← dynPropagate(V, CV , T, CT )
6 if ∀x ∈ V, d(x) 6= ∅ then
7 return recDynDFS(V, CV , T, CT )

8 else returnnull
end

10 recDynDFS(V, CV , T, CT )
11 begin
12 if ∀x ∈ V, card(d(x)) = 1 then
13 return {(x, a) |x ∈ V, a ∈ d(x)}

14 else
15 Choosex ∈ V s.t. card(d(x)) > 1
16 Choose a partition{D1, D2} of d(x)
17 (A, opt)← (null , +∞)
18 foreachk ∈ {1, 2} do
19 (V ′, C′

V )← (V, CV ∪ {obj < opt})
20 d′(x)← Dk

21 (V ′, C′

V )← dynPropagate(V ′, C′

V , T, CT )
22 if ∀x ∈ V ′, d′(x) 6= ∅ then
23 A′ ← recDynDFS(V ′, C′

V , T, CT )
24 if A′ 6= null then (A, opt)← (A′, A′[obj])

25 return A

end

27 dynPropagate(V, CV , T, CT )
28 begin
29 b← true
30 while b ∧ (∀x ∈ V, d(x) 6= ∅) do
31 AH ← {(h(tl), min(d(h(tl)))) | tl ∈ T}
32 (V, CV )← propagate(V, CV )
33 (V ′, C′

V )← extend(V, CV , T, CT , AH)
34 if (V ′, C′

V ) 6= (V, CV ) then
35 (b, V, CV )← (true, V ′, C′

V )

36 return (V, CV )
end

if it exists, andnull otherwise. If there is a unique possi-
ble assignment ofV , this assignment is returned (lines 12-
13). Otherwise, the algorithm chooses a variablex ∈ V not
assigned yet and builds a partition of the domain ofx, ac-
cording to some heuristics (lines 15-16). The two search
subspaces defined by this partition are then successively
explored (lines 18 to 24). For each of them,recDynDFS
first propagates constraints usingdynPropagate(line 21). If
no inconsistency is revealed (line 22),recDynDFSis recur-
sively called (line 23), If a solutionA′ 6= null is returned, it
is recorded as well as the best value known for the objective.

Discussion and properties Algorithm dynDFS is a
generic algorithm which covers several existing approaches.
Indeed, approaches reasoning over a sequence of size-
bounded CSPs simply correspond to variable/value choice
heuristics (lines 15 and 16) where all dimension variables
are assigned first, with their minimal values.dynDFScan



also adopt a strategy where horizons are dynamically incre-
mented during search, when constraint propagation prunes
the minimum value in the domain of dimension variables.
As a result,dynDFSallows several approaches to be com-
pared inside a common framework.

Formal properties ofdynDFSare given below. This al-
gorithm is correct but does not necessarily terminate, since
it might get trapped in infinite branches of the search space
when the domain of some variable is infinite.

Proposition 1 (Correctness) If functions propagate and ex-
tend satisfy (R1) and (R2), thendynDFSis correct: if it ter-
minates, its result is an optimal consistent assignment if the
CNT considered admits a solution and null otherwise.

Proposition 2 (Termination) If all domains of values are fi-
nite, then dynDFS terminates. If all non-dimension vari-
ables have a finite domain and if the problem admits at
least one solution, then there exist choice heuristics (lines 15
and 16) such that dynDFS finds a consistent assignment in a
finite time. In general, dynDFS does not terminate.

Proposition 3 (Complexity class of CNTs) Deciding
whether there exists a CNT assignment with an objective
value lesser than a given thresholdθ is (a) NP-complete
for CNTs where all domains of values are finite, (b) semi-
decidable for CNTs such that all non-dimension variables
have a finite domain, and (c) undecidable in general.

Sketch of the proofs: for Prop. 1, the idea is to
prove that if it terminates, dynPropagate(V,CV , T, CT )
returns a couple(V ′, C ′

V ) such that(V,CV , T, CT ) and
(V ′, C ′

V , T, CT ) are equivalent, and that if it terminates,
recDynDFS(V,CV , T, CT ) returns an optimal consistent
assignment of(V,CV , T, CT ) if there exists one and null
otherwise. For Prop. 2, if all domains of non-dimension
variables are finite, it suffices to use an assignment heuris-
tics that iteratively increments the maximum value that
can be assigned to a dimension variable. For Prop. 3,
checking the consistency of a CNT assignment is poly-
nomial and any finite CSP can be expressed as a CNT,
hence the NP-completeness result; if all non-dimension vari-
ables have a finite domain, then Prop. 2 implies the semi-
decidability result; for undecidability in general, it was
shown in (Verfaillie, Pralet, & Lemâıtre 2008) that the halt-
ing problem can be expressed as the problem of finding a
consistent assignment of a CNT.

Experiments
To measure the practical interest of CNTs, we performed
experiments on domains BlocksWorld (IPC2), Satellite
(propositionalandsimpletimeversions, IPC3), and Trucks
(propositionalandtemporalversions, IPC5). The first task
was to build CNT representations manually as described pre-
viously. For these domains, the value of dimension variables
can be bounded while preserving optimality, hencedynDFS
terminates. The goal is to minimize the makespan.

The ideas of CNT anddynDFSare implemented over
Choco (Laburthe 2000), a constraint programming library.
The constraint propagation algorithm used is GAC (Gener-
alized Arc Consistency (Dechter 2003)). Functionextendis

implemented via constraintsifThen(h ≥ i, ci), which ac-
tivate constraintci only when guardh ≥ i holds. Other
more efficient implementations of functionextendcould be
developed. Several parameter settings were tested for the
choice of the variable to consider at each step: (1) consider
dimension variables first; (2) consider non-dimension vari-
ables first; (3) consider dimension and non-dimension vari-
ables in any order. The results presented for BlocksWorld
and Satellite are obtained with option (3). As a secondary
criterion, we use the standard CSP heuristics that chooses
a variable of minimum domain size. The results presented
for Trucks correspond to option (2), and by considering first
variables having a minimum domain size for non-dimension
variables, and variables having a minimum minimal value
for dimension variables.

We ran our experiments on an AMD Opteron processor,
2.4 GHz, with 1GB RAM, under Linux, with a time limit of
half an hour per problem. We compareddynDFS(CNT) with
the optimal planners awarded at the last planning competi-
tion: MaxPlan, SatPlan, and CPT.2 MaxPlan and SatPlan
can handle propositional domains. CPT can handle both
propositional and temporal domains. Table 1 shows that in
general,dynDFS(CNT) performs better than MaxPlan, Sat-
Plan, and CPT. On small-size instances,dynDFS(CNT) can
be slower since, as it contains more information, the initial-
ization can be longer. On harder instances,dynDFS(CNT)
provides significant gains. Instances of BlocksWorld are
easy fordynDFS(CNT) thanks to symmetry breaking con-
straints and to constraints forcing necessary moves to be
done. Instances of Satellite, propositional or temporal, are
solved in a few seconds withdynDFS(CNT), whereas with
MaxPlan, SatPlan, and CPT, which work on models contain-
ing less information, they are solved only in several minutes
or unsolved at all. Trucks appears to be more challenging,
in the sense that the CNT representation speeds search, but
does not modify the intrinsic complexity of the problem. For
unsolved instances, as shown in Figure 2,dynDFS(CNT)
is able to quickly produce solutions whose quality is bet-
ter than the quality of the solution produced by SGPlan, a
heuristic-based planner awarded in IPC5. In fact, for do-
main Trucks,dynDFS(CNT) is quite anytime: the optimal
solution is reached quite quickly, and the rest of the time is
dedicated to prove optimality,

Conclusion
In this paper, we presented Constraint Networks on Time-
lines (CNTs), a generic constraint-based framework for
modeling and solving planning and scheduling problems.
This framework is compact and has a clear semantics based
on variables and constraints. A generic dynamic depth-first
tree search algorithm using constraint propagation has been
developed and tested on several instances taken from plan-
ning competitions. Experimental results have shown the
practical interest of the approach, both compared to existing

2For MaxPlan, see http://www.cse.wustl.edu/∼chen/maxplan/.
For SatPlan, see http://www.cs.rochester.edu/∼kautz/satplan. For
CPT, see http://www.cril.univ-artois.fr/∼vidal/#cpt. For CPT, we
use CPT1 because CPT2 is not publicly available.



CPU time (sec.) Makespan
MaxPlan SatPlan CPT dynDFS(CNT)

bw-large-a 0.51 0.38 0.14 1.08 (12)
bw-large-b 4.64 2.36 0.96 2.60 (18)
bw-large-c 171.19 38.99 56.17 6.94 (28)
bw-large-d - 455.65 - 15.14 (36)
bw-ipc10 0.47 0.24 0.03 0.79 (20)
bw-ipc20 - 5.42 407.20 1.48 (32)
bw-ipc30 - 44.28 - 2.55 (36)
bw-ipc40 - 183.91 151.33 4.92 (58)
bw-ipc50 - - - 8.39 (86)

satellite05-prop 0.56 0.43 0.58 0.52 (7)
satellite06-prop 0.32 0.47 0.16 0.54 (8)
satellite07-prop 0.46 0.62 0.40 0.58 (6)
satellite08-prop 25.45 40.73 19.24 1.53 (8)
satellite09-prop 1.76 2.77 1.61 0.89 (6)
satellite10-prop 54.28 16.58 40.83 0.98 (8)
satellite11-prop 7.87 12.28 4.40 0.88 (8)
satellite12-prop 536.40 317.72 - 8.85 (14)
satellite13-prop 644.82 308.38 - 10.04 (13)
satellite14-prop 95.80 74.37 - 8.27 (8)
trucks01-prop 0.71 0.53 11.65 1.29 (11)
trucks02-prop 4.49 2.46 - 4.37 (14)
trucks03-prop 30.95 60.74 - 22.66 (16)
trucks04-prop 1163.32 409.21 - 15.61 (18)
trucks05-prop - - - 45.97 (19)
trucks06-prop - - - 463.41 (22)
trucks07-prop 709.74 642.51 - 1780.32 (18)

satellite05-simpletime 1.21 0.51 (36)
satellite06-simpletime 0.26 0.42 (46)
satellite07-simpletime 0.23 0.54 (34)
satellite08-simpletime 1329.60 0.97 (46)
satellite09-simpletime 3.63 0.87 (34)
satellite10-simpletime 875.18 4.50 (43)
satellite11-simpletime 26.82 1.08 (46)
satellite12-simpletime - 14.01 (79)

trucks01-temporal 2.38 (843.2)
trucks02-temporal - 6.35 (1711.4)
trucks03-temporal - 14.69 (1202.6)
trucks04-temporal - - ( )
trucks05-temporal - - ( )
trucks06-temporal - - ( )

Table 1: Comparison betweendynDFS(CNT) and some op-
timal planners, on propositional and temporal domains.

optimal planners in terms of time to get the optimal solution
and to prove optimality, and compared to heuristic planners
in terms of solution quality. In particular, some problems
unsolved by existing optimal planners are solved in a few
seconds with CNTs. In the end, the basic constraint-based
semantics allows various kinds of information to be captured
in CNTs, such as constraints modeling scheduling aspects as
well as planning aspects, temporal constraints, constraints
on both dimension and timeline variables, or constraints on
binary or n-ary variables. The key factor explaining the al-
gorithmic success of CNTs is that they allow efficient mod-
els containing information such as global constraints, con-
straints between states, constraints between actions, symme-
try breaking constraints, constraints pruning suboptimalso-
lutions, or redundant constraints, to be developed. Exploit-
ing the information available avoids the planner from being
blind, while preserving optimality.

In the future, we believe that the performance of algo-
rithms on CNTs could be improved significantly, since con-
straint programming techniques such as intelligent back-
tracking, structural decomposition, improved heuristics,
limited discrepancy search, soft constraint propagation,con-
straint preprocessing, or randomization and restart, have
not been used yet. It would also be interesting to develop
approximate algorithms and to compare their performance
with heuristic-based planners. Last, the approach should be
extended in order to be able to handle uncertainty.
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Figure 2: Evolution of the makespan given bydyn-
DFS(CNT) and comparison with the makespan given by an
heuristic-based planner (SGPlan, which uses FF), on prob-
lems trucks05-temporal (left) and trucks06-temporal (right).
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